
Optimizations of an Application-Level Protocol
for Enhanced Dependability in FlexRay

Wenchao Li∗, Marco Di Natale†, Wei Zheng∗,
Paolo Giusto‡, Alberto Sangiovanni-Vincentelli∗, Sanjit A. Seshia∗

∗EECS Department, UC Berkeley, CA, USA
wenchaol,zhengwei,alberto,sseshia@eecs.berkeley.edu

†Scuola Superiore S. Anna, Pisa, Italy ‡General Motors, Palo Alto, CA, USA
marco@sssup.it paolo.giusto@gm.com

Abstract
FlexRay [9] is an automotive standard for high-speed

and reliable communication that is being widely deployed
for next generation cars. The protocol has powerful error-
detection mechanisms, but its error-management scheme
forces a corrupted frame to be dropped without any
notification to the transmitter. In this paper, we analyze
the feasibility of and propose an optimization approach for
an application-level acknowledgement and retransmission
scheme for which transmission time is allocated on top of
an existing schedule. We formulate the problem as a Mixed
Integer Linear Program. The optimization is comprised
of two stages. The first stage optimizes a fault tolerance
metric; the second improves scheduling by minimizing the
latencies of the acknowledgement and retransmission mes-
sages. We demonstrate the effectiveness of our approach
on a case study based on an experimental vehicle designed
at General Motors.

I. Introduction

In future automotive applications, safety-critical appli-
cations such as the upcoming X-by-Wire features will need
support from the underlying communication infrastructure.
The increasing demand for bandwidth and the need for
tight time predictability pose serious challenges to the cur-
rent communication infrastructure such as the Controller
Area Network (CAN) [2].

For safety critical sub-systems, the automotive industry
currently refers to the IEC61508 standard [1] and is
pursuing the definition of a tailored standard (ISO 26262).
These standards provide a structured approach to assuring
robustness against systematic and random faults. IEC61508
defines rules to achieve functional safety and identifies
four levels of integrity (robustness) called Safety Integrity
Levels (SILs) 1 to 4. For each SIL, the standard constrains
the probability of a system-level failure. For SIL2 and SIL3
systems, the probability of failure per hour is, respectively,
between 10−6 and 10−7 and between 10−8 and 10−9.
Current automotive systems are fail-safe: when a failure
occurs, the system must move to a safe state [6]. Future X-
by-wire systems will require to be fail-operational. Safety,

communication bandwidth and determinism requirements
motivate the need for a new communication infrastructure.

FlexRay [9] is a hybrid time-triggered communication
protocol for automotive systems based on a fiber or copper
medium. This protocol is a standard being developed by a
consortium of major automotive manufacturers and Tier1
(automotive electronics) suppliers. It supports up to 10
Mb/s communication speed. The bus is assigned according
to a time-triggered pattern: time is divided into communi-
cation cycles. Each cycle contains up to four segments:
static, dynamic, symbol, and network idle time (nit), as
shown in Figure 1. Clock synchronization is embedded
into the standard and realized using part of the nit segment.
Hence, it does not result in additional cost. Of the com-
munication segments, the static part allows transmission
of time-critical messages according to a periodic cycle in
which the system allocates time slots to nodes for transmis-
sion of their outgoing messages. The number of static slots
is fixed at design time and all slots have the same length.
A static slot is assigned to a node for all cycles or is not
assigned at all. Application data transmitted by a node may
be less than the available data content of a slot. This under-
utilization offers an opportunity for the implementation
of redundancy for fault tolerance. Transmission time on
the dynamic segment is assigned according to a mini-
slot architecture. In the dynamic segment, each message
has an associated frame ID. Dynamic slots are numbered
with increasing IDs. A message can only be sent if its
frame ID matches the current dynamic slot count. If no
message is sent, the dynamic slot will collapse to one
single mini-slot; otherwise, the dynamic slot will include
the number of mini-slots that are needed to transmit the
message. The combination of static and dynamic segments
allows FlexRay to provide both time-triggered and event-
triggered communication.

FlexRay also includes an optional dual-channel bus
specification for increased reliability. Including bus
guardians at the node- and star-level in the upcoming
specification will in turn offer increased reliability and
protection against timing faults. However, the full-scale
adoption of FlexRay for safety critical applications is
subject to the fulfillment of a number of additional imple-
mentation requirements at all levels of the communication
stack, including the application layer, which is expected

978-3-9810801-5-5/DATE09 © 2009 EDAA

Fig. 1: A FlexRay Communication Cycle

to provide support for preventing message loss when
necessary.

FlexRay has powerful error-detection mechanisms in-
cluding clique detection and membership agreement. How-
ever, the foreseen error-management scheme instructs the
receiver to discard a corrupted frame. Since the standard
does not provide support for an acknowledgement mech-
anism (which exists in CAN), if an application requires a
reliable communication, an acknowledgement and retrans-
mission scheme must be implemented at the application
level. The main challenge of implementing such a scheme
is finding available transmission time in slots that can be
used for acknowledgement and retransmission.

