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Abstract—This paper proposes an efficient decoupling (decaps)
capacitance optimization algorithm to reduce the voltage noise
of on-chip power grid networks. The new method is based on
the efficient charge formulation of the decap allocation problem.
But different from the existing work [12], the new method applies
the more accurate piecewise polynomial micromodels to estimate
the voltage noises during the linear programming process. The
resulting method overcomes the over-estimation problem, which
plagues the existing method. The proposed method has the best
of two worlds: it has the efficiency of the charge-based methods
and the accuracy of the sensitivity-based methods. Experimental
results demonstrate that the proposed method leads to the decap
values similar to that of the sensitivity-based methods, which give
the best reported results and are much better than the existing
charge-based method, and at the same time, it enjoys the similar
efficiency of the charge-based method.

I. INTRODUCTION

With increasing integration density and roaring clock fre-
quency, reliable on-chip power supply becomes a challeng-
ing task for VLSI chip design. Excessive voltage variations,
including voltage drop and ground bounce, would have an
adverse impact on chip performance and reliability, since they
not only degrade the already tight noise margin in today’s
VLSI circuits, but also increase gate delay, cause false logic
switching, and sometimes even lead to logic failure. In prac-
tice, most designs now require voltage drop to be confined to
certain percentage of the nominal supply voltage [1]. Adding
decoupling capacitance (decaps) has been proved to be the
most efficient way to restrict the voltage drops in on-chip
power grid networks. However excessive decaps will cause
more leakage currents and reduce the reliability of the chips.
As a result, decap should be added in an economical way to
optimally balance its noise reduction functions and adverse
effects.

Budgeting decap in an area-efficient way, however, is a
difficult task due to prohibitive analysis costs of power/grid
(P/G) networks with millions of nodes and extracted on-chip
and off-chip RLC components in modern VLSI design. Mathe-
matically, optimal decap allocation is a nonlinear optimization
problem [9]. Existing approaches can be roughly classified into
two categories: the sensitivity based methods and the charge-
based methods.

Sensitivity-based approaches [2], [4]–[6], [8], [10] use sen-
sitivity information to guide the optimization processes. To
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compute the sensitivity, transient simulations of the whole
P/G networks have to be carried out at every optimization
step. As a result, those methods are very expense and difficult
to scale for large circuits. To mitigate the problem, multigrid
concept was proposed in [10], where the sensitivity-based op-
timization is performed on a size-reduced mesh. The method,
however, is limited to the regular-mesh or regular-mesh-like
P/G structures. In [6], the whole circuit is partitioned into a
number of sub-circuits based on the local effect of adding
decap to reduce IR drops, and each of them is optimized
individually. In [2], leakage current impacts of decaps were
explicitly considered in sensitvity-based framework. Recently
the partitioning is done more efficiently using random walk
concept [5]. Sensitivity based method has the advantage over
charge-based methods in that they can deliver more accurate
and smaller decap values as they directly monitor the voltage
drops during the optimization processes.

The second methods are operating on the charges or the
transformed voltage drops (the voltage-time integral), which
can lead to more simple problem formulations [3], [11], [12].
Those methods perform the approximate integration on the
differential equations. As a result, no transient simulations are
required during the optimization and the methods are much
more efficient than the sensitivity-based methods. However,
they generally suffer over-estimation issue as the approxima-
tion can be quite rough as we will demonstrate in this paper.

In this paper, we propose an efficient charge-based decap
optimization method, which has the best of two worlds:
it has the efficiency of the charge-based methods and the
accuracy of the sensitivity-based methods. The new method is
based on more accurate modeling of the voltage-time integral
constraints, which is critical for the accurate estimation of
decap during the optimization. We propose a more accurate
piecewise polynomial model to approximate the voltage-time
integral instead of the simple linear model as in the existing
method [12]. We show that the existing approach can lead to
significant over estimation of the decap values. Experimental
results show that the new approach delivers the much smaller
decap values, similar to the sensitivity-based method, than the
latest charge-based method with similar computational costs
of charge-based methods.

II. PROBLEM FORMULATION

The purpose of decap optimization is to use minimum decap
to avoid the excessive voltage drop. At the same time, the
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maximum single capacitance is bounded due to the physical
constraint. Then we can formulate the decap optimization
problem as following:

min
∑

i ci (1)
subject to C · dV

dt + G · V = J

V � Vthre (2)
cint,i � ci � cmax,i

where ci is the capacitance, which includes both intrinsic and
decoupling capacitances and cint,i is the intrinsic capacitance
at node i. C = diag(c1, . . . , cn), V is the transient voltage
waveform vector, Vthre is the threshold voltage, cmax,i is the
maximum capacitance allowed at node i, G is the conductance
matrix obtained by modified nodal analysis (MNA) and J is
the current source vector. In our formulation, we ignore the
inductances as inductances are still less important at the chip
level [7].

