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Abstract—Designing reconfigurable yet critical embedded and
complex systems (i.e. systems composed of different subsystems)
requires making these systems adaptable while guaranteeing
that they operate with respect to predefined safety properties.
When it comes to complex systems, component-based software
engineering methods provide solutions to master this complex-
ity (“divide to conquer”). In addition, architecture description
languages provide solutions to design and analyze critical and
reconfigurable embedded systems. In this paper we propose a
methodology that combines the benefits of these two approaches
by leaning on both AADL and Lightweigth CCM standards.
This methodology is materialized through a complete design
process and an associated framework, MyCCM-HI, dedicated
to designing reconfigurable, critical, and complex embedded
systems.1

I. INTRODUCTION

Embedded systems must automatically adapt to variations
of their operational environment. In addition, these systems
are often mission critical and must operate with respect to
predefined safety properties through their utilization.

These two characteristics are opposed to one another insofar
as the first one requires that the system be autonomous while
the second one requires its execution be predictable. This
problem has been partially tackled in AADL2 [11] thanks to
the notion of operational modes. AADL is an architecture
description language – standardized by the SAE3 – used to
design and analyze software architectures of critical embedded
systems. Additionally, our objective consists in providing a
methodology that helps to tackle this issue all along the design
process of complex systems (i.e. systems that are themselves
composed of different subsystems). AADL lacks a first class
citizen support for coarse grain software components. This
abstraction level is yet a good intermeditate level between a
system specification and a precise software architecture design.
Consequently, AADL is not yet adapted for the design of
complex systems.

In this paper, we propose a component-based methodology
that improves the predictability of adaptable systems by mod-

1This work has been led in the scope of ANR/Flex-eWare and
ITEA/SPICES projects

2Architecture Analysis and Design Language
3Society of Automotive Engineers

eling and restraining their reconfigurations. This methodology
extends that of AADL for the management of operational
modes to realm of component based software engineering and
relies upon it. More precisely, it consists in representing (i) the
different possible behaviors of a system thanks to operational
modes, (ii) the conditions that limits and/or provoke the
mode switches, and (iii) the impact of these mode switches
on the software architecture described in terms of software
components.

In addition to this process, we present a component frame-
work (namely MyCCM-HI4) that automates the transformation
of the component-based models into analyzable models, and
that generates the corresponding technical code. This frame-
work constitutes a major evolution of MyCCM [4] insofar
as it reduces significantly the embeddability of the generated
code, it supports the notion of operational modes and its
impact on the software architecture, and respects the main
implementation rules associated to critical software.

The remainder of this article is organized as follows : section
II presents in more detail the problem we address in this paper.
We present in section III, the different modeling artifacts on
which our methodology relies. Section IV describes the design
process associated with our methodology. In section V, we
present the main results obtained with MyCCM-HI.Finally,
section VI presents the conclusions of our work, and its future
developments.

II. MOTIVATION

We discuss in this section different interesting issues with
regards to reconfigurable systems specification. First, it would
be very useful to automatically discover the configuration
that answers the best to the new operational environment of
a system. The notion of contract, or the one of constraint
resolution [5], have thus been proposed to answer this issue.
The target configuration could then be computed by the system
while it is running.

But in the case of mission-critical systems, we must guar-
antee during the design process that the system behavior will

4Make your Component Container Model - High Integrity. MyCCM-HI is
available at http://www.flex-eware.org under GPL since the end of January
2009.
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verify a predefined set of safety properties. This led us, as a
first step, to consider reconfiguration specifications in which
the source and target configurations are exhaustively defined
at design-time. Indeed, this guarantees that the consistency
of the target configuration can be verified at design-time,
which is easier than ensuring the soundness of the decision
algorithm that would determine at runtime the appropriate
target configuration. Another issue consists in modeling for-
mally the behavior of a system under reconfiguration, in
order to ensure that the safety properties will also be verified
during the reconfiguration process. Finally, the consideration
of reconfiguration into an integrated design process would also
be an important achievement in this domain.

In the academic community, research activities about soft-
ware engineering dedicated to modes modeling and code
generation are very few.

