
A Flexible Floating-Point Wavelet Transform and

Wavelet Packet Processor

Andre Guntoro and Manfred Glesner

Department of Electrical Engineering and Information Technology

Institute of Microelectronic Systems

Technische Universität Darmstadt

Email: {guntoro,glesner}@mes.tu-darmstadt.de

Abstract—The richness of wavelet transformation is known in
many fields. There exist different classes of wavelet filters that can
be used depending on the application. In this paper, we propose
an IEEE 754 floating-point lifting-based wavelet processor that
can perform various forward and inverse Discrete Wavelet
Transforms (DWTs) and Discrete Wavelet Packets (DWPs). Our
architecture is based on processing elements that can perform
either prediction or update on a continuous data stream in
every two clock cycles. We also consider the normalization
step that takes place at the end of the forward DWT/DWP
or at the beginning of the inverse DWT/DWP. To cope with
different wavelet filters, we feature a multi-context configuration
to select among various DWTs/DWPs. Different memory sizes
and multi-level transformations are supported. For the 32-bit
implementation, the estimated area of the proposed processor
with 2×512 words memory and 8 PEs in a 0.18-µm process is
3.7 mm square and the estimated operating speed is 353 MHz.

I. INTRODUCTION

For the last two decades the wavelet theory has been studied

extensively [1], [2] to answer the demand for better and

more appropriate functions to represent signals than the ones

offered by the Fourier analysis. Along with recent trends and

research focuses in applying wavelets in image processing,

the application of wavelets is essentially not only limited to

this area. Wavelets have been known in many fields such as

mathematics, physics, and electrical engineering. In the field

of electrical engineering wavelets have been known with the

name multi-rate signal processing. Due to numerous inter-

changing fields, wavelets have been used in many applications

such as image compression, feature detection, seismic geology,

human vision, etc [3], [4].

Contrary to the Fourier transform, which uses one basis

function to transform between domains, there are different

classes of wavelets which can be applied on the signal de-

pending on the application. In this paper, we propose a novel

architecture to compute forward and inverse transforms of nu-

merous DWTs (Discrete Wavelet Transforms) and also DWPs

(Discrete Wavelet Packets) based on their lifting scheme repre-

sentations. The proposed architecture takes into account that

the wavelet coefficients of an arbitrary wavelet filter and the

corresponding wavelet transforms cannot be satisfied by using

integer computation. The proposed architecture provides a

multi-context configuration to choose between various forward

and inverse DWTs/DWPs. The memory size, the context size,

and the maximum lifting size can be freely chosen to cope

with different application demands.

The rest of the paper is organized as follows. Section II

describes the second generation of wavelets, DWT, and DWP.

The proposed architecture is explained in Section III. Sec-

tion IV discusses the performance of the proposed architecture

and Section V summarizes our conclusions.

II. BACKGROUNDS

A. Lifting Scheme

The second generation of wavelets, more popular under

the name lifting scheme, was introduced by Sweldens [5].

The basic principle of the lifting scheme is to factorize the

wavelet filter into alternating upper and lower triangular 2 × 2
matrix. Let H(z) and G(z) be a pair of low-pass and high-pass

wavelet filters:

H(z) =
∑kh

n=kl
hnz−n G(z) =

∑kh

n=kl
gnz−n

where hn and gn are the corresponding filter coefficients.

N = |kh − kl| + 1 is the filter length and the corresponding

Laurent polynomial degree is given by h = N−1. By splitting

the filter coefficients into even and odd parts, the filters can

be rewritten as:

H(z)=He(z
2)+z−1Ho(z

2) G(z)=Ge(z
2)+z−1Go(z

2)

and the corresponding polyphase representation is:

P (z) =

[

He(z) Ge(z)
Ho(z) Go(z)

]

Daubechies and Sweldens in [5], [6] have shown that the

polyphase representation can always be factored into lifting

steps by using the Euclidean algorithm to find the greatest

common divisors. Thus the polyphase representation becomes:

P (z) =

[

K 0
0 1/K

] 1
∏

i=n

[

1 ai(z)
0 1

] [

1 0
bi(z) 1

]

where K is the normalization factor and ai(z) and bi(z) are

the Laurent polynomials which correspond to the updaters and

the predictors of the lifting steps.