III. REVIEW OF SLP-BASED DECAP BUDGET METHOD

There are four steps in the successive linear programming
(SLP) based decap optimization method [12] as described in
algorithm 1.

Run the transient simulation of power/ground network once with the1
intrinsic capacitances and placed decap ;
Find out the violation regions, (i.e. the regions where the voltage drop2
constraints are violated) and the violation time windows (i.e. the time
windows during which violations occur) . Also Decide the sampling
nodes, i.e. the nodes to which the decap will be attached. If no
violation is found, the optimization ends ;
For each violation region, determine the optimal amount of decap by3
linear programming or sequential linear programming ;
Distribute the decap of the sampling nodes into the respective sampling4
regions. Go back to step 1 until no violation is found;

Algorithm 1: The flow of decap optimization in [12].

In the critical third step of algorithm 1, the decap opti-
mization problem (1) is formulated as a linear programming
problem.

The essential idea of this formulation is to transform the
MNA equations and voltage drop constraints (2) to lin-
ear constraints by integration and approximation of voltage
waveforms. First, the MNA equations (2) are transformed to
“charge transfer equations” by integration and macromodeling.
Suppose we have already found out the violation regions and
sampling nodes by transient simulation and the violation time
window is determined as [t0, t1] (please refer to [12] for more
details,). Then the MNA equation (2) is partitioned as follows:(

G11 G12

GT
12 G22

)
·
( ∫ t1

t0
V 1 dt∫ t1

t0
V 2 dt

)
=

( ∫ t1
t0

J1 dt∫ t1
t0

J2 dt+
∫ t1

t0
I dt

)

where V 2 is the voltages of the sampled violating nodes and
I is the current supplied by decap. Then the charge transfer
equations are formulated by macromodeling :

Q = A · W + B (3)

where Q =
∫ t1

t0
I dt is the charge transferred from decap,

A = G22 − GT
12G

−1
11 G12 is the admittance matrix, W
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Fig. 1. Voltage Waveforms without & with decap

is
∫ t1

t0
V 2 dt and B = (GT

12G
−1
11

∫ t1
t0

J1 dt− ∫ t1
t0

J2 dt) is
the equivalent charge drawn by current sources. Second, the
voltage constraints (2) are also transformed to linear con-
straints on voltage-time integral W . As shown in Figure 1,
the voltage waveform should be above the Vthre after adding
decap. Correspondingly, the integral of voltage waveform (W )
should be no less than the shaded area. However, the shaded
area is unknown until the decap is added, [12] suggests using
the linear approximation of this area. Hence, the transient
voltage constraint (2) is re-formulated as:

W � 1
2
(V (t0) + Vthre)(t1 − t0)

Since all the constraints in problem (1) have been transferred
to linear constraints, we end up with a linear programming
problem:

min
∑

i∈s ci (4)
s.t. M ′ ◦ C � A · W + B

W � L (5)
cint,i � ci � cmax,i

where C =
(

c1 c2 . . . cm

)T
,

M′ =

⎛
⎜⎜⎜⎝

V 1(t0) − V 1(t1)
V 2(t0) − V 2(t1)

...
V m(t0) − V m(t1)

⎞
⎟⎟⎟⎠ , L =

⎛
⎜⎜⎜⎝

(Vthre + V 1(t0)) · T
(Vthre + V 2(t0)) · T

...
(Vthre + V m(t0)) · T

⎞
⎟⎟⎟⎠ ,

(6)
S is the set of sampling nodes, m = |S|, T = (t1 − t0)/2
and the ◦ operation is the entry-wise product.

There are, however, two inaccurate variables in such linear
programming formulation. The first one is V (t1). Ideally, V
should reach the threshold voltage at t1, i.e. V (t1) = Vthre.
However, V (t1) could also be above Vthre practically. As a
result, [12] proposed a successive linear programming (SLP)
to mitigate this problem. The second non-accurate variable is
L, the lower bound of the voltage-time integral. As illustrated
in Figure 1, the voltage waveform after adding decap is
approximated by a straight line. So L is the area of trapezoid,
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Fig. 2. Remaining violations after adding decap determined by SLP based
method.

which can be quite different from
∫ t1

t0
V dt after adding decap.