Actually, the community either focused on formal verifica-
tion of systems under mode transitions [1], [3], [9], [10], or on
the specification of conditions, evaluated at runtime, that can
enable or disable reconfiguration (usually called “safe state”)
[7], [8], [13].

In industry, reconfiguration is key since the very first steps
of a system engineering process consists in enumerating the
different operational modes of the system and their associated
functionalities. However, there is no automatic process for
managing the impact of mode switches on the software archi-
tecture. This constitutes a gap between model-based system
engineering and software engineering. Due to the lack of a
dedicated modeling language and corresponding tools, this gap
is still bridged manually. First, it makes the system difficult
to design, update, and integrate since any modification of the
specification of modes would require to modify the code in
depth. Second, it makes difficult the formal verification of the
system under reconfiguration since its behavior is hidden in
the code.

Based on this observation, we have elaborated a component-
based methodology that eases the analysis and the maintenance
of reconfigurable and critical systems (i) by representing in
the models the behavior of the system during a mode switch,
(ii) by limiting the scope of this behavior to analyzable ones,
and (iii) by generating most of the non-functional code of the
software architecture (including the one that carries out this
behavior).

The remainder of this article presents this methodology in
deeper detail.

III. MODELING ARTIFACTS

One of the objectives of our methodology consists in
reducing the gap that exists between system engineering and
software engineering due to the difficulty to associate an
operational mode with a corresponding software architecture.
To achieve this goal, we model a system, its subsystems and
its mode automata. We then refine this system specification
with a description of the software architecture and the impact
of the mode switches on this software architecture.

In this section, we present the artifacts that compose these
models.

A. Components Specification

A component is a piece of functionality that can be as-
sembled with others in order to provide the full functional
coverage of the system. Allowing to break down the whole
system into smaller pieces, truly independently manageable,
easier to develop and to reuse.

A component definition must describe the way it interacts
with other components by means of ports. It then describes
not only the services that the component is providing (as an
object does), but also the ones it requires for functioning, to
be provided by other components.

This allows the components to be connected externally
from the application. Additionally, components describe their
parameters, so that they can be configured externally.

MyCCM component definition is based on the OMG5

Lightweight CCM [6] standard. Figure 1 illustrates the dif-
ferent kinds of ports a component may define: a facet (respec-
tively receptacle) is a provided (resp. required) interface (i.e.
set of operations), that implements synchronous communica-
tions, while events sinks and sources implement asynchronous
communications. Finally, attributes are the parameters of the
component for the configuration of which it provides acces-
sors.

CCM 

Component receptacle

facetsource

sink

attribute

Fig. 1. Component Type

In our methodology, a software architecture is represented
by a component that might be itself composed of subcom-
ponents. A component composed of subcomponents is called
a composite component whereas others are called primitive
components.

A component definition consists in the specification a com-
ponent type (its ports and attributes), one or more implementa-
tion of this type, and one or more instances of this implemen-
tation. The component implementation describes the content
of the component, either as a set of subcomponents, or as a
functional code provided by the component developer. Finally,
the component instance enables to specify the target process,
or the computational node (actually the address space), on
which the component will be instantiated.

The presentation we made until now constitutes the back-
ground [4] of this paper. The remainder presents our contribu-
tion, that constitutes a major evolution of MyCCM component
framework.

5Object Management Group



B. Modes Automata

In order to remain in the domain of verifiable systems,
we restrain the reconfigurations to mode switches that are
represented in MyCCM-HI models as communicating states
automata: a mode corresponds to a state of the system in which
it provides a set of functionalities corresponding to an expected
behavior; an edge corresponds to a mode transition.

In MyCCM-HI, mode transitions mechanisms rely on :
• boolean expressions that enable this transition to be fired;
• the message value whose reception triggers the transition;
• actions that result from this mode transition.
In addition, these mode automata may interact with any

other component in order to instantiate reconfiguration proto-
cols that may depend on :

• the evolutions of the system operational conditions;
• the integrity of systems or subsystems that have to interact

with each other;
• the propagation of mode switch in the different systems

or subsystems that have to interact with each other.
This is the reason why mode switch mechanisms are de-

scribed in the implementation of specific components called
mode automata that are described with types, implementa-
tions and instances, and that can be connected with any other
component.