978-3-9810801-5-5/DATE09 © 2009 EDAA

LP↓2

LP↓2

HP↓2

HP↓2

(a) DWT

LP↓2

LP↓2

LP↓2

HP↓2

HP↓2

HP↓2

(b) DWP

Fig. 1. Two different transformations.

B. Wavelet Transform and Wavelet Packet

Wavelet transform is a multi-resolution signal analysis. In

the traditional wavelet transforms, only the low-pass signal

is used on the next transformation level. In wavelet packets,

both low-pass and high-pass signals are analyzed, resulting

equally spaced frequency bands. Fig. 1 depicts both schemes.

LP and HP correspond to low-pass and high-pass filter pair and

↓2 corresponds to down-sampling by two. The major issue in

DWP is that the resulting HP signals are much smaller than the

LP parts in normal circumstances. Thus performing multi-level

DWP using integer arithmetics would make these HP signals

go to zero, which lead to lower achievable SNR values.

III. PROPOSED ARCHITECTURE

As the lifting scheme breaks a wavelet filter into smaller

predictions and updates, the resulting predictor and updater

can be limited to have two terms on its Laurent polynomial.

Without loss of generality, we can formulate the predictor or

the updater polynomial as:

l(z) = c1z
−p + c2z

−q

with polynomial constants c0 and c1, and |p − q| = N . This

implies that on each stage (either as a predictor or an updater),

two multiplications and two additions are performed.

Taking into account that a predictor and an updater perform

a similar computation, we propose a wavelet processor which

is based on M processing elements (PEs) to cope with M

lifting steps. Due to the nature of a lifting scheme, lifting re-

presentations of higher order wavelet filters, which contribute

to longer lifting steps, can be broken easily into several lifting

steps with a maximum size of M.

A. Architecture of the Processing Element

The PE performs the prediction or the update in every

2 clock cycles. Taking into account that floating-point (FP)

multipliers are expensive in term of logic counts, and the PE

receives two samples (s and d) at once, we have decided to

lower the input rate by half. Thus, the PE requires only one

multiplier. From the performance point of view, the processing

rate of the PE will be equal to the processor speed and no

longer twice as fast. This also implies that the bottleneck issues

with the memory will not occur.

Fig. 2 depicts the proposed PE. The PE has two selectors

S1 and S2 to choose the prediction or the update samples that

correspond to the factors p and q from the Laurent polynomial.

C1

C2

S2

S1

S3

S4

N N

N N

C
O

N
T

R
O

L
L

E
R 2M

M

M

N

N

A B

A’ B’

2−level

FIFO

FIFO

4−level

2−level

FIFO

MUX

MUX

MUX MUX

z−mz−m

Fig. 2. Block diagram of the PE.

Two constants C1 and C2 that represent the filter coefficients

are defined and configured by the controller. By delaying

the actual samples, selector S3 controls the prediction or the

update that requires future samples. Selector S4 is a bypass

selector. The maximum depth of the unit delay z−m, which

determines the maximum delay level, can be freely chosen

during the design. Two unit delays are implemented on both

input ports A and B. In order to reduce the number of registers

needed for the unit delay, the unit delay on port A has two

input selectors (i.e. S3 and the multiplexer output) and two

outputs. The second part performs the FP multiplications on

the samples selected by S1 and S2 with the constants C1 and

C2. Two 2-level FIFOs on both input samples are implemented

to compensate the multiplier delay. The last part performs the

addition of three FP values. One 4-level FIFO is implemented

to compensate the delay introduced by the adder.

B. Normalization

As normalization can take place at the end of the transfor-

mation in case of forward DWT/DWP or at the beginning

of the transformation in case of inverse DWT/DWP, two

special PEs to handle this function are required. We extend

the functionality of the PEs that are located at the top and at

the bottom of the proposed wavelet processor. Three additional

multiplexers are needed to add the normalization factor unit

into the PE. Fig. 3 shows the PE used at the top and at

the bottom of the proposed architecture. By enabling S5 and

setting S1 and S3 to zero, two inputs of the multiplexer

before the multiplier correspond to the actual samples s and

d (with the normalization factors K=C1 and 1/K=C2). The

first multiplication product passes through the multiplexer and

the 1-level FIFO resulting in s′ = Ks (left side). The second

multiplication product passes through the multiplexer resulting

d′ = d/K (right side). The 4-level FIFO is split into 3-level

and 1-level FIFOs, with the latter used to make both outputs

synchronized.