In this paper, we present an optimization-driven ap-
proach to the implementation of an acknowledgement
and retransmission scheme on top of an existing FlexRay
schedule with only static slot allocations. This means
both slot size and slot ownership are predetermined. This
choice, while allowing a simpler formulation of the prob-
lem, is also representative of a realistic design scenario, in
which additional support for reliability must be obtained
without changing the existing slot assignments to minimize
changes to legacy sub-systems. In this context, a schedule
that is a realistic representative of a safety-critical applica-
tion is used as the baseline for the implementation and the
optimization of the acknowledgement and retransmission
scheme.

The paper is organized as follows: Section II provides
the preliminary concepts. Section III summarizes our tool
flow; Section IV presents a mathematical formulation of
the problem and illustrates how the two-stage optimiza-
tion is achieved; Section V presents the results on an
experimental case study derived from a prototype vehi-
cle designed by General Motors; Section VI provides a
conclusion of this work and ideas for future extensions.

II. Preliminaries
There has been extensive work on schedule optimization

for communication protocols such as CAN [11]. More
recently, Zheng et al. [10] presented an optimization
framework, based on an MILP formulation, that selects
task and message activation models in a real-time CAN-
based distributed automotive system. Davare et al. [3]
used a mixed-integer geometric programming optimization
procedure to assign periods for tasks and messages in
similar CAN-based systems.

In comparison, the work done on schedule optimization
for FlexRay is relatively scarce. Ding et al. [4] proposed
a Genetic Algorithm for statically scheduling FlexRay
systems. More notably, Pop et al. [7] have presented timing
analysis techniques for messages transmitted in both the
static and the dynamic segments of a FlexRay cycle.
While their work focuses on schedulability analysis, little
attention has been paid to fault tolerance. To the best of
our knowledge, the work described in this paper is the
first one that formally evaluates scheduling techniques for
application-level fault tolerance in FlexRay - the proposed
algorithm is a novel attempt at optimizing fault tolerance
on top of an existing schedule.

We consider a distributed architecture consisting of a
set of n ECU nodes connected by one FlexRay bus. Re-
dundancy in communication can be provided by having an
extra bus, but at the cost of additional hardware. The basic
node architecture consists of a host processor, a FlexRay
communication controller, an optional bus guardian and a
bus driver. In this work, the details of the implementation
of each component are abstracted by a set of tasks and
signals, as described in the following.

Computations on each host processor are represented
by tasks. Each task has an offset, a period, and a worst-
case execution time (WCET). In our formulation, we
treat different activations of the same task at different
time instances as different jobs with different activation
offsets. A signal is defined as an information flow between
two tasks (which may be executed on different ECUs).
The direction of the flow indicates a communication and
precedence dependency. Multiple signals from the same
ECU can be packaged into one message. Therefore, a
message is the basic unit of communication on the bus
(note that a message must have a single source ECU but
may have multiple destination ECUs). This structure is
illustrated in Figure 2 (arrows represent information flows,
i.e. signals). Each message is allocated into a slot that is
owned by its source ECU in a communication cycle. Note
that ownership of a slot, once assigned to an ECU, extends
to all cycles.

The application cycle or hyperperiod H is defined as
the least common multiple of the periods of all tasks.
Inside the hyperperiod, each job (task instance) is con-
sidered as an atomic scheduling entity. The scheduling
problem consists of planning the execution of jobs and
the transmission of signals into the available slots inside
H . The scheduling of the FlexRay communication consists
of mapping the tasks and signals defined in the application
cycle onto a set of communication cycle instances (up
to 64, according to the standard. Figure 3 shows a case
with 4 communication cycles). Each communication cycle
(a power-of-two submultiple of the application cycle) has
its own scheduling table, that assigns signals to slots.
Additional tables may optionally define the scheduling of
tasks by time-triggered RTOS on the ECUs.

In this work, we consider only the static part of an
existing FlexRay schedule. The basic parameters of a
FlexRay architecture such as the static window size and
the slot size are assumed to have been determined a priori.

Fig. 3: Application cycle and FlexRay cycle

Fig. 2: Task Dependency Graph

Given the offsets and WCETs of all the receiving tasks of
each message, a preprocessing stage computes the deadline
constraints of each task and message. The deadline is
computed as the earliest start time of the successors and it
is approximated as an integer number of communication
slots.