Our paper is focusing on improve the second inaccuracy by
using more accurate piecewise polynomial models.

IV. VIOLATION RESIDUE AND VIOLATION TIME WINDOW
DRIFT

In this section, we analyze the inaccuracy in the modeling
of voltage-time integrals and its impacts on the decap opti-
mization.

A. Violation Residue

One important observation we have for the existing SLP
problem 4 is that it usually fails to eliminate all violations
completely. Figure 2 shows one of the failing cases. In this
figure, we plot the voltage waveforms of 3 sampling nodes.
The left sub-figure shows the voltage drop improvement with
decap budget by sensitivity based non-linear optimization [4].
And the right sub-figure shows the voltage drop improvement
with decap by SLP based method which shows the SLP based
method is unable to remove the violations completely.

Table I shows the overall voltage violations before adding
any decap and after adding decap by sensitivity based method
and by SLP method, where the voltage violation V io =∑

i∈vio

∫
V dt , #V io is the number of violating nodes. As we

can see, the violations still present after SLP while sensitivity
based method eliminates the violation completely.

No Decap Sensitivity Based Decap Budget SLP Decap Method
V io #V io V io #V io budget V io #V io budget

0.0041 77 0.0 0 82.4 pF 0.000507 26 80.3 pF

TABLE I
VOLTAGE DROP VIOLATIONS BEFORE AND AFTER ADDING DECAP BY

SENSITIVITY BASED METHOD AND SLP METHOD.

Further analysis shows the violation residue is caused by
the inaccurate linear approximation of L in equation (5). This
fact becomes obvious if we analyze the voltage waveforms
shown in Figure 3. There are three curves in Figure 3 : (1)
The curve V is the original voltage waveform when no decap
is added; (2) The curve V opt is the voltage waveform when
optimal decap Copt is added, which is the desired curve; (3)
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Fig. 3. Analysis of voltage waveforms with different decap values.

And the curve V slp is the voltage waveform after adding
decap Cslp by SLP method. We also have three areas after
integrating the voltage waveforms: (1) L

′
is

∫ t1
t0

V opt dt; (2)
W

′
is

∫ t1
t0

V slp dt ; (3) L is the linear approximation of L
′
,

as defined in equation (6). The original voltage constraint
(2) is equivalent to W

′
� L

′
. Because the L

′
is not

known beforehand, the linear approximation L is used in SLP
problem (4). Consequently, W

′
� L is satisfied. However, as

we can see in Figure 3, area L
′

is much larger than area L.
And it happens in this case L

′
> W

′
� L. So the curve V slp

violates the voltage drop constraints (2).

B. Violation Time Window Drift

It’s obvious that the violation residue problem shown in
section IV-A has already been noticed in [12]. In order to
cope with this problem, [12] suggests to apply another outer
iteration as stated in algorithm 1 until the voltage constraints
(2) are satisfied.

However, simply repeating the SLP method may place
excessive decap. Figure 4 shows waveforms after the first and
second iterations, where V (0) is the initial voltage waveform
without any capacitance (even the intrinsic capacitance is
ignored), V (1) is the voltage waveform after applying SLP
method once, V (2) is the voltage waveform obtained by
SLP method using the V (1) as input waveform, as stated
in algorithm 1 and the dashed curve V opt is the voltage
waveform after adding optimal decap by sensitivity based
method. As we can see, the voltage violation does disappear
after these 2 iterations. However, we also can see the resulting
voltage waveform V (2) is high above the waveform V opt,
which is the desired waveform.

The reason for this decap over-design is that the “violation
time window” has drifted from [t0, t1] to [t0, t

′
1] during the

iterations. Because the SLP method is supposed to move the
maximum voltage drop time point (i.e. minimum voltage time
point) to the end of violation time window (otherwise there
could be other violating voltage out of violation time window),
so the minimum voltage occurs at time point t

′
1 after the

second iteration, as demonstrated in Figure 4. However, this
voltage has to be much larger than the threshold voltage,
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Fig. 4. Simple iteration of the SLP method leads to decap over-estimation.

i.e. V (2)(t
′
1) > Vthre, which is also shown in Figure 4.

