
On Hierarchical Statistical Static Timing Analysis

Bing Li, Ning Chen, Manuel Schmidt, Walter Schneider, Ulf Schlichtmann

Technische Universitaet Muenchen

Arcisstrasse 21, 80333 Munich, Germany

Email: {b.li, ning.chen, manuel.schmidt, walter-karl.schneider, ulf.schlichtmann}@tum.de

Abstract— Statistical static timing analysis deals with the
increasing variations in manufacturing processes to reduce the
pessimism in the worst case timing analysis. Because of the
correlation between delays of circuit components, timing model
generation and hierarchical timing analysis face more challenges
than in static timing analysis. In this paper, a novel method
to generate timing models for combinational circuits considering
variations is proposed. The resulting timing models have accurate
input-output delays and are about 80% smaller than the original
circuits. Additionally, an accurate hierarchical timing analysis
method at design level using pre-characterized timing models
is proposed. This method incorporates the correlation between
modules by replacing independent random variables to improve
timing accuracy. Experimental results show that the correlation
between modules strongly affects the delay distribution of the
hierarchical design and the proposed method has good accuracy
compared with Monte Carlo simulation, but is faster by three
orders of magnitude.

I. INTRODUCTION

As the feature size of semiconductor devices scales to the deep

sub-micron realm, parameter variations have stronger impact

on circuit performance. These variations make traditional

corner-based static timing analysis (STA) too pessimistic.

Therefore, statistical static timing analysis (SSTA) is intro-

duced to analyze circuit performance statistically. In SSTA,

cell delays are modeled as functions of random variables

representing process parameters with variations. Then, arrival

times are propagated to compute the circuit delay. Unlike the

result of STA, the circuit delay in SSTA is a distribution

providing delay-yield information to designers.

Linear models are proposed in [1]–[3], where cell delays

are modeled as linear functions of Gaussian random vari-

ables. This assumption simplifies the arrival time propagation

algorithm at the expense of accuracy. To improve modeling

and propagation accuracy, the canonical linear form in [2]

is extended in [4] to handle nonlinear and non-Gaussian

parameters. With the same purpose, quadratic models are

proposed in [5]–[8]. It is also pointed out in [7] that their

method can be in a general polynomial form with the tradeoff

between runtime and accuracy. Another method to improve

timing accuracy is proposed in [9], where delays are modeled

as linear functions of Gaussian and non-Gaussian random

variables. The latter are identified by independent component

analysis.

Similar to migrating from transistor level to cell level, the

hierarchical design style is adopted for more abstraction to

overcome increasing design complexities. In a hierarchical

design flow, a design is composed of a series of modules

at different levels. In designs using IP (Intellectual Property)

macros from third-party vendors as modules, the complete

netlists of IP macros are not always available because of

IP protection. Instead, timing models containing the same

timing information are provided as replacement of the original

netlists. Thereafter, timing analysis is performed at design

level to compute the delay of the hierarchical circuit.

For STA, black-box and gray-box style timing models are

proposed. In the black-box style, the input-output delay matrix

of a module is directly used to represent its timing information.

To reduce the size of the delay matrix, the assumption made

in [10]–[12] that the timing of a module is mainly determined

by a subset of the inputs (control signals) of the module can

be applied. Contrary to using the delay matrix directly, the

gray-box style method transforms the original netlist to a much

smaller one by discarding structural details but maintaining the

same input-output delays. In [13], [14] basic serial and parallel

merges are introduced to reduce the model size. Additionally,

a parallel to serial graph transformation algorithm to increase

the possibility of applying the basic merge operations is

introduced in [13]. In [15] a timing model extraction method

based on biclique-star replacement is introduced. This method

extends the parallel to serial algorithm in [13] to deal with

more than two inputs and outputs in the transformation.

When variations are considered in hierarchical statistical

timing analysis, most of the timing model extraction methods

for STA are not valid any more. Even worse, the correlation

between modules can not be contained in timing models easily.

