Increasing the Accuracy of SAT-based Debugging

André Siilflow*, Gorschwin Fey*, Cécile Braunstein®, Ulrich Kiihne* and Rolf Drechsler*
*Institute of Computer Science
University of Bremen, 28359 Bremen, Germany
Email: {suelflow,fey,ulrichk,drechsle} @informatik.uni-bremen.de
fLaboratoire LIP6-SoC
University Paris VI, 75252 Paris, France
Email: cecile.braunstein @lip6.fr

Abstract—Equivalence checking and property checking are
powerful techniques to detect error traces. Debugging these traces
is a time consuming design task where automation provides help.
In particular, debugging based on Boolean Satisfiability (SAT)
has been shown to be quite efficient. Given some error traces,
the algorithm returns fault candidates. But using random error
traces cannot ensure that a fault candidate is sufficient to explain
all erroneous behaviors.

Our approach provides a more accurate diagnosis by iterating
the generation of counterexamples and debugging. This increases
the accuracy of the debugging result and yields more valuable
counterexamples. As a consequence less time consuming manual
iterations between verification and debugging are required — thus
the debugging productivity increases.

I. INTRODUCTION

The increasing complexity of today’s designs requires au-
tomation throughout the whole design process. Verification is
one of the major bottlenecks. There exist effective techniques
as constrained random simulation or formal verification to
show faulty behavior, but analyzing the reason is often still
a manual and time consuming debugging task. Techniques
to automate debugging have been proposed. Among these,
debugging based on Boolean Satisfiability (SAT) [1] has been
shown to be quite robust and applicable to a variety of
design scenarios from diagnosis to debugging properties. An
overview is provided in [1], [2]. Given a set of failure traces
or counterexamples, the method computes the set of fault
candidates that can explain an observed error.

In principle, the more counterexamples are used, the more
accurate is the debugging result, i.e. the set of fault candidates
is reduced. Moreover, when all counterexamples are used,
each fault candidate is complete: modifying a fault candidate
is sufficient to correct all errors. But obviously, using all
counterexamples is not feasible in practice. Instead, a subset
has to be chosen, where choosing the best subset is NP-
complete [3]. Therefore the counterexamples are typically
chosen randomly and the fault candidates are not guaranteed
to be complete.

The technique of [4] uses such randomly generated coun-
terexamples for debugging, applies re-synthesis to provide a
corrected circuit and iterates the verification process. This loop
continues until all erroneous traces are fixed. But choosing bad
counterexamples may cause many iterations and modifications

This work was supported in part by the German Federal Ministry of Edu-
cation and Research (BMBF) and by Concept Engineering GmbH, Freiburg,
Germany within the project Herkules under contract no. 01 M 3082.

978-3-9810801-5-5/DATE09 © 2009 EDAA

in many different parts of the circuit. Both is not desirable.
Therefore, strengthening the debugging result can lead to less
re-synthesis steps and to less changes to the design.

Without an automated re-synthesis step the loop between
verification and repair requires the time-consuming interven-
tion of a designer. In this case better counterexamples are
even more desirable, raising the debugging productivity and
decreasing the design time.

In this paper, we present a technique to ensure that each fault
candidate is sufficient to fix all counterexamples, i.e. is com-
plete. Moreover, the process terminates when no more qual-
itatively different counterexamples are available. Hence, we
often need less counterexamples than in a random approach.
The technique can be applied in domains like combinational
or sequential equivalence checking and property checking.

Our method combines counterexample generation and de-
bugging in a single algorithm. First, a faulty circuit is checked
against a specification and a counterexample is extracted.
Then, SAT-based debugging provides a fault candidate that
is sufficient to fix the counterexample. Finally, additional
counterexamples that cannot be fixed using the same fault
candidate are determined and the process iterates.