Actually, we can see this fact from the MNA equation
C · dV (2)

dt + G · V (2) = J . Since dV (2)

dt (t
′
1) ≈ 0 (because

t
′
1 is minimum voltage time point as mentioned before),

so we know G · V (2)(t
′
1) ≈ I(t

′
1). While we also know

G · V (0) = I (the MNA with C = 0), we conclude that
V (2)(t

′
1) ≈ V (0)(t

′
1) > V (0)(t1) = Vthre. This deduction is

also proved by the waveforms in Figure 4.
Therefore, the simple iteration of SLP pulls the voltage

much higher than necessary and consequently costs more
decap than necessary. Table II shows the overall decap amount
during the iteration of SLP. Copt is the decap amount obtained
by sensitivity based decap optimization and C is the decap
budget of SLP based method. This table shows the negative
effect of violation time window drift to decap optimization.

Copt #Iter V io #V io C ΔC = (C − Copt)/Copt

82.4 pF 1 0.000507 26 80.3 pF -2.5%
2 0.0 0 113.1 pF +38.82%

TABLE II
THE VIOLATION AND DECAP AMOUNT IN EACH ITERATIONS.

V. NEW METHOD BY PIECEWISE POLYNOMIAL MODELS

In this section, we present the new decap budgeting method
by using more accurate piecewise polynomial method.

A. Voltage Waveform Prediction by Piecewise Polynomial

As we know that the violation residue is mainly caused
by inaccuracy of L, we propose a more accurate piecewise
polynomial based method to improve the prediction of voltage
constraint L . The basic idea is to approximate the voltage
waveform V opt by piecewise polynomial instead of a simple
straight line. However, this approximation is difficult because
we don’t know the curve V opt until the optimal decap is
added. Nevertheless, we still can observe some properties of
curve V opt, which will be helpful for our approximation :

1) dV opt
dt (t) ≈ 0 when t ∈ [t0, t0 + δt]; where δt is a small

time;
2) dV opt

dt (t1) ≈ 0;
3) V opt(t1) ≈ Vthre.
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Fig. 5. Piecewise polynomial modeling of voltage waveform integration.

Also we obtain another property V opt(t) ≈ V (t0) when t ∈
[t0, t0 + δt] by integrating the equation in the first property.

After examining above properties, we find it’s natural to
approximate the curve V opt by piecewise polynomial inter-
polation in two time regions : [t0, t0 + δt] and [t0 + δt, t1].
In time region [t0, t0 + δt], the voltage is approximated by
the constant value because of property (1). In time region
[t + δt, t1], the voltage curve is approximated by a cubic
polynomial determined by following interpolation conditions
: dV opt

dt (t0 + δt) = dV opt
dt (t1) = 0, V opt(t0 + δt) = V (t0)

and V opt(t1) = Vthre. So the approximating polynomial is
defined as following:

P 0(t) = V (t0) if t ∈ [t0, t0 + δt] (7)
P 1(t) = at3 + bt2 + ct + d if t ∈ [t0 + δt, t1]

where a, b, c, d are the interpolating coefficients.
Notice that variable δt remains unknown. Because this

variable is critical to determine the shape of voltage curve,
we estimate it through the voltage waveform we have already
know. Suppose curve V k−1 is the waveform obtained in last
optimizing iteration, as shown in Figure 5. We apply the same
piecewise polynomial formula (7) to curve V k−1 but using
different time window [t0, tp], where tp = argminV k−1.
Similarly, a piecewise polynomial is obtained as following :

P
′
0(t) = V (t0) if t ∈ [t0, t0 + δt

′
]

P
′
1(t) = a

′
t3 + b

′
t2 + c

′
t + d

′
if t ∈ [t0 + δt

′
, tp]

In order to decide the variable δt
′
, we require the “distance”

between voltage curve and piecewise polynomial approxima-
tion to be zero :

D =
∫ t0+δt

′

t0

(P
′
0 −V k−1) dt +

∫ t1

t0+δt′
(P

′
1 −V k−1) dt = 0

(8)
Solve equation (8) and obtain δt

′
:

δt
′
=

2
∫ tp

t0
V k−1 dt−(V (t0) + V k−1(tp)) · (tp − t0)

V (t0) − V k−1(tp)

Then we assume δt ≈ δt
′

to generate the approximation of
voltage waveform V k by formula (7).