We present hereafter the specificities of mode automaton
components:

• their component type explicitly defines their modes;
• their ports are limited to event sources and sinks with a

single data field defined as an enumerated type;
• their attributes are restricted to integers;
• their implementation describes the mode transition mech-

anisms in a specific language.

Listing 1. Operational Automaton

enum cmd {cmd 1, cmd 2};
eventtype m cmd {

public cmd a cmd;
};
mode automaton M {

mode M1(initial), M2;
consumes m cmd sink;
publishes m cmd source;
attribute long attr ;
};
mode automaton implementation M i implements M {

in mode M1 :
{

[ sink ?(a cmd=cmd 2) AND (attr>2)] −−> M2
{

source !(a cmd:=cmd 2);
attr ++;

};
};
};

Listing 1 illustrates the specification of an operational
automaton implementation M i. In the definition of its type,

M, we remark that its ports are event ports, and that their
contents are limited to enumerated types. Besides, M defines
two operational modes, M1 and M2. In the definition of M i,
the mode transition between M1 and M2 is defined as follows:
When the message value cmd 2 is received on sink, if the value
of the attribute attr is strictly superior to 2, then the new mode
is M2, the value cmd 2 is sent on source port and the value
of attr is incremented.

By definition, a mode automaton is a subcomponent of a
system or a composite, and defines the mode switch mecha-
nisms of the corresponding system or subsystem.

In the following subsection, we present the characteristics
of MyCCM-HI that enable to master precisely the real-time
characteristics of the software architecture.

C. Real-time Software Architecture

As we said in section II of this paper, one of the benefits of
our methodology is that it enables to generate most of the non-
functional code of a system. This requires providing a precise
description of the real-time software architecture. Here are the
main elements of MyCCM-HI, inspired from AADL, that are
dedicated to this description:

1) Activities: An activity is an active software entity likely
to trigger a set of functional processing for which a deadline
can be specified. There exists different kinds of activities,
depending on the nature of the event that triggers it:

• Periodic activities, that are triggered by the real-time
operating system clock each time a predefined amount
of time has been spent;

• Aperiodic activities, triggered by the arrival of a software
event;

• Sporadic activities, triggered by the arrival of a software
event, but a minimal amount of time separating two
executions of the activity;

• IT-based activities, triggered by the arrival of a hardware
event.

The specification of the activity parameters depends on the
activity type. For a periodic activity, we set the activity entry
point – i.e. the first operation that will be called by the thread
carrying out the activity – and the period of the activity.
This operation actually references in the model an operation
defined as component instance’s facet. For sporadic activities,
we specify the set of component instances’ ports that will
trigger an activity, and the period of this activity. Aperiodic
activities are parametrized by the set of component instances’
ports that will trigger the activity. Finally, IT based activities
are parametrized with the IRQ that triggers the activity, and
with the operation called when this interruption occurs. For
schedulability analysis purposes, a deadline can be associated
with an activity.

Listings 2 illustrates these specification rules: C1 inst cor-
responds to a primitive component instance, f is one of its
facets, while s1 and s2 are parts of its event sinks. In this case,
operation f of C1 inst is called every 10 milliseconds; the
operation associated with s1 (respectively s2) is called every



time a message is received on s1 (resp. s2), if 100 milliseconds
have past after the last trigger.

Listing 2. Activities

periodic activity A1
{

configures C1 inst :: f ;
period : 10 ms;

};
sporadic activity A2
{

period : 100 ms;
configures C1 inst :: s1;

};

2) Execution Servers: When an activity is propagated
across different processes, processors, or partitions, thanks to
synchronous operation calls, one (or more) execution server
is necessary to carry out the remote processing. This concept
differs from the notion of activity since the execution server
deadline depends on the activity deadline it interacts with, and
should be deduced from it.

3) Shared data: Concurrency constitutes an error prone
aspect of real-time systems programming, and an important
aspect of schedulability analysis. In order to detect mistakes
related to shared data usage, we propose to explicitly model
shared data access into the component based architecture
model.