The proposed algorithm uses a Boolean encoding of
three-valued logic for checking completeness of fault candi-
dates. Thus some erroneous behavior may be left undetected
due to the restricted power of three-valued simulation. Re-
synthesis [4] or a symbolic method is required for further
strengthening the diagnosis. In the following a complete fault
candidate denotes completeness with respect to three-valued
simulation.

With each new counterexample the accuracy increases by
excluding fault candidates that cannot fix all faulty behaviors.
If no additional counterexamples are found, each fault can-
didate is complete. In an alternative application scenario our
technique starts from a given set of counterexamples and finds
qualitatively different counterexamples if available.

In experimental studies combinational and sequential cir-
cuits are considered. The efficiency is shown on single and
multiple faults. In comparison to a set of random counterex-
amples the accuracy significantly increases.

In the following we present our technique for Equivalence
Checking (EC) on the gate level, but the extension to property
checking or hierarchical descriptions is straight forward.

The paper is structured as follows: Section II introduces
preliminaries on three-valued logic and SAT-based debugging.

|1{f
#CFCFé I”‘{f F/Om

/
s, al{ T)bk

(a) Correction

correct
value
correct
value

(b) Problem instance

Fig. 1. Combinational debugging

Section IIT shows limitations of previous approaches. Section
IV introduces our approach. Experimental results are summa-
rized in Section V and Section VI concludes.

II. PRELIMINARIES
A. Three-Valued Logic

Considering circuit Observability Don’t Cares (ODC) in
formal hardware verification leads to stronger counterexam-
ples [S], [6] and faster verification engines [7], [8]. Each
counterexample containing unknown (X)) values gives a better
explanation of the faulty behavior since it does not depend on
the signals or components with unknown values. ODCs are
often computed in a post-processing step [6] or by a modified
SAT solver [5], [8]. But, these approaches do not allow to use
ODC:s for logical reasoning.

Here, the three-valued logic defined over {0, 1, X } requires
a direct encoding in Conjunctive Normal Form (CNF) for a
standard SAT solver. Accordingly the modeling of gates and
components in the CNF formula has to be adjusted. We encode
three-valued logic similar to [7] by using two variables for
each Boolean signal.

Considering X values requires additional overhead in CNF
encoding. Our current implementation requires 3 to 5 times
more variables and clauses for each EC instance on the gate
level. The factor depends on the types of gates in the circuit,
but is linear in the number of gates.

B. SAT-based Debugging

In this section the basics of SAT-based debugging [1] are
reviewed. The algorithm accepts a faulty circuit, a set of input
stimuli (counterexamples) and the expected correct output
responses as input. This information is used to compute gates
as fault candidates that may fix the circuit.

In general, a circuit is divided into components. Depending
on which elements are chosen as components, the granularity
of the debugging result differs. Typical choices are gates or
expressions, but also hierarchical or structural information are
taken into account [9], [10], [1], [2]. In our examples we
consider gates to keep the presentation simple.

For each component extra correction logic is inserted. The
original output function F, of component C is replaced by F
as shown in Figure 1(a). The select line S, of the additional
multiplexer controls F such that if S, is activated, then
F! = R., otherwise F. = F,.. R, is an unconstrained variable
that can have any value assigned. S, is also called abnormal
predicate. When activated, S, leads to a non-deterministic

output function of component c. Therefore, F. may behave
non-deterministically.

Given a set of m counterexamples, for each counterexample
a combinational debugging instance is created as shown in
Figure 1(b): the faulty circuit with additional correction logic
is constrained to the inputs (I) of the counterexample and
the correct output responses (O), given from e.g. a golden
specification. The same abnormal predicate is used for each
instance of a single component. Therefore, activating an ab-
normal predicate leads to a non-deterministic behavior of a
component in all instances. The instance is unsatisfiable if all
abnormal predicates are deactivated, since no correction can
be performed.