This makes design level timing analysis more challenging. In

this paper, we propose a gray-box style method to extract

statistical timing models for combinational circuits. Delay

edges with small criticality are removed from the original

timing graph to compress the timing model. Thereafter, a

novel hierarchical timing analysis algorithm at design level

using the proposed delay models is introduced, where the

independent random variables in the timing models are re-

placed to incorporate the correlation between modules. With

this replacement, the proposed hierarchical statistical timing

analysis can produce a very accurate delay distribution curve

compared to Monte Carlo simulation. To our best knowledge,

this is the first paper handling hierarchical statistical timing

analysis.

The rest of the paper is organized as follows. In Section II

we will introduce the statistical timing method used in this

paper. In Section III the requirement for generated timing mod-

els is formulated. Then, the timing model extraction method is

proposed in Section IV. In Section V the hierarchical statistical

timing analysis at design level is explained. Thereafter, the

978-3-9810801-5-5/DATE09 © 2009 EDAA

experimental results of the proposed methods applying to

ISCAS85 benchmark circuits are shown in Section VI. Finally,

we conclude our work in Section VII.

II. STATISTICAL TIMING ANALYSIS

In the following sections we will use the concept timing graph

to explain our algorithms. A timing graph G is a weighted

directed graph. A vertex vi in a timing graph corresponds to a

pin of a cell. An edge eij represents a delay between vertices

vi and vj , with the weight dij denoting delay value. The delay

dij of a path pij , which is a set of consecutive connected edges

between vertices vi and vj , is the sum of the weights of all

the edges on pij .

In this paper, a delay is modeled as a linear function of

process parameters, like in [1]–[3]. For simplicity, we will

discuss only one process parameter p henceforth, written as

p = p0 + pg + pl + pr (1)

where p0 is the nominal value of the parameter. pg models

the global variation and is shared by all delays. pl is the

local variation specific to each delay and is correlated with

each other. pr is an independent variable modeling the pure

random effect in manufacturing processes. All pg , pl and pr

are assumed Gaussian and have zero mean.

Similar to [1], the die of the circuit is partitioned into n
grids. All the cells in the same grid share the same local

variation. To represent the local variation pl in (1), a random

variable pli (i ∈ {1, 2, . . . , n}) is assigned to each grid.

The correlation between pli and plj depends on the distance

between the grids and is pre-characterized. The n random

variables pli, written as a vector pl, have covariance matrix

C. Using principal component analysis (PCA) [16], pl can be

decomposed as

pl = Ax (2)

where x = [x1, x2, . . . , xn]T is a set of independent Gaussian

random variables with zero mean. The transformation matrix

A, formed by the eigenvectors of C, is orthogonal, so that

A−1 = AT .

From (2) the variable pli can be written as a linear combi-

nation of x1, x2, . . . , xn. The coefficients of the linear combi-

nation are from the ith row of A. Combining the assumption

that an edge delay is a linear function of the process parameter

p, we can write the edge delay in a general linear form

a0 + agxg +

n
∑

i=1

aixi + arxr (3)

where xg and xr are the same as pg and pr in (1) respectively.

xi are independent components after applying PCA. a0 is the

nominal value of the delay. ag , ai and ar are all coefficients

with fixed values. Unlike in [2], we write xg separately in (3)

because it is shared by delays in all modules in the hierarchical

timing analysis.

Two computations are involved in timing analysis: sum and

maximum. In this paper we use the method proposed in [2]

to compute the sum and maximum of two random variables

A and B

A = a0 + agxg +

n
∑

i=1

aixi + arxra
(4)

B = b0 + bgxg +

n
∑

i=1

bixi + brxrb
(5)

The sum of A and B is computed by adding the cor-

responding coefficients of the random variables in A and

B respectively. Then, arxra
+brxrb

is replaced by crxrc
so

that the result of the sum is also in the form of (3). The

coefficient cr is computed by matching the variances of crxrc

and arxra
+brxrb

.