D. Mode switches impact

Obviously, any modification of a system behavior does not
require modifying its software architecture: it can be realized
in an algorithmic way. However, three different reasons led us
to model the impact of mode switches on the software architec-
ture. First, the software architecture is sometimes impacted “de
facto” (when a fault occurs); secondly, we decided to model
the adaptation so as to ease the verification of the system
behavior under reconfiguration and to generate the associated
code; last but not least, we model the mode switches impacts,
and generate the associated code, so as to limit the behavior
of the system under reconfiguration to analyzable behaviors.
Indeed, the glue code generated to manage modes switches
guarantees the consistency of data colocated with the mode
automaton by using a synchronization mechanism between
threads impacted by a mode switch and the code realizing
this switch. Besides, this synchronization mechanism is based
on analyzable patterns.

Let us go into a bit more detail this tricky problem. In
a component-based approach, dynamic reconfiguration usu-
ally deals with components (i) connection/disconnection, (ii)
instantiation/de-instantiation, and (iii) attribute value modifica-
tions. In addition, embedded systems must answer to require-
ments that may demand to activate/deactivate threads. These
mechanisms impose to respect a reconfiguration protocol that
belongs to the scope of analyzable reconfiguration policies, as
described in [9].

In MyCCM-HI, an “in mode” clause is attached to compo-
nents, activities, execution servers, connections, and attribute
assignments in order to identify the set of modes in which
those elements are valid. From this specification, MyCCM-HI
computes the mode switch impact (i.e. the set of modifications
of the architecture that have to be undertaken to reach the new
configuration), and the set of impacted threads (i.e. the set
of threads that have to finish their execution before a mode
switch may occur). Both the code realizing the modes switch
impact and its synchronization with the functional code is thus
generated by MyCCM-HI.

In this section, we have presented the different artifacts of
MyCCM-HI that helps to model complex, critical, and recon-
figurable embedded systems. The following section describes
how these elements are used in a complete design process.

IV. SYSTEM-TO-SOFTWARE DESIGN PROCESS

The process we describe in this subsection is divided into
two main steps that aim at modeling both the system and its
software architecture.

A. System Level Specification

C/ESTEREL Code

MyCCM-HI Generator

Failure

System Specification

- Modes automata
- Systems interfaces
- Connections
- Subsystems

First specification step

Second specification

step

Formal 

verification
Success

ESTEREL ToolSuite

Generated C Code

Fig. 2. MyCCM-HI Process: First Step

What we call a system level specification is exclusively
composed of connected composite and operational automaton
components. At this moment in the design process, and consid-
ering the amount of information we have at our disposal, many
important properties can already be verified. For instance, we
can verify that a system can alway be reinitialized, or that two
subsystems will never be in conflicting modes: one in manual
mode while the other is in automatic mode.

Figure 2 illustrates how the system level specification is
used in a first design step: MyCCM-HI generators transform
this specification into C code, or ESTEREL code so that we
can use ESTEREL tool suite to generate certifiable C code
and perform model checking and simulation.



Listing 3. Corresponding ESTEREL Code

data M modes:
type M modes type=enum{M1,M2};

end data
data m cmd :

type cmd type=enum{mode 1,mode 2};
end data
interface M :

extends data M modes;
extends data cmd;
input sink : m cmd;
output source :m cmd;

end interface
module M i :

extends M;
var attr : integer :=0, current mode: M modes type:=M1 in

if :( current mode=M1) then
if :(? sink=mode 2 && attr>2) then

emit ?source<=mode 2;
current mode:=M2;

end if
end if

end var
end module

Listing 3 illustrates the result of the transformation of the
operational automaton given in Listing 1: eventtype m cmd
is transformed into an ESTEREL data; operational automaton
M is transformed into an ESTEREL interface, and the op-
erational automaton implementation M i is transformed into
an ESTEREL module that contains the implementation of the
mode transition specification.

Once their implementation code has been generated, op-
erational automata are considered as primitive components,
and consequently their integration in the software architecture
is realized with the same techniques as for other primitive
components.

In a second step of the process, the system level specifica-
tion is refined into a software specification.