During debugging the underlying SAT solver searches for
satisfying assignments by activating some of the correction
logic. The algorithm increases the number of activated abnor-
mal predicates from 1 to k. Here k is the minimal cardinality
leading to a satisfiable instance. Then all fault candidates under
the limit £ may be extracted by adding a blocking clause for
each fault candidate obtained. A fault candidate is a single
component or a set of components in case of multiple faults
(k > 1). The constrained model is translated into Conjunctive
Normal Form (CNF) and given to a SAT solver to check if
the instance is satisfiable (SAT) or unsatisfiable (UNSAT).

The extension to sequential circuits is straightforward: the
circuit is unrolled and the same abnormal predicates are used
in all time steps and for all replicated instances [11]. For
property debugging [2] instead of applying a set of correct
output responses, the property is applied as reference that has
to be fulfilled. To consider more complex components instead
of gates all outputs of a single component are connected to
the same abnormal predicate [9], [2]. Additionally, techniques
to improve the efficiency have been reported.

III. LIMITATIONS

SAT-based debugging has one major drawback: it is exact,
but not complete. That is, for a given set of m counterexamples
each fault candidate is sufficient to fix these observations —
each fault candidate is exact. But it is unknown whether a
fault candidate is sufficient to fix any faulty behavior wrt. the
specification, i.e. whether a fault candidate is complete. There-
fore, a designer has to apply SAT-based debugging in a loop:
(1) create a counterexample, (2) diagnose fault candidates, (3)
fix the design and start again by checking if the specification is
now fulfilled. Therefore in each loop the design has to be fixed
until the specification is completely fulfilled. The task may
be automated [4], but the automation may lead to “unwanted”
designs. That is, due to the iterative application of re-synthesis,
changes to many different parts of the design may happen. So
strengthening the debugging results — by reducing the number
of fault candidates — before fixing the design can lead to more
accurate fixes.

The approach in [3] heuristically chooses fault candidates
that are fixes to a set of counterexamples. But, no guarantee is
given that one of the counterexamples contains more informa-
tion than another one. So, it may happen, that m counterex-
amples are heuristically chosen that lead to almost the same

- M

0
Id X | Impl
¥ .
1 =
é =] >
Z SAT Id 0 Impl
1 f
1 J 1 } ‘l
spec 2 — SAT
[:]
] :Z 7:7; Spec
Id 0 1| [Impl d 1 X1 |Impl
0 g X -E{ﬁ
1] 1 uadl !
g — SAT % Z SAT
1 J 0 J
Spec Spec
(a) Initial (b) Step two
Fig. 2. Overview

fault candidates. When using too many counterexamples, the
size of the SAT instance increases, without reducing the fault
candidates.

Regarding completeness previous approaches cannot decide
whether the set of computed fault candidates for a given
set of counterexamples may fix all faults in the design. So
there may be still an uncovered scenario that is not fixable
using the final set of fault candidates. Thus, a designer starts
debugging with this insufficient set of counterexamples and
fault candidates, fixes the observed errors and, after this
time consuming process, finds that other qualitatively different
errors remain. The process iterates.

IV. INCREASING ACCURACY

In this section an algorithm is proposed, that resolves the
above limitations of SAT-based debugging by (1) finding
qualitatively different counterexamples and (2) returning only
complete fault candidates. The proposed algorithm uses X
values to identify redundant counterexamples and to prevent
them from further occurrence.

Starting from a faulty implementation and a specification
the debugging algorithm computes all fault candidates that can
fix all faulty behaviors. The specification may be given as a
golden specification for equivalence checking or a property for
Bounded Model Checking (BMC) [12].

Each fault candidate in the final set may be used for re-
synthesis to compute a concrete repair [4].

In the following the algorithm is explained for combina-
tional EC on the gate level. Adding the extensions mentioned
in Section II-B to our approach is straightforward. In Sec-
tion IV-A the basic idea is presented and explained by an
example in Section IV-B. The complete algorithm is proposed
in Section I'V-C. Finally, a discussion of possible drawbacks
and limitations is given in Section IV-D.