C. Floating-Point Multiplier

As mentioned earlier, the PE utilizes only one FP multiplier

which is time-shared in order to perform two multiplications.

S5

C1

C2

S2

S1

S3

S4

N N

N N

C
O

N
T

R
O

L
L

E
R 2M

M

M

N

N

A B

A’ B’

2−level

FIFO

2−level

FIFO

MUX

3−level

FIFO

MUX

MUX

MUX

MUX

FIFO

1−level

MUX MUX

z
−m

z
−m

Fig. 3. Block diagram of the PE which is located at the top and at the
bottom.

ADD/SUB

LOD

NORM. & ROUND.

MAN. SHIFTEXP. DIFF

Ea Eb Ma Mb

R

(a) Leading-One Detector.

NORM. & ROUND.

LOP ADD/SUB

MAN. SHIFTEXP. DIFF

R

Ea Eb Ma Mb

(b) Leading-One Predictor.

Fig. 4. Two-Input Floating-Point Adder.

The first clock cycle performs the first multiplication (i.e. C1 ×
M1) and the second cycle performs the second multiplication

(i.e. C2 × M2). M1 and M2 are the time-multiplexed output

samples of the unit delay determined by the output of the

multiplexer. Our FP multiplier is a 2-level pipeline architecture

and can be customized for other FP formats besides the

standard IEEE 754 single and double precision formats. Due

to the page limitation, the architecture of the FP multiplier is

not detailed here.

D. Three-Input Floating-Point Adder

Contrary to the FP multiplier, the FP adder requires more

steps due to the algorithm complexity and the data dependency.

As depicted in Fig. 4(a), to perform addition between two FP

numbers, the following steps are performed:

1) Calculate the exponent difference.

2) Align the mantissa by shifting the mantissa with the

lower exponent to the right.

3) Add/subtract both mantissas depending on the sign bits.

4) Perform the Leading-One Detection (LOD) to determine

the location of the first logic one.

5) Normalize and round the result.

O

A B C

Ea=Eb
Ea>Eb

Sa+Fa Sb+Fb

SHIFT, SWAP

ADD GUARD

|Ea−Eb|

EXP.

DIFF. CD

ZERO

LOGIC C

Ed>Ec
Ed=Ec

|Ed−Ec|

SHIFT

ADD GUARD

ADD/SUB

SHIFT

EXP.

ADJUST.
LOP

OPR. SWAP

ADD/SUB

S+Fr Er

S+Fab Sc+Fc S+Fab Sc+Fc

LOP CORRECT.

PACK

ROUNDING NORMALIZER EXP. UPDATE UV. & OV. DET

MAN.

COMP.

ZERO

LOGIC A

ZERO

LOGIC B

EXP.

DIFF. AB

2

Sb+
Mb

Sa+
Ma

EcEd

2 Mc2

Emax

Fig. 5. 3-Input Floating-Point Adder.

In order to decrease critical paths, Leading-One Prediction

(LOP) was proposed in [7], [8] as a replacement of LOD,

predicting the first occurrence of the logic one directly from

the operands. Fig. 4(b) depicts the addition algorithm with

LOP. The LOP works in parallel with the adder and it is

based on the encoding tree which examines both inputs from

left to right. The LOP ignores the possible carry or borrow

that might occur on the addition/subtraction result. Thus, it

leads to one-bit inaccuracy, which will be corrected during

the normalization step. This is why it is more popular with

the name inexact LOP.

In order to add three FP numbers, two inputs will be added

first and the temporary result will then be added to the third

input. This introduces a longer pipeline structure with the

normal approach (i.e. chaining two FP adders) and consumes

more area. To minimize the number of pipeline stages, we have

developed a dedicated 4-stage 3-input floating-point adder.

Fig. 5 depicts the block diagram of the adder.