To compute the maximum of A and B, denoted as

max{A,B}, the tightness probability (TP) [2] is firstly com-

puted, which is the probability that A is larger than B. When

A and B are both Gaussian, TP can be computed by

TP = Prob{A ≥ B} = Φ(
a0 − b0

θ
) (6)

where Φ is the cumulative distribution function of the standard

Gaussian distribution. θ =
√

σ2

A + σ2

B − 2Cov, where σ2

A and

σ2

B are the variances of A and B respectively, and Cov is the

covariance between A and B. According to [17], the mean (µ)

and variance (σ2) of max{A,B} can be computed by

µ =TP a0 + (1 − TP)b0 + θφ(
a0 − b0

θ
) (7)

σ2 =TP (σ2

A + a2

0
) + (1 − TP)(σ2

B + b2

0
)

+ (a0 + b0)θφ(
a0 − b0

θ
) − µ2 (8)

where φ is the probability density function of the standard

Gaussian distribution. In order to apply the sum and max-

imum computations iteratively to propagate arrival times,

max{A,B} is approximated in the same form of (3), as

max{A,B} = m0 + mgxg +
n

∑

i=1

mixi + mrxrm
(9)

where m0 is equal to µ. mg and mi are computed by mg =
TP ag +(1−TP)bg and mi = TP ai +(1−TP)bi respectively.

mr is computed by matching the variance of the linear form

(9) and σ2 in (8).

III. TIMING MODEL FORMULATION

Timing models are normally created by IP vendors or library

groups as replacement of the original netlists of modules for

timing analysis. A timing model is a timing graph consisting

of a new set of edges and vertices but with the same inputs

and outputs as the original timing graph. In order to guarantee

the correct arrival time propagation at design level, a timing

model must contain the necessary timing information from

the original timing graph. Additionally, the timing model of a

module should be as small as possible in order to accelerate

the arrival time computation at design level.

An arrival time ai assigned to a vertex vi in a timing

graph saves the maximum delay from the inputs to vi. During

hierarchical timing analysis, the arrival time aj at an output

vj of a combinational module can be computed by

aj = max
vi∈I

{ max
pijk

∈Pij

{ai + dijk
}} (10)

= max
vi∈I

{ai + max
pijk

∈Pij

{dijk
}} (11)

= max
vi∈I

{ai + Mij} (12)

where I is the set of all the inputs of the module. dijk
is the

delay of pijk
, which denotes the kth path between the input

vi and the output vj . The set of all the paths between vi and

vj is denoted by Pij . Mij denotes the maximum path delay

between vi and vj .

From (11) we can conclude that the arrival time at an output

of a module is determined by the arrival times at all the inputs

of the module and the maximum delays from all the inputs to

the output. When characterizing the timing model of a module,

especially an IP block, the application context is unknown. For

this reason, no assumption about the arrival times at the inputs

should be made. On the contrary, the maximum input-output

delays Mij in (12) are exclusively timing characteristics of the

module.

For a module with m inputs and n outputs, we define the

delay matrix as an m × n matrix with entries Mij . From the

analysis above, a pre-characterized timing model must have the

same delay matrix as the original timing graph of the module

to retain the correct timing information. For a module with

a large number of inputs and outputs, the delay matrix may

be too large to be used as a timing model. In the following,

we will introduce a gray-box timing model extraction method

based on timing graph reduction.

IV. STATISTICAL TIMING MODEL EXTRACTION

In this section, we will propose a gray-box method to generate

the statistical timing model for a combinational module. The

two basic merge operations are introduced firstly. Then a

method based on criticality is used to remove non-critical

edges from the timing graph.

A. Serial and parallel merge operations

Two basic edge merge operations which do not change the

input-output delays of the module are involved in the gray-box

model generation [13], [14]. The serial merge is illustrated in

Fig. 1. If n edges with sink vertices vj1 . . . vjn
leave the same

vertex vk and vk has only one fanin edge with source vertex vi,

vk can be removed and the edges can be merged so that there

are only direct edges between vi and vj1 . . . vjn
. The weights

of the new edges between vi and vj1 . . . vjn
are the sums

of the weights dik and dkj1 . . . dkjn
, respectively. Similarly,

this transformation can be applied in reverse direction. The

parallel merge operation merges the edges with the same

source and sink vertices, as illustrated in Fig. 2. A new edge

is created to replace the parallel edges, with the weight equal

to max
k∈{1...n}

{dijk
}.

i

k

j1 jn

i

j1 jn

(a)

i

k

j1 jn

i

j1 jn

(b)

Fig. 1. Serial merge operation

i j

eij
1

eij
n

i j
eij

Fig. 2. Parallel merge operation

B. Non-critical edge removal

Normally there is more than one path from an input to an

output in a module. In the view of the timing analysis, only the

paths with dominant delays, called critical paths, determine

the input-output delays of the module. From this observation,

the edges which are only at non-critical paths can be removed

without losing modeling accuracy. Note that the definition of

critical path here is different from the classical one, where

the critical path dominates the paths starting from all inputs

to all outputs of a circuit. In our definition, the critical path

dominates all the paths starting from a specified input to a

specified output.