A. Idea

Usually counterexample generation and debugging algo-
rithm are separated. That is, first a number of counterexam-

=P o

1 :Z L BB on fo |
Id 0 -_L[),Impl Xq . o1
} [B] ‘l 14 *") G2 *
o—lg | [T™
= SAT 11 z
1
| % J;
S)
pec 774>D_|_1>
Id 1 @_L[)ilmpl O Jseec
} T (a) Cex. 1
— — SAT
| i
L 1
Spec el x Xo et
[p2 Tm
Id 2 Xl |Impl 1l —a@,\:Dﬂ/l
I E[y‘l bl)
) ; — =
| Z UNSAT 0 DT_’ J
1 1
L | o
Spec ,,A,DJ—>
- Spec
(¢) Final
(b) Cex. 2
Fig. 3. Example

ples are generated and afterwards the debugging algorithm
computes the fault candidates. That offers to use different
techniques in counterexample generation (e.g. testing or simu-
lation) and for SAT-based debugging. On the other hand, due
to the separation it is not possible to control the generation
to get a set of “useful” counterexamples. Therefore the idea
is to combine counterexample generation and debugging in a
single algorithm.

In the following we focus on equivalence checking (EC)
wrt. a golden specification. The extension to property checking
along the lines of [2] is straightforward.

B. Completeness Check

Figure 2 shows an overview of the process. First, an EC
instance is created as shown in Figure 2(a), top. A faulty circuit
with correction logic and a specification without correction
logic are created and a comparator is connected to the primary
outputs. Additionally, a limitation constraint is applied and
forces exactly 0 abnormal predicates to behave abnormal —
the behavior without additional correction logic. Therefore,
any satisfiable solution is a counterexample.

In the figure, the instance is satisfiable, a counterexample is
extracted and debugged afterwards (Figure 2(a), bottom). The
counterexample is applied and the comparator at the primary
outputs is constrained to force the behavior of the specification.
This instance becomes satisfiable by increasing the number of
activated abnormal predicates to 1. Thus, the counterexample
is fixable by activating exactly one abnormal predicate. An
explicit enumeration of all solutions is not necessary here, it
is sufficient to compute the minimal cardinality k£ = 1.

Now, in parallel to the first instance (I/d 0), a second EC
instance (Id 1) is added (Figure 2(b)). The same abnormal
predicate is given to a single component in both instances and
the primary inputs R. on the correction logic are forced to
X. An X denotes all possible values and thus, all erroneous
behaviors that can be fixed at this place. Hence, it excludes
paths that are already fixable with some value for X. If

an X value propagates to one of the primary outputs the
instance is unsatisfied, because the miter output is constrained
to be a specified (non-X) value 1 or 0. Therefore no new
counterexamples are found.

A SAT solver checks whether activating one of the compo-
nents in Id O still leaves a counterexample in Id 1 that cannot
be fixed. Thus, a satisfying solution proves a previous fault
candidate not complete.

The second counterexample is extracted and Id 1 is con-
strained for debugging. In the figure, the limitation of k =1
active abnormal predicates is assumed to be sufficient. Each
satisfying solution denotes a fault candidate for both coun-
terexamples. In the general case, incrementing k& may be
necessary (as discussed in Section IV-D).

A third instance Id 2 is added as shown in Figure 2(c).
The SAT solver proves the model to be unsatisfiable. That is,
there are no more counterexamples that are not already fixable
under the constraints of Id 0 and Id 1.

Finally, all fault candidates can be enumerated by running
an all solution SAT solver on the model of Figure 2(b). The
activation of any fault candidate in the final set allows to fix
all counterexamples.