1) Stage 1: At the first stage, the two inputs A and B are

unpacked. The mantissa comparator compares both mantissas

Ma and Mb and outputs one decision bit (i.e. Ma ≥ Mb),

which will be used by the shift, swap, and add guard. The zero

logic detects if the corresponding input is zero. The exponent

difference AB compares both exponents Ea and Eb. This block

outputs 4 values. The first 3 values (the shift count |Ea −Eb|
and the comparator results Ea = Eb and Ea > Eb) will be

used by the shift, swap, and add guard. The 4th value (the

temporary dominant exponent Ed = max(Ea, Eb)) will be

used by the exponent difference CD.

The shift, swap, and add guard aligns the mantissa Ma and

Mb to have the same exponent degree by shifting the mantissa

with the smaller exponent to the right. The hidden bit and the

guard bits are appended to the most significant bit and the least

significant bit of both mantissas respectively. The number of

bits used as guard bits can be freely chosen. Based on the

exponent difference, three different cases are examined here:

• Ea = Eb: Depending on the output of the mantissa

comparator, Ma and Mb will be swapped directly without

performing any shifting.

• Ea > Eb: Mb will be shifted to the right with the amount

determined by the exponent difference AB (i.e. |Ea−Eb|).
• Ea < Eb: Ma will be shifted to the right with the amount

determined by the exponent difference AB. Both mantissas

will be swapped afterwards.

In all of the cases, if a zero number is detected, the correspond-

ing mantissa(s) will be set to zero. The outputs of the shift,

swap, and add guard are the sorted and extracted fractions Fa

and Fb with their corresponding signs.

At this stage, the input C is not processed, thus two

values that correspond to the prediction/update sample and

the first multiplication result can be added first. The second

multiplication result that comes on the next clock cycle will

be unpacked at the second stage.

2) Stage 2: The fractions Fa and Fb are added/subtracted

depending on the sign difference (i.e. Sa ⊕ Sb), resulting in

the fraction Fab. If Ec > Ed, the result will be shifted to the

right. These steps are performed by the add/sub and shift with

the shift parameter determined by the exponent difference CD.

3 different cases as at the first stage are also examined here.

The shift and add guard prepares the mantissa Mc. If

Ec < Ed, Mc will be shifted instead. The hidden bit and the

guard bits are appended to Mc, resulting in fraction Fc. Finally,

if the zero logic detects a zero number, Fc will be set to zero.

3) Stage 3: The operand swap and add/sub swaps Fab and

Fc if necessary. The LOP works parallel with the operand

swap and add/sub to predict the first occurrence of the logic

one directly from the operands. Taking into account that one-

bit inaccuracy might occur on the prediction, the LOP prepares

two values at the output to minimize the critical paths on the

normalization stage.

Because three addition/subtraction arithmetic operations are

involved, the final result might have an increase of exponent

by two. The exponent adjustment prepares the dominant ex-

ponent by simply adding two to the largest exponent (i.e.

Er = max(Ea, Eb, Ec) + 2).

4) Stage 4: Because the LOP may deliver an error within

one-bit degree, the error has to be corrected. The error can

easily be detected by looking at the LOP-index bit of the

resulting fraction Fr. This step is performed by the LOP

correction. Additionally, this block also performs the pre-

normalization by shifting the resulting fraction Fr to the left

with the shift amount determined by the inexact LOP value.

We have examined that correcting the LOP result in real time

(by adding with one) will increase the critical path on the

stage 4. This is why the LOP on the stage 3 outputs two

values. Therefore, we only need to choose the right value at

the end.

C
N

BA
N

ID

C
O

N
F

IG
U

R
A

T
IO

N

O
U

T
P

U
T

N
N

C
O

N
T

E
X

T
S

E
L

E
C

T
O

R

CONST

C1

CONST

C2
CTRL

C
O

M
P

WE

Fig. 6. Configuration Controller for the PE.

CONFIG

MAIN

FSM

SOURCE CTRL PE

CTRL PE

CTRL PE

CTRL PESINK

LATENCY

COUNTER

START

FINISH

RUN

CONTEXT

MEM

2

BANKS

SNK_DONE

SRC_DONE

Fig. 7. The Proposed Wavelet Processor.