B. Software Level Specification

AADL model

Software Architecture 

Specification MyCCM-HI Generator

Components envelope code

- System Specification
- Component instances
- Activities
- Execution servers
- Shared Data
- Impact of modes

Failure

Second specification step

Generated C Code

Success

OCARINA ToolSuite

Formal 

verification

Fig. 3. MyCCM-HI Process: Second Step

What we call a software level specification refines the sys-
tem specification. The refinement step consists in defining the

primitive component instances, their processes, the activities,
the execution servers, the shared data, and the impact of mode
switches. From this specification, the user checks that the
model conforms to the validation requirements (schedulability
for instance), and uses MyCCM-HI generators to produce the
code that implement the corresponding software architecture.

Figure 3 illustrates how the software level specification is
used in this second design step: this specification is trans-
formed into an AADL model. This model can be processed by
the various tools analyzing AADL models like Cheddar [12]
for schedulability analysis and Ocarina [14] for deadlock
analysis. Last but not least Ocarina [14] generates from the
AADL models, the code implementing connections, activities,
execution severs, and shared data using sockets, threads, locks
and other elements of the operating system API.

On Figure 3 we can see that the software specification is also
used to generate the components’ envelope code. This code is
used for primitive components initialization (attribute values
definition and connections), for the corresponding reconfigu-
rations (modification of attribute values, and disconnection/re-
connection), and for interfacing the code generated by Ocarina
with the user code contained in the primitive components
implementation. In addition to the verifications presented until
now, we propose to apply schedulability analysis to the code
implementing the mode switches: to do so, we would need to
include in the generated AADL model the description of the
mode switches specified in MyCCM-HI and use the AADL
mode analyzers such as [3], [10].

Figure 4 sums up the final architecture of an executable code
obtained with MyCCM-HI and Ocarina: AADL runtime code
references the code generated by Ocarina; the components’
envelope code is the interface code generated by MyCCM-
HI; finally, the primitive components implementation either
corresponds to functional code provided by the component de-
veloper, or corresponds to the mode automata implementation
code generated by MyCCM-HI (see paragraph IV-A).

AADL runtime code

Configuration:

Processes & 

threads 

initialization, 

connection, etc…

Component’s envelope code

Configuration code: 

Component instances 

initialization, connection, 

etc…connection, etc…

Reconfiguration:

AADL mode 

switch 

mechanisms

etc…

Reconfiguration code:

Connection, 

disconnection, 

modification of attribute 

values, etc…

Primitive Component 

Implementation

Functional code

Fig. 4. Resulting Software Architecture

We present in next section the main results obtained with
MyCCM-HI on a little example.

V. RESULTS

In order to illustrate the capacity of our approach to address
real-time and embedded systems domain, we have modeled a
very simple example, from which the whole runtime code has



been generated. This example is composed of two processes :
one client and one server.

The client process is composed of two threads (one sporadic
and one periodic), and the server process is composed of one
sporadic thread.

Two components are instantiated in the client process,
and one in the server process. The corresponding footprint
measures give a minimal size of 24.4 kB for the client process,
and 20.9 kB for the server process. This results shows that we
have a very important improvement in the embeddability of
the generated processes.

Besides, we have built examples that illustrate the usage
of operational modes in order to modify dynamically the
connections and attribute values of components of the software
architecture.

Last but not least, the generated code respects the following
programming patterns so as to make it analyzable: no pointer-
to-function, no dynamic memory allocation (including recon-
figuration mechanisms), no unbound loop, and no unbound
data types.

Thus, MyCCM-HI briges the gap between system and
software engineering in the domain of real-time and embed-
ded systems while adressing specific requirements of critical
systems.

VI. CONCLUDING REMARKS AND FUTURE WORKS

The contribution presented in this paper consists in a
methodology that reduces the gap between the model-based
system and software engineering by automating the production
of the code implementing the impact of operational modes on
the software architecture. Besides, this process, and the asso-
ciated tools permit to simulate and verify properties relative
to this specific code.

The perspective of the research activity described in this
paper is the the integration of error models into the system
level description. Indeed, errors are often cited as being causes
of mode switch. In particular, this is the way we intend to
capture the specification of the expected behavior of the system
upon detection of a faulty hardware.
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