Example 1. Consider the computed counterexample of 1d 0 in
Figure 3(a). SAT-based debugging returns G1 and G3 as fault
candidates under the limitation k = 1. Due to the limitation to
1, either the abnormal predicate of G1 or G3 is activated and
therefore one of the components is allowed to behave non-
deterministically. Both components behave correct, if a 1 is
introduced as correction value R..

After fixing the first counterexample a second instance 1d 1
is added. Here, for G1 and G3 an X is assumed on the
primary input R. of the correction logic. Activating G3 leads
to an unsatisfiable instance, but activating G1 leads to another,
unfixed counterexample as shown in Figure 3(b).

The second counterexample may be fixed at G2 or G3,
but G2 does not fix the first counterexample. Therefore, fault
candidate G3 is the only one that fixes both counterexamples.

A third instance is added, but no more counterexamples
exist after considering G3 as fault candidate. The analysis
is complete and G3 is a fault candidate that fixes all faulty
behaviors.

C. Algorithm

In the following the complete algorithm to obtain only fault
candidates that can explain all error traces is presented. The
input for the algorithm shown in Figure 4 is a faulty circuit (F)
and the specification to be fulfilled (S) (Line 1). The algorithm
proceeds in the following main steps:

1) Initialization

2) Compute limitation k and counterexamples

a) Add new EC instance

b) Find next counterexample. If there are no more
counterexamples, return all fault candidates.

c) Extract counterexample

d) Compute k£ and proceed with 2.(a)

1 | function debugging (F,S)

2 |Id = 0;

3 |k =0;

4 |do {

5 // Add Model

6 (C,l1,ABs) = addECInstance (F,S,Id);
7

8 Va € ABs: primarylnput(a) = X;

9 insert limitation (|ABs|=k);

10 insert forceFaultyBehavior(C);

11

12 if (solve () == UNSAT)

13 return extractAllFaultCandidates () ;
14

15 // Extract Counterexample

16 cex = extractCounterExample (Id ,l);
17 remove Va € ABs:primarylnput(a) = X;
18 remove forceFaultyBehavior(C);

19

20 // Diagnosis

21 constrainCounterExample (F ,cex,Id) ;
22 forceCorrectBehavior (C) ;

23 do {

24 if (solve() == SAT) break;

25 remove limitation (JABs|=k);

26 k =k + 1;

27 insert limitation (JABs|=k);

28 } while (k < |ABs|);

29

30 Id = 1Id + 1;

31 |} while (true);

32 |end function;

Fig. 4. Algorithm

Step 1. Initialization — First, the counter for the number of
instances (Id) and the limitation constraint are initialized (k)
(Lines 2-3).

Step 2.(a) Add new EC instance — Now, a new EC instance
from F and S is added and constrained as Id 0 (Line 6). The
function returns the variable C' that encodes the output of the
comparator, the number of time frames (/) and the set of ab-
normal predicates (ABs). The variable C' may be constrained
to force faulty behavior for counterexample generation or to
ensure correctness wrt. the specification.

Step 2.(b) Find next counterexample — The model is con-
strained to find a new counterexample in Lines 8-10. First, the
additional primary inputs R, are constrained to X for all ABs,
followed by forcing exactly k components to behave abnormal.
Forcing R, on all ABs to X is not necessary, but an explicit
enumeration of the current set of fault candidates is time
consuming and therefore avoided here. Next, the comparator
is constrained.

The instance is translated by encoding the three-valued logic
into CNF and passed to a SAT solver (Line 12). If the SAT
solver returns UNSAT, then there does not exist any further
counterexample and all solutions can be obtained (Line 13).

Step 2.(c) Extract counterexample — The counterexample
(cex) is extracted (Line 16).

Step 2.(d) Compute k — Now, the constraints on the primary
inputs of the correction logic and the comparator are removed
(Line 17-18).

Debugging starts by constraining cex on the model and
forcing the correct behavior on the primary outputs (Lines 21-
22). As long as the current limitation to k is not sufficient to
satisfy the instance, k is incremented (Lines 23-28).