Should the inexact LOP predicts the leading-one position

falsely, the normalizer corrects the pre-normalized fraction by

shifting it to the left. Here we only need to perform one

bit shifting. The rounding logic implements two rounding

mechanisms: rounding to zero and rounding to nearest. Based

on the corrected LOP value, the exponent update updates

the resulting exponent. The underflow and overflow detector

checks if the resulting exponent lays on the valid FP range.

Finally, the sign, the normalized fraction, and the corrected

exponent are packed together.

E. Configuration Controller

To cope with various lifting-based forward and inverse

DWTs/DWPs, we have separated the configuration-dependent

parameters from the PE. Figs. 2 and 3 show how the inputs

of the selectors and the multiplier constants are separately

drawn on the left side of the figures. The PE is designed to

be simple. Thus, no finite state machine is required to control

the PE. To support different classes of wavelet filters, which

require different types of configurations, we have implemented

a multi-context configuration on each PE as depicted in Fig. 6.

Each PE is assigned a row index as a unique ID for the

configuration. Multiplier constants use the signal data paths

to save the wiring cost whereas the selector configuration

requires an additional controller path. The context switch is

implemented as a memory module. Benefits of a multi-context

configuration are: (1) the proposed wavelet processor can be

configured to perform the corresponding inverse DWTs/DWPs

in a very simple manner; (2) wavelet transforms that use longer

wavelet filters can be computed by splitting the lifting steps.

F. Memory Controller

Taking into account that wavelet transform is a multi-

resolution signal processing tool, the transformation is per-

formed iteratively on the resulting LP part of the signal, in

case of DWT, or on both LP and HP parts, in case of DWP.

Fig. 7 depicts the block diagram of the processor along with

the PEs and their configuration controller.

1) Main FSM: The main finite state machine controls the

wavelet processor. When the transform is initiated, the FSM

reads the necessary configurations, such as the transformation

level, forward/inverse mode, transform/packet mode, used con-

texts, etc. from the config block. It prepares the source and

the sink addresses where the data will be read and stored,

and also the length of the data needed to be processed. We

exploit the periodicity extension to cope with the boundaries

issue in order to compute the transformation on those regions.

This implies that source address does not always start on the

top of the page. Address masking techniques are applied here

to localize the page. The FSM takes care of the possibility

of having a longer wavelet transform that has to be split into

several lifting steps on the target PEs. The FSM allows multi-

level forward/inverse transformation to take place by means

of iteration process.

2) Config: It contains the configuration of the transforma-

tion. Besides the transformation level and the modes (for-

ward/inverse, DWT/DWP), it also holds the multi-context

entry for the longer transformation that cannot be fit into the

available PEs. Basically, it informs us which context should

be used for the corresponding lifting step.

3) Memory: The memory is organized as 2 banks. The

write and read accesses are exclusive, which means that

writing to the memory will write to the primary bank and

reading from the memory will read from its shadow. This state

is switchable automatically, controlled by the FSM. When the

transformation takes place, the FSM grants the memory access

to the source and sink blocks. Writing to or reading from this

bank is forbidden and it will generate an error (as an indication

of a busy signal).

4) Source and Sink: These blocks generate and automat-

ically increment the read and write addresses. The source

reads data from the memory and transfers it to the PEs. The

sink reads data from the PEs and writes it to the memory. A

special case is considered when performing transformations

that are longer than the available PEs. During the in-between

transformation, in case of forward transform, the sink will

write the data (which corresponds to the intermediate results)

to the memory in adjacent manner (resulting L-H-L-H-...).

During the final transformation, the sink writes the LP and

the HP signals into two different pages (resulting L-L-...-H-

H-...). The similar handling is also performed by the source

when performing the inverse transform.

To access the correct page, two address masks are used. The

first mask is responsible for the data indexing, and the second

mask is responsible for the page indexing.

5) Latency Counter: It delays the run signal from the FSM

to initiate the sink process. The delay amount is different for

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

L0

H0 H0

L1

H1

Fig. 8. Forward DWT Process.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

L0

H0

LL1

LH1

HL1

HH1

Fig. 9. Forward DWP Process.

every lifting steps and it is defined in the config block.

Fig. 8 illustrates the N-level and multiple lifting steps DWT.