In statistical timing analysis, all the delays are random

variables. A path delay can only dominate the delay of another

path with some probability. Similarly, an edge can be on the

critical path only with a probability as well.

Definition 1: criticality (cij) of an edge with respect to input

vi and output vj is the probability that this edge is on the

critical path between vi and vj .

Definition 2: maximum criticality (cm) of an edge in a module

is the maximum cij over all input-output pairs.

The criticality defines the probability that an edge is on the

critical path. When the criticality of an edge is very small, the

edge will almost have no chance to affect the corresponding

input-output delay. In order to compress the timing model,

we remove the edges with criticalities with respect to all the

input-output pairs less than a threshold δ, i.e. cm < δ, from

the timing graph. In the following, we will describe how to

compute the criticality cij for an edge. The computation of

cm in Definition 2 is self-explanatory.

In a timing graph, there are many paths passing through

an edge e. We denote all the paths between an input vi and

output vj and passing through edge e as a set Pij
e . All the

paths between vi and vj and not passing through the edge e
are denoted as P

ij
e . The maximum of the delays of the paths in

Pij
e and P

ij
e are written as de and de respectively. If the edge

e is on the critical path, the longest path in Pij
e dominates the

longest path in P
ij
e , which means de ≥ de. This statement is

also valid vice versa. Therefore, we can compute the criticality

cij as Prob{de ≥ de}. Similar to [18], we have

Prob{de ≥ de} = Prob{de ≥ de, de ≥ de} (13)

= Prob{de ≥ max{de, de}} (14)

where max{de, de} is the maximum delay of all the paths

between vi and vj , and is equal to the maximum input-output

delay Mij .

Because de is the maximum delay of the paths passing

through the edge e, de can be computed by (15) [18],

de = ae + d + re (15)

where ae is the maximum delay from input vi to the source

vertex of e and equal to the corresponding arrival time

exclusively from vi. re is the maximum delay from output vj

to the sink vertex of e and equal to the corresponding negative

required time exclusively from vj , when the required time at

vj is set to 0. d is the delay of edge e. Using the propagation

algorithm proposed in [19], all the maximum input-output

delays Mij as well as the arrival times and required times

for all the vertices with respect to all the input-output pairs

can be computed, where the sum and maximum are computed

as described in Section II. After these computations, both Mij

and de are in the general linear form (3), so that the probability

in (14) can be computed using (6).

C. Timing model generation

The gray-box statistical timing model is generated by applying

the algorithms introduced above sequentially, as shown in

Fig. 3.

1. compute maximum criticality cm for each edge

2. remove edges with cm less than the predefined

threshold δ

3. apply serial and parallel merge operations

iteratively

Fig. 3. Gray-box timing model generation

V. HIERARCHICAL TIMING ANALYSIS

In this section, we propose a method to propagate arrival

times from primary inputs to primary outputs of a hierarchical

design, using pre-characterized timing models. This method

replaces the independent random variables in the timing mod-

els by a new set of random variables, so that the correlation

from local variation is also taken into account.

As shown in Section II, the area of a module is partitioned

into grids. The correlated local variables assigned to the grids

are decomposed using PCA. Thereafter, the on-die locations

of the cells inside the module are used to identify the grids

they belong to so that the corresponding coefficients of the

independent variables can be selected from the transformation

matrix in (2).