Determine the sampling nodes S
Determine the violation time window [t0, t1]
Build macro-model by equation (3)
Set intrinsic capacitance C0 ← Cintri

L
′
k ← 1

2
(V (t0) + Vthre) · (t1 − t0)

while True do
L ← L

′
k

V (t1) ← V p ← Vthre

while True do
Obtain Ck by solving problem (4)
Update V p by solving following equations :

(V (t0) − V p) · Ck = A · (V (t0) + V p)T + B

where T is (t1 − t0)/2
if |V p − V (t1)| � ε then

Break
end
if V p < Vthre then V (t1) = Vthre

else if V p � V (t1) − δ then
V (t1) = V (t1) − δ

else if V p � V (t1) + δ then
V (t1) = V (t1) + δ

else V (t1) = V p
end
C ← Ck + C0

Get the voltage V k−1 by solving equation

C · dV k−1

dt
= A · V k−1 + (GT

12 · G−1
11 · J1 − J2)

Update L
′
k according to formula (9)

if |L′
k − L| � ε then
Break

end
end
Algorithm 2: New Iterative SLP Based Algorithm

Finally, we can integrate piecewise polynomial approxima-
tion (7) to get voltage constraint L

′
k :

L
′
k ≈

∫ t0+δt

t0

P 0 dt +
∫ t1

t0+δt

P 1 dt

=
1
2
(V (t0) + Vthre) · (t1 − t0) +

1
2
(V (t0) − Vthre)δt

=
1
2
(V (t0) + Vthre) · (t1 − t0) (9)

+
2

∫ tp

t0
V k−1 dt−(V (t0) + V k−1(tp)) · (tp − t0)

2(V (t0) − V k−1(tp))/(V (t0) − Vthre)

Notice that L
′
k becomes

∫ t1
t0

V opt dt as voltage waveform
V k−1 → V opt because of tp → t1 and V k−1(tp) → Vthre.
So the voltage waveform V opt is a “fix point” of equation
(9) because using L

′
=

∫ t1
t0

V opt in SLP constraint (5) also
leads to voltage waveform V opt. Therefore, the new voltage
constraint L

′
k equation (9) is convergent when k → ∞.

B. The Flow of the New Decap Optimization Method

Plugging the new voltage constraint L
′
k to linear pro-

gramming problem (4), we could obtain a more accurate
decap budget. After adding decap, the voltage waveforms are
simulated to generate a better voltage constraint according to
equation (9). The new iterative SLP-based decap optimization
is shown in Algorithm 2.

We remark that the new iterative optimization flow is dif-
ferent from [12] in the following respects: 1. Sampling nodes,
violation time window and macromodeling are determined
once at the beginning, while algorithm 1 builds them in every
iteration. 2. Violation time window is determined ignoring
any capacitance to avoid violation time window drift while
algorithm 1 considers decap already placed in the previous
iterations, which causes violation time window drift. 3. In
addition to voltages V (t1), voltage constraints L are improved
iteratively.

These differences are essential to eliminate the violation
residue and avoid the violation time window drift.

VI. EXPERIMENTAL RESULTS

We implemented all three decap optimization algorithms in
Matlab: sensitivity based decap optimization [4], SLP based
algorithm 1 [12] and the new iterative SLP based algorithm 2
in Matlab. The built-in non-linear interior-point optimization
function (‘FMINCON”) is used in the sensitivity based al-
gorithm. And another built-in linear programming function
(“LINPROG”) is utilized in both SLP based algorithm 1 and
the new iterative SLP algorithm. All the experiments were
carried out on a Linux machine with 2.3GHz CPU and 8GB
memory. However, due to the memory limit of 32-bit Matlab,
only 2GB-3GB memory is available for our algorithm.

All test circuits are generated with realistic parameters for
R,C and current sources based on industry designs. As men-
tioned in [12], the inefficiency of sensitivity based algorithm
make it impossible to use very huge circuits. So we apply
three algorithms to smaller test circuits to demonstrate the
characteristic of each algorithms. We stress that the proposed
method can easily improved by using partitioning scheme.

Table III shows the comparison between three algorithms,
where the first column is the circuit name, the second column
is the node number in the circuit, the third column is the
violating node number. For each algorithm, iteration number,
decap budget and runtime are also presented. Also the seventh
column and eleventh column present the decap budget differ-
ence with respect to the decap values obtained by the proposed
algorithm. All three algorithms remove all the voltage drop
violation after adding decap. So the violating node number
after adding decap is omitted.

As shown in the table, the proposed algorithm obtains
almost the same (sometimes slightly less) decap values as the
sensitivity based method. In contrast, the SLP based algorithm
gives much larger decap values for most of cases.

We observe that all these decap budget over-estimations
occur when the second iteration was carried out in the SLP
based algorithm 1, which confirms our observation that over-
estimation is caused by the violation time window drift in the
second iteration. Usually, the violation time window drift after
the first iteration is proportional to the decap added in the first
iteration. Therefore, if violation is larger, the decap added in
the first iteration will be larger and consequently lead to larger
violation time window drift and larger decap overestimation.