White and grey represent the primary and the shadow banks

and diagonal pattern represents the in-between transformation.

During the setup, the data is prepared and stored in one bank

(this bank is write-only and its shadow is read-only). When

the transformation is initiated, this state is reversed, and the

source and the sink control the address lines. For each lifting

steps, the source reads the written data, and the sink writes

the in-between transformation result to the shadow bank. This

state is reversed again every time one lifting step is finished,

which makes the shadow bank as the primary bank and vice

versa. During the last lifting step, the sink stores the LP and

the HP results into two different pages. This whole process

is performed N times with each iteration decreases the data

by half. At each finishing level, a memory copy to transfer

the previous HP result to the shadow bank is performed when

necessary, e.g. when the lifting steps are odd.

For the DWPs, the HP signal is also transformed, as depicted

in Fig. 9. Instead of executing/finalizing the transformation

on each signal (LP, and then HP) on each level, the in-

between transformations are performed on both signals. With

this technique, the banks are not switched during the in-

between transformation for both LP and HP signals. Thus, the

FSM can trigger the source to initiate the next data transfer for

the next band/page (e.g. HP) without waiting the sink to finish

from the previous transform. This solution decreases the data

preparation time that is caused by exploiting the periodicity

extension and the PEs latency. No copy transfer is performed

on the DWPs/IDWPs.

IV. RESULTS AND PERFORMANCES

The proposed wavelet processor is based on modular and

parametric approaches and is written in VHDL. Wavelet

processors with 8 PEs to process eight lifting steps (including

the normalization), 8-level unit delays to support higher-order

wavelet filters, 16 available contexts to configure the trans-

formations, and 2×512 words memory, are implemented and

synthesized. Rounding to nearest with three guard bits is used

on all floating-point arithmetics. The design is synthesized

using 0.18-µm process. The estimated area and frequency of

various data width implementations are reported in Table I.

TABLE II
COMPARISON WITH OTHER LIFTING-BASED ARCHITECTURES.

Architecture Operating Speed Area Filter Transform Data Width Mem. Size Arithmetic

Andra [9] 200 MHz (0.18-µm) 2.8 mm2 (5,3) & (9,7) DWT & IDWT 16-bit 128 Integer

Dillen [10] 110 MHz (FPGA) – (5,3) & (9,7) DWT & IDWT 16-bit 256 Integer

Seo [11] 150 MHz (0.35-µm) 5.6 mm2 (5,3) & (9,7) DWT & IDWT 12-bit 512 Integer

Wang [12] 100 MHz (0.18-µm) 1.1 mm2 Daub-4 DWP 18-bit 8 Integer

Ours 353 MHz (0.18-µm) 3.7 mm2 Arbitrary
DWT, IDWT 32-bit* 512*

Floating-Point
DWP, IDWP Configurable Configurable

TABLE I
ESTIMATED AREA AND FREQUENCY.

Data Width
Est. Area % Area for Est. Freq.

(in mm2) Logics (in MHz)

16-bit (10p) 1.841 35.21% 456.62

24-bit (18p) 2.756 37.38% 380.23

32-bit (23p) 3.669 38.56% 353.36

TABLE III
SNR OF DIFFERENT DATA WIDTH (IN DB).

Daub-6

4-level DWT & IDWT 4-level DWP & IDWP

Source 16-bit 24-bit 32-bit 16-bit 24-bit 32-bit

Sinusoid 46.89 93.17 126.31 46.77 91.51 126.31

Sawtooth 46.87 94.45 125.15 46.70 94.38 125.20

Step 47.71 94.98 133.22 47.54 95.13 132.91

Random 50.86 99.71 129.81 47.24 94.02 125.23

Symlet-6

Sinusoid 44.32 91.32 123.06 44.24 90.77 122.89

Sawtooth 43.41 92.39 126.89 43.34 90.91 126.07

Step 40.50 92.50 128.52 39.99 90.99 126.38

Random 40.16 88.68 118.90 37.69 84.87 114.86

Coiflet-2

Sinusoid 42.41 86.54 118.15 42.61 87.42 118.19

Sawtooth 42.16 89.37 116.46 41.54 89.38 116.49

Step 39.30 85.23 116.96 39.25 84.53 116.99

Random 42.99 92.39 120.75 39.60 87.73 116.24

The value inside the bracket indicates the number of bits used

for the precision. For the 32-bit configuration, the proposed

wavelet processor consumes 3.7 mm2 chip area and has a

maximum operating speed of 353 MHz. As a comparison,

Andra [9] with 16-bit integer arithmetic can only compute

(5,3) and (9,7) filters and requires 2.8 mm2 area with 200 MHz

operating frequency. Table II summarizes the comparison.