When propagating arrival times at design level, all edge

delays in a timing model are in the linear form of the

independent random variables with respect to the grid partition

of the die of the module. No cell layout information at design

level exists in the timing models because the delay edges in

the timing models are created from the original timing graphs

and do not represent cell delays directly. As the result, we can

not simply partition the die of the top design and run PCA to

transform all delays into the linear form of the independent

random variables at design level.

module Bmodule A design level

module level

Fig. 4. Heterogeneous grids

To solve this problem, we partition the die of the top design

through two steps. An example is shown in Fig. 4. At first,

the die areas covered by modules are partitioned with the

same grids as during timing model generation. In Fig. 4 we

firstly partition the die areas covered by module A and B

using the default grid size and starting from their own origins

respectively, as we partitioned the die area of each module

during timing model generation. Thereafter, the remaining die

area which is not covered by modules is partitioned with the

default grid size. All these grids together are considered as the

design level grid partition. Because the origins of the modules

may move freely during module layout, the design level grids

may have different sizes and shapes. In Fig. 4, module A

happens to have grids aligned with the grids of the second

step partition, but module B has heterogeneous grids. Because

the size of each grid is no larger than the default grid size, this

heterogeneous partition does not lose any modeling accuracy.

For each grid at design level, a random variable is assigned

to model the local variation, even though the grid is not

rectangular, for example the marked grid in Fig. 4. Assuming

there are totally m grids after partitioning the die of the top

design, the m random variables are written as a vector pt
l ,

with an m × m covariance matrix Ct. In the following, we

will use module B as an example to explain the independent

random variable replacement. Other modules can be processed

similarly. We assume that pl is the correlated random variable

vector corresponding to the n grids of module B during timing

model generation and (2) is used to decompose pl. All the edge

delays inside the timing model of B are linear combinations

of the independent random variables x.

Without losing generality, we assume that the random

variables inside the area covered by module B at design level

are indexed from 1 to n, denoted as pt
l,n. The n × n sub-

matrix at the upper-left corner of Ct represents the correlation

between pt
l,n. Because the correlation is determined by the

distance between grids, this sub-matrix is the same as the

covariance matrix C of the module B during timing model

generation. Similar to (2), pt
l can be decomposed as

pt
l = Bxt (16)

where xt are the independent random variables corresponding

to Ct. Considering only the first n random variables in (16),

we can write the decomposition of pt
l,n as

pt
l,n = Bnxt (17)

where the n × m matrix Bn contains the first n rows of

the transformation matrix B. Comparing (2) and (17), both

pl and pt
l,n are Gaussian random variable vectors with the

same covariance matrix C. pl and pt
l,n also have the same

mean and variance vectors because they represent the local

variation of the same process parameter. Therefore, pl and

pt
l,n are equivalent. The right side of (17) shows that pl can

be written as linear combinations of xt without affecting its

covariance matrix C, so that we have

pl = Bnxt (18)

From (2) and (18), we can replace the independent random

variables x in the timing model of B by xt,

x = AT pl = AT Bnxt (19)

By applying (19) to each module in the top design, the

correlation between modules is modeled by sharing the new in-

dependent random set xt. Fig. 5 shows the complete algorithm

for hierarchical timing analysis using independent variable

replacement at design level.

1. partition the die of the top design with

heterogeneous grids

2. decompose the correlated process parameters

at design level using PCA

3. replace independent random variables for each

module using (19)

4. propagate arrival times from primary inputs

to primary outputs of the top design

Fig. 5. Hierarchical timing analysis

VI. EXPERIMENTAL RESULTS

In this section, the results of the proposed method applied

to the ISCAS85 benchmarks are shown. The algorithms were

implemented in C++ and tested using a 2.33GHz CPU. The

cells in the benchmarks were mapped to a 90nm library from

an industrial partner. The standard deviations of transistor

length, oxide thickness and threshold voltage were assigned

to 15.7%, 5.3% and 4.4% of the nominal values respectively,

in reference [20]. Load variance was assigned to 15% for

our experiments. The dies of the benchmark circuits were

partitioned to grids so that the number of cells in a grid is less

than 100, like in [1]. The correlation of the same parameter

in two neighboring grids was set to 0.92, and decreased

exponentially to 0.42 when the grid distance increased to 15.

All the cells with distance larger than 15 grids were assumed to

have only the correlation from global variation, set to 0.42, for

our experiments. The correlation between different parameters

was ignored for simplicity.