Finally, the instance counter Id is incremented (Line 30)
and the loop continues as long as there are more counterex-
amples observable (Line 12).

D. Discussion

Incrementally generating the counterexamples is only one
possible scenario that involves multiple calls to a costly
equivalence checking procedure. Alternatively the approach
decides whether a given set of counterexamples (e.g. ran-
domly chosen) is already complete. Otherwise the algorithm
generates additional counterexamples, or simply more random
counterexamples are added until completeness is reached.

The proposed approach provides complete fault candidates
in case of single faults as well as multiple faults. In case
of multiple faults, new counterexamples may require to in-
crease the value of k. That is, one or more counterexamples
are correctable by e.g. one component only, but the new
counterexample needs two or more components to be fixed
(consider e.g. two unconnected parts of a single circuit). Still,
the accuracy increases.

Whenever a new counterexample is created, this means that
at least one of the current fault candidates cannot be a complete
fault candidate. Therefore, as the number of counterexamples
increases, the number of fault candidates decreases if k
remains constant. Increasing & may also lead to more fault
candidates in case of multiple faults.

The fault candidates in the final set are guaranteed to
be complete; their number depends on the counterexamples
considered.

To consider debugging wrt. a property only addECInstance
in the algorithm has to be modified according to [2] (discussing
completeness of fault candidates when considering partial
specifications is beyond the scope of this work). Moreover,
the model works for hierarchical debugging [9]. If one of the
outputs belonging to a component is an X value, an X value
is introduced on all output signals.

Due to the encoding, the primary inputs I may be X in
a counterexample. Allowing X values in the primary inputs
leads to more general counterexamples which is beneficial for
debugging [5].

V. EXPERIMENTAL RESULTS

The proposed method was evaluated on combinational and
sequential circuits of the LGsynth93 and ITC-99 benchmark
suite. The circuits were modified by randomly changing a set
of gates. For example an AND was replaced with an OR.
Gates are considered as components. In the sequential case
the circuits were unrolled for ten time frames.

The experiments are conducted on a Dual-Core AMD
Opteron 2220 SE (4.4 GHz, 32 GB main memory). Mini-
SAT [13] was used as underlying SAT solver.

The focus is (1) on the accuracy (Section V-A) and (2) the
efficiency (Section V-B).

A. Accuracy

First, we focus on accuracy by comparing reduction of the
number of fault candidates with an increasing number of coun-
terexamples. We compare our method to standard debugging

10000

cordic-r —+—
cordic-c - o
X * misex3-r -
A misex3-c
i10-r -
i10-c =ene

[y
o
o
o

Fault Candidates

10 } e 1
1

1 2 3 4 5

Counterexamples
Fig. 5. Fault candidate reduction
TABLE I
POST-PROCESSING

Std. Diagnosis | Post-Processing
Circuit |#C| #FC|Time (s) |#C |#FC|Time (s)
apex5 | 2| 11| 7083| 1| 6] 202.97
c7552 | 1 8| 57.42| 1| 6] 396.21
cordic | 3|2184| 6160.84| 2| 14| 401.84
dalu | 2| 40| 109.35| 1| 16| 231.12
des 2| 16| 118.72| -| -| 328.13
i10 7| 23] 161.78| 8| 11| 782.07
misex3| 2| 369| 6654.11| 1| 11| 828.79
pair | 2 9| 24.06| 1| 6| 64.08
seq 1 4| 49.61| - -| 337.09

using random counterexamples from equivalence checking
with a SAT solver. The counterexamples were generated by
using a non-incremental SAT solver by successively adding
blocking clauses. Note that, using a heuristic technique for
counterexample generation, e.g. [3], does not guarantee to
increase the accuracy.

Figure 5 shows detailed results for a few example runs. The
suffix “-7” marks standard debugging with random counterex-
amples. Suffix “-¢”” marks the proposed method.