The other architectures are integer-based with fixed memory

size and 12–18-bit data width, and can only perform either

DWT/IDWT or DWP.

To measure the level of correctness and to show the

flexibility of our design, we perform three different 4-level

DWTs and DWPs on some predefined signals. Four different

input signals ranged [–1;+1] with 512 samples are used as

references. These signals are forward and inverse transformed

with Daub-6, Symlet-6, and Coiflet-2 wavelet filters, which

do not have integer coefficients. The random signal has a

uniform distribution. The SNR values of the different data

width implementations are reported in Table III. Depending

on the data widths, SNR values vary between 39–133 dB

for DWT/IDWT and 38–133 dB for DWP/IDWP, which are

sufficient for most applications.

V. CONCLUSIONS

We have proposed a novel architecture that can perform

both floating-point forward/inverse DWTs and DWPs. The

proposed wavelet processor is configurable and based on M

PEs. It can be configured easily to support higher-order lifting

polynomials as a result of the factorization of higher-order

wavelet filters. Additionally, the proposed architecture takes

into account the normalization step that occurs at the end of

the forward DWT/DWP or at the beginning of the inverse

DWT/DWP. Using 0.18-µm process, the estimated area of

the proposed wavelet processor with 32-bit configuration and

2×512 words memory is 3.7 mm2 and the estimated operating

speed is 353 MHz.

REFERENCES

[1] I. Daubechies, “The wavelet transform, time-frequency localization and
signal analysis,” IEEE Trans. on Information Theory, vol. 36, pp. 961–
1005, 1990.

[2] S. Mallat, Ed., A Wavelet Tour of Signal Processing. Academic Press,
Incorporated, 1998.

[3] A. Bradley, “A Wavelet Visible Difference Predictor,” IEEE Trans.
Image Processing, vol. 8, no. 5, pp. 717–730, 1999.

[4] B. Carnero and A. Drygajlo, “Perceptual speech coding and enhance-
ment using frame-synchronized fast wavelet packet transform algo-
rithms,” IEEE Trans. Signal Processing, vol. 47, pp. 1622–1634, 1999.

[5] W. Sweldens, “The Lifting Scheme: A New Philosophy in Biorthogonal
Wavelet Constructions,” Wavelet Applications in Signal and Image
Processing, vol. 3, pp. 68–79, 1995.

[6] I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into
Lifting Steps,” J. Fourier Anal. Appl., vol. 4, no. 3, pp. 245–267, 1998.

[7] J. Bruguera and T. Lang, “Leading-one prediction scheme for latency
improvement in single datapath floating-point adders,” in Proc. of
the Intl. Conference on Computer Design: VLSI in Computers and

Processors, 5-7 Oct. 1998.
[8] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko, and

T. Sumi, “Leading-zero anticipatory logic for high-speed floating point
addition,” IEEE J. Solid-State Circuits, vol. 31, no. 8, pp. 1157–1164,
Aug. 1996.

[9] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for
lifting-based forward and inverse wavelet transform,” IEEE Trans. Signal
Processing, vol. 50, no. 4, pp. 966–977, 2002.

[10] G. Dillen, B. Georis, J. Legat, and O. Cantineau, “Combined line-based
architecture for the 5-3 and 9-7 wavelet transform of JPEG2000,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 9, pp. 944–950, Sept.
2003.

[11] Y.-H. Seo and D.-W. Kim, “A New VLSI Architecture of Lifting-Based
DWT,” Lecture Notes in Computer Science, vol. 3985/2006, pp. 146–
151, 2006.

[12] C. Wang and W. Gan, “Efficient VLSI Architecture for Lifting-Based
Discrete Wavelet Packet Transform,” vol. 54, no. 5, pp. 422–426, 2007.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