Sensitivity Based Algorithm SLP Based Algorithm Iterative SLP Algorithm
Circuit #Node #Vio #Iter Budget Δ Time #Iter Budget Δ Time #Iter Budget Time

ctk1 1049 77 31 82.4 pF 1.19% 158.8s 2 113.1 pF 38.82% 3.1s 2 81.4pF 3.1s
ctk2 2032 455 26 482.6 pF -36.2% 127.1s 1 757.0 pF 0.00% 9.3s 1 757.0 pF 9.3s
ctk3 3532 1118 49 788.4 pF -17.2% 302.5s 2 1305.7 pF 37.1% 23.1s 2 952.6 pF 43.2s
ctk4 4875 1413 51 1.043 nF -10.0% 1020.8 s 2 2.089 nF 80.2% 39.4s 2 1.159 nF 81.6s
ctk5 6033 1733 18 1.198 nF -0.80% 173.2 s 1 1.208 nF 0% 10.5s 1 1.208 nF 10.5s
ctk6 7550 2429 33 2.341 nF -9.51% 904.7 s 2 4.720 nF 82.48% 26.4s 2 2.586 nF 45.5s
ctk7 8879 3250 44 2.965 nF -11.62% 952.1 s 2 4.201 nF 25.2% 50.4s 2 3.355 nF 92.3s
ctk8 10251 4841 40 3.890 nF 4.62% 2165.9 s 2 5.836 nF 56.9% 113.8s 2 3.718 nF 208.7s
ctk9 20123 7098 NA NA NA NA 1 8.134 nF 0% 65.5s 1 8.134 nF 47.9s

ctk10 40178 9741 NA NA NA NA 2 15.973 nF 79.43% 64.3s 2 8.902 nF 97.4s

TABLE III
COMPARISON BETWEEN THE SENSITIVITY BASED ALGORITHM, THE SLP BASED ALGORITHM AND THE PROPOSED ALGORITHM

Iter 1 Iter 2 in SLP Based Algorithm Iter 2 in Iterative SLP Algorithm
Vio #Vio Vio #Vio Budget Vio #Vio Budget Vio #Vio Budget overestimation

0.0041 77 0.000507 26 80.3 pF 0.0 0 113.1 pF 0.0 0 81.4 pF 38.9%
0.0160 203 0.0015 55 170.2 pF 0.0 0 241.8 pF 0.0 0 180.1 pF 34.3%
0.0502 386 0.0039 104 226.2 pF 0.0 0 375.3 pF 0.0 0 246.4 pF 52.3%
0.1183 546 0.0066 138 284.4 pF 0.0 0 556.1 pF 0.0 0 320.8 pF 73.3%

TABLE IV
VIOLATION AND DECAP BUDGET IN EACH ITERATIONS

Table IV shows the violation and the decap in each iterations
of both the SLP based algorithm and the proposed algorithm.
The test circuit “ctk1” is used in this experiment and the
current source is scaled up to increase the violation. The
column “Vio” is the total violation, i.e. V io =

∑
i∈vio

∫
V dt,

where t in violation time window. And “#Vio” is the violating
node number. Although the violation in practice is not as large
as shown in table IV, table IV shows the larger the violation
is, the larger the decap overestimation is.

Although the scale of these test circuits are limited due to
the memory limit of 32-bit MATLAB, The table still shows a
good comparison of CPU runtime between the proposed and
the SLP based algorithm, both are significantly less than the
sensitivity based algorithm. We also can see the the proposed
algorithm is sometimes slower than the SLP based algorithm
despite they both complete the optimization in 2 iterations.
This is because the LP problem in the 2nd iteration remains
as large as in the first iteration for our algorithm but the 2nd
iteration of the SLP based algorithm has a reduced LP problem
to solve.

VII. CONCLUSION

In this paper, we have proposed an efficient decoupling
(decaps) capacitance optimization algorithm. The new method
improves the existing method [12], by applying the more
accurate piecewise polynomial models to estimate the voltage
noises during the linear programming processes. The proposed
method has the efficiency of the charge-based methods and
the accuracy of the sensitivity-based methods. Experimental
results have demonstrated that the proposed method leads
to the much smaller decap values, which are similar to the
best-known sensitivity-based method, than the existing charge
based method, and while it maintains the same efficiency of
the charge-based method.
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