Random counterexamples lead to similar observations for
all circuits. Often additional counterexamples do not prune
fault candidates. In particular for i/0, the five random coun-
terexamples do not lead to any reduction of fault candidates.
Here, the first counterexample is sufficient to obtain the final
set of fault candidates.

In contrast, the proposed method achieves a reduction of
fault candidates with each new counterexample. For cordic
and misex the size of the final set is less than 3% compared
to the set of random counterexamples.

Table I provides further insight. Here, an alternative scenario
is considered. For Std. Diagnosis a number of #C coun-
terexamples is used that leads to #FC fault candidates; Time
denotes the run time for computing all fault candidates. In
a Post-Processing step, the new approach verifies the set of
fault candidates to be complete or provides further reduc-
tion. That is, an initial debugging instance was created from
the counterexamples, and the algorithm calculated additional
counterexamples (second column labeled #C) to reduce the
fault candidates (second column labeled #FC). Whenever
additional counterexamples were generated a reduction of fault

TABLE 11
SINGLE FAULTS

Time (s) Memory
Circuit #Gates |k |#C | Debug| EC| Total| (MB)
Combinational
apex5 3940[1] 2| 6.28] 260.69| 266.97 102
c7552 4675|1| 1| 1.38| 231.41| 232.79 111
cordic 2938|1| 3| 16.18] 159.36| 175.54 123
dalu 2883|1| 2| 2.35| 186.52| 188.87 76
des 394211 2| 5.95 7.80| 13.75 80
il0 3294|1| 7| 36.46| 151.44| 187.90 176
misex3 6249(1| 2| 20.22| 955.86 976.08 149
pair 2848|1| 2| 6.58| 37.47| 44.05 62
seq 4776(1| 1| 8.80| 149.27| 158.07 81
Sequential
b04 8211 1| 235 6.88 9.23 63
b05 1198(1] 1| 5.79 477 10.56 46
bll 867(1| 3| 7.88| 218.52| 226.40 141
bl2 1297|1| 1| 3.83 6.38 10.21 92
bl4 110891 time out -
bl5 10513|1| 1| 25.76] 50.12| 75.89 803
ged 1217|1] 1| 4.47] 331.80| 336.27 144
phase_decoder| 1834|1| 2| 10.57|1275.14| 1285.71 267

candidates was achieved. Most impressive are the reductions
from 369 to 11 fault (misex3) and from 2184 to 14 fault
candidates (cordic).

Thus, randomly generated counterexamples only show some
errors. Time consuming interactions between verification, de-
bugging and correction are required to fix all errors. In
contrast, our approach helps reducing the time caused by
debugging. The set of counterexamples directly exhibits qual-
itatively different errors and only fault candidates that fix all
errors are returned.

B. Efficiency

Table II and Table III show the results for single and
multiple faults. The columns denote the name of the circuit,
the number of gates (#Gates), the minimal cardinality of
fault candidates (k), the number of counterexamples to reach
completeness (#C). The time is split into time for debugging
(Debug), equivalence checking (EC) and total time (7ime). The
last column denotes the required memory (Memory).

On combinational circuits the required number of coun-
terexamples is moderate. In case of sequential circuits a
modification in an early cycle often propagates through the
circuit to fix all errors. Thus, often one counterexample is
sufficient to reach completeness wrt. to the fault candidates.

The run time for debugging is typically smaller than that of
EC in case of single faults. For b14 the time out of 100,000
seconds was exceeded. When multiple faults are considered,
run time and memory consumption increase significantly. In
this case the time for debugging significantly exceeds the time
needed for EC. Here, adapting the decision heuristic of the
SAT solver as suggested in [2] can help to decrease the overall
run time.

In summary, further improving the efficiency is important.
But already at this stage, the number of iterations between
verification and manual debugging is reduced.