A. Results of timing model extraction

The effectiveness of the proposed timing model extraction

method in Section IV relies on that there are many edges in

the original timing graph with the maximum criticality cm

less than the threshold δ. The criticality histogram for the

benchmark c7552 is shown in Fig. 6. From this histogram,

we can see that the edge criticalities in the benchmark tend

to 0 and 1. In our experiment, the other ISCAS85 benchmark

circuits show the similar tendency too. From this observation,

we can remove many edges from the timing graph without

0.0 0.2 0.4 0.6 0.8 1.00.05

0

50
0

10
00

15
00

20
00

25
00

30
00

F
re

q
u
en

cy

Criticality (cm)

Fig. 6. The edge criticalities in c7552

affecting the timing characteristic of the model much, if the

criticality threshold δ is set to a small value, for example 0.05

in this paper.

The quality of a timing model is evaluated by two criteria.

Firstly, we compare the numbers of edges and vertices in the

timing models and in the original timing graphs. The smaller

the timing model is, the faster the design level arrival time

propagation can run. The second criterion is the accuracy of

the timing model. According to Section III, a timing model

should have the same maximum input-output delays as the

original timing graph. But in statistical timing analysis, the

maximum computation during arrival time propagation is only

an approximation. Therefore, the generated timing models are

also approximations. To verify the accuracy of the timing

models, we ran Monte Carlo simulation with 10,000 iterations

to calculate the means and the standard deviations of all input-

output delays of the benchmarks. The comparison results are

shown in Table I. Eo and Vo are numbers of edges and vertices

in the benchmarks. Em and Vm are the numbers of the edges

and vertices in the timing models. pe and pv are defined as

Em/Eo and Vm/Vo to show the compression efficiencies re-

spectively. From these comparisons, the proposed method can

effectively generate much smaller timing models compared to

the original modules. merr in Table I shows the maximum

modeling error on mean of the input-output delays, and is

defined as max{|mmodel − mMC |/mMC}, where mmodel

and mMC are the means of the input-output delays in the

generated timing models and from Monte Carlo simulation

of the original netlists respectively. verr shows the maximum

error of standard deviation and is defined similarly. These

TABLE I

RESULTS OF TIMING MODEL EXTRACTION

Circuit Eo Vo Em Vm pe pv merr verr T (s)

c432 336 196 45 46 13% 23% 0.23% 0.96% 0.05

c499 408 243 176 99 43% 41% 0.14% 0.94% 0.14

c880 729 443 249 115 34% 26% 0.56% 0.3 % 0.21

c1355 1064 587 143 99 13% 17% 0.44% 0.26% 0.37

c1908 1498 913 264 93 18% 10% 0.82% 1.47% 0.36

c2670 2076 1426 410 335 20% 23% 0.26% 1.28% 10.15

c3540 2939 1719 440 141 15% 8% 0.49% 0.72% 0.93

c5315 4386 2485 966 424 22% 17% 0.72% 1.47% 15.35

c6288 4800 2448 429 188 9% 8% 1.03% 1.6 % 2.08

c7552 6144 3719 1073 546 17% 15% 1.21% 1.58% 21.94

average 20% 19% 0.59% 1.06%

delay comparisons prove that the generated timing models are

very accurate. The runtime of the timing model extraction is

shown as T in Table I. Because the criticalities of edges with

respect to all input-output pairs should be computed in the

non-critical edge removal algorithm, the runtime is roughly

proportional to the product of the numbers of the inputs and

the outputs of the module. This explains why the runtime does

not increase monotonously with the increase of the module

size.

B. Results of hierarchical timing analysis

To test the hierarchical arrival time propagation algorithm

proposed in Section V, we built an experimental hierarchical

circuit by placing four c6288 modules, which are 16×16

multipliers according to [21], in two columns. The outputs

of the two c6288 modules in the first column were cross-

connected with the inputs of the other two modules in the

second column. The four modules were placed in abutment

so that the correlation was maximized. In Fig. 7 the result of

the algorithm proposed in Section V is marked as proposed

method. For comparison, the delay curve of the experimental

circuit computed by propagating arrival times considering only

the correlation from global variation at design level is marked

as only correlation from global variation. Both results are

compared with the result of Monte Carlo simulation with

10,000 iterations using the flattened netlist of the original

circuit. From Fig. 7, we can draw the conclusion that the

correlation from local variation has a remarkable effect on

the circuit delay and the proposed method has good accuracy.

Additionally, the proposed hierarchical analysis method using

the generated timing models in this experiment is faster by

three orders of magnitude than Monte Carlo simulation using

the flattened netlist.

Monte Carlo simulation

proposed method

only correlation from global variation

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

Normalized delay

P
ro

b
ab

il
it
y

Fig. 7. Results of hierarchical timing analysis

VII. CONCLUSION

In this paper, we proposed a method to effectively extract

timing models for statistical timing analysis. Compared to the

original timing graphs, the numbers of edges and vertices of

the resulting models are reduced by 80% and 81% on aver-

age, respectively. Additionally, a novel independent random

variable replacement algorithm was proposed to annotate the

correlation from local variation to the pre-characterized timing

models for hierarchical timing analysis. With such correlation,

the result of the arrival time propagation at design level has

very good accuracy compared with Monte Carlo simulation.

Future work will incorporate the slope and load at the inputs

and outputs of the modules into the timing model extraction.

REFERENCES

[1] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering

spatial correlations using a single pert-like traversal,” in ICCAD, 2003,

pp. 621–625.

[2] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,

“First-order incremental block-based statistical timing analysis,” in DAC,

2004, pp. 331–336.

[3] K. Kang, B. C. Paul, and K. Roy, “Statistical timing analysis using

levelized covariance propagation,” in DATE, 2005, pp. 764–769.

[4] H. Chang, V. Zolotov, S. Narayan, and C. Visweswariah, “Parameterized

block-based statistical timing analysis with non-gaussian parameters,

nonlinear delay functions,” in DAC, 2005, pp. 71–76.

[5] Y. Zhan, A. J. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and

M. Sharma, “Correlation-aware statistical timing analysis with non-

gaussian delay distributions,” in DAC, 2005, pp. 77–82.

[6] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C. C.-P. Chen,

“Correlation-preserved non-gaussian statistical timing analysis with

quadratic timing model,” in DAC, 2005, pp. 83–88.

[7] V. Khandelwal and A. Srivastava, “A general framework for accurate

statistical timing analysis considering correlations,” in DAC, 2005, pp.

89–94.

[8] Z. Feng, P. Li, and Y. Zhan, “Fast second-order statistical static timing

analysis using parameter dimension reduction,” in DAC, 2007, pp. 244–

249.

[9] J. Singh and S. Sapatnekar, “Statistical timing analysis with correlated

non-gaussian parameters using independent component analysis,” in

DAC, 2006, pp. 155–160.

[10] H. Yalcin, J. P. Hayes, and K. A. Sakallah, “An approximate timing

analysis method for datapath circuits,” in ICCAD, 1996, pp. 114–118.

[11] Y. Kukimoto, W. Gosti, A. Saldanha, and R. K. Brayton, “Approximate

timing analysis of combinational circuits under the XBD0 model,” in

ICCAD, 1997, pp. 176–181.

[12] H. Yalcin, M. Mortazavi, R. Palermo, C. Bamji, and K. Sakallah,

“Functional timing analysis for IP characterization,” in DAC, 1999, pp.

731–736.

[13] N. Kobayashi and S. Malik, “Delay abstraction in combinational logic

circuits,” TCAD, vol. 16, pp. 1205–1212, Oct. 1997.

[14] C. W. Moon, H. Kriplani, and K. P. Belkhale, “Timing model extraction

of hierarchical blocks by graph reduction,” in DAC, 2002, pp. 152–157.

[15] S. Zhou, Y. Zhu, Y. Hu, R. Graham, M. Hutton, and C.-K. Cheng,

“Timing model reduction for hierarchical timing analysis,” in ICCAD,

2006, pp. 415–422.

[16] I. Jolliffe, Principal Component Analysis. Springer, 2002.

[17] C. E. Clark, “The greatest of a finite set of random variables,” Operations

Research, vol. 9, no. 2, pp. 145–162, Mar. 1961.

[18] J. Xiong, V. Zolotov, and C. Visweswariah, “Incremental criticality and

yield gradients,” in DATE, 2008, pp. 1130–1135.

[19] S. S. Sapatnekar, “Efficient calculation of all-pairs input-to-output delays

in synchronous sequential circuits,” in ISCAS, 1996, pp. 520–523.

[20] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in

CICC, 2001, pp. 223–228.

[21] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85

benchmarks: a case study in reverse engineering,” IEEE Design & Test

of Computers, vol. 16, pp. 72–80, July 1999.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