VI. CONCLUSION
We proposed an approach to improve the debugging pro-
ductivity by producing qualitatively valuable counterexamples.
The debugging algorithm returns fault candidates sufficient

TABLE III
MULTIPLE FAULTS
Time (s) Memory
Circuit #Gates |k |#C| Debug| EC| Total| (MB)
Combinational
apex5 3940(2| 2 31.74 16.54 48.28 69
c7552 4675|3| 18| 7937.87|63918.70|71856.60 939
cordic 2938(2| 6 98.99| 5847.88| 5946.87 862
dalu 2883(3| 5| 110.40| 1546.92| 1657.32 145
des 394212 1 16.48 4.12 20.60 52
i10 3294|3| 4| 117.27 73.55| 190.82 98
misex3 6249(2| 3| 331.23|12058.50(12389.80| 2.103
pair 2848(3| 5| 123.87| 316.35| 440.22 122
seq 4776|2| 3 37.27 95.09| 132.36 103
Sequential
b04 821(3| 1 22.84 4.44 27.28 63
b05 11982 1 4.31 7.06 11.37 52
bll 867(2| 1 5.04 3.71 8.75 63
b12 1297(3| 1| 151.74 10.17| 161.91 95
bl4 11089|5| 2|56687.50(15907.60|72595.10 1226
bl5 10513|2| 1| 309.06 47.07| 356.13 420
ged 1217(2| 1 13.77 4.71 18.49 82
phase_decoder| 1834|3| 1 48.55 8.05 56.60 137

to rectify all counterexamples. Thus, the fault candidates
are more valuable to compute a concrete repair — less time
consuming iterations are necessary.

Improving the efficiency of the algrithm is future work.
Here, using dedicated tools for equivelence checking and tun-
ing the SAT solver for the specific problem will be considered.

REFERENCES

[11 A. Smith, A. Veneris, M. Fahim Ali, and A.Viglas, “Fault diagnosis
and logic debugging using boolean satisfiability,” IEEE Trans. on CAD,
vol. 24, no. 10, pp. 1606-1621, 2005.

[2] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Trans. on CAD, vol. 27, no. 6,
pp- 1138-1149, 2008.

[3] G. Fey and R. Drechsler, “Finding good counter-examples to aid design
verification,” in ACM & IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2003, pp. 51-52.

[4] K. Chang, 1. Markov, and V. Bertacco, “Fixing design errors with
counterexamples and resynthesis,” in ASP Design Automation Conf.,
2007, pp. 944-949.

[5] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. LNCS, vol. 2988, 2004, pp. 31-45.

[6] A. Groce and D. Kroening, “Making the most of BMC counterexam-
ples,” Electronic Notes in Theoretical Computer Science, vol. 119, no. 2,
pp. 67-81, 2005.

[71 M. N. Velev, “Comparison of schemes for encoding unobservability in
translation to SAT,” in ASP Design Automation Conf., 2005, pp. 1056—
1059.

[8] S. Safarpour, A. Veneris, and R. Drechsler, “Improved SAT-based reach-
ability analysis with observability don’t cares,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 5, pp. 1-25, 2008.

[9] M. Fahim Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler,

“Post-verification debugging of hierarchical designs,” in Int’l Conf. on

CAD, 2005, pp. 871-876.

G. Fey and R. Drechsler, “Efficient hierarchical system debugging for

property checking,” in IEEE Workshop on Design and Diagnostics of

Electronic Circuits and Systems, 2005, pp. 41-46.

M. Fahim Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith, and

M.S.Abadir, “Debugging sequential circuits using Boolean satisfiability,”

in Int’l Conf. on CAD, 2004, pp. 204-2009.

A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model

checking using SAT procedures instead of BDDs,” in Design Automation

Conf., 1999, pp. 317-320.

N. Eén and N. Sorensson, “An extensible SAT solver,” in SAT 2003, ser.

LNCS, vol. 2919, 2004, pp. 502-518.

[10]

[11]

[12]

[13]

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