Given a particular architecture instance of a FlexRay
bus and a task dependency graph such as the one shown
in Figure 2, the objective of a FlexRay scheduler is to find
a feasible (if possible) schedule for message allocations by
suitably assigning slots to ECUs. In addition, the scheduler
may try to optimize with respect to computation and
communication latencies. We model the occurrence of a
fault at the data-link level. Under an acknowledgement and
retransmission scheme, if a message is detected as faulty
by some receiving node(s), the receiving node(s) will send
a NACK message (a fault has occurred) to the source ECU.
If there is at least one NACK message, the source ECU
will retransmit the message. In addition, we assume that
messages have timing constraints and the retransmitted
message has the same deadline as the original message.
Faults sometimes may behave inconsistently on the content
of a message for different nodes. In the worst case, a
message can be faulty for all its receiving nodes but not its
sending node. When a fault occurs, our scheme will force

all receiving nodes to discard the faulty message and send
negative acknowledgements to the sending node, which
will in turn trigger a retransmission. Furthermore, we as-
sume that faults can occur in any message within the cycle.
An acknowledgement is abstracted into a 1-bit message for
each destination ECU. In addition, acknowledgements (as
well as retransmitted messages) can be piggy backed in an
already occupied slot as long as they can be accommodated
while observing slot ownership constraints.

In order to justify the previous assumptions and mo-
tivations for this work, fault data (probability measures
associated with each fault type) for the FlexRay bus
are needed. Unfortunately, the standard is completing its
definition and the first applications have just been put into
the market in 2008. Therefore, given the novelty of the
standard and the scarcity of actual implementations, ex-
perimental data are not available. One possibility is to use
the fault rate data available for CAN to understand what are
the challenges for high-speed FlexRay communication. In
doing this evaluation, however, it is necessary to remember
that the FlexRay physical layer has been defined to achieve
a reliability significantly higher than the CAN bus.

In [5], bit error rates (BER) have been determined for
CAN communication for three different environment types.
The values are, for a benign environment, 3 × 10−11, for
a normal environment 3.1 × 10−9 and, for an aggressive
environment 2.6× 10−7. For the example presented in the
experimental part of this study, considering that the CAN
CRC protects also the header and that we need to consider
errors in the 24 CRC bits as well as in the remaining frame
bits, there are 14075 bits transmitted at each cycle that
could possibly lead to an error in a CAN implementation.
The probability of having more than one bit error per cycle
is correspondingly 8.33×10−15 for a benign environment,
2.64 × 10−11 for a normal environment and 1.85 × 10−7

for an aggressive environment. However, the probability of
having no errors in a cycle (1 ms in our example) is from
7.02× 10−8 (benign) to 6.08× 10−4 (aggressive). If one
error per cycle is masked by an application-layer mecha-
nisms like the one presented here, the resulting number of
errors per hour is from 3×10−8 to 4.86×10−1, which may
be acceptable considering that FlexRay is constructed to
be significntly more reliable. However, if no mechanism
is in place for protecting the application against single
errors, the number of errors per hour becomes significantly
larger and unacceptable, between 0.22 and 1 error per hour,
depending on the quality of the environment.

Our problem therefore is the following. Given an exist-

ing schedule, we try to optimize ownership assignments to
unassigned slots so that fault tolerance can be maximized.
We formulate the optimization problem as a Mixed Integer
Linear Program (MILP). Details of the formulation are
given in Section IV.

III. Tool Flow

The proposed flow of development for a robust FlexRay
configuration is the following. Given a task dependency
graph, and a predetermined FlexRay architecture instance,
first the designer determines a feasible schedule. This
portion of the flow is outside the scope of this work
and assumed to have already been performed. Given the
existing schedule, we then proceed to incrementally build
on it to provide additional reliability. A pre-processing
stage automatically extracts deadline constraints on the
messages from the task dependency graph. The deadline
of any message is the earliest deadline of its constituent
signals. A signal must arrive before its receiving task is
scheduled to start.

The optimization stage is decomposed into two sub-
stages, where the first sub-stage optimizes the fault re-
covery rate (defined in Section IV-A) and the second sub-
stage optimizes the execution of the acknowledgement and
retransmission scheme. At the end, we evaluate the perfor-
mance tradeoffs with this additional reliability support.

IV. Mathematical Formulation

A. Metric, Parameters and Variables

We use the following fault tolerance metric.

The fault recovery rate is the percentage of faulty
messages guaranteed to be retransmitted before their dead-
lines.

The existing system and the FlexRay scheduling
configurations are expressed by the following parameters
and variables.

Parameters:

ECUs. The set of ECUs is labeled as E = {ECUi}.

Messages are labeled as Mi. The number of messages is
nm. For each message Mi we associate
• a size, in bits wi.
• an allocation at slot msi and cycle mci.
• a deadline constraint (expressed in slot units) di.
• a source ECU sei.
• a set of destination ECUs dei.

FlexRay Cycles are denoted as Cyi. The number of cycles
in an application cycle is nc. Each cycle has ns static slots.

Static Slots are labeled as Si. For each slot Si, we
indicate as Ownedi the index of the ECU (if defined
by the predetermined schedule) that has the transmission
rights of slot i (a slot can be initially not assigned). The

slot size ls is the maximum number of bits that a slot can
accomodate (the same for all the static slots).

A Schedule matrix of dimension ns × nc is given, where
each entry schij is the size of the message that occupies
the corresponding slot, 0 if the slot is not used by any
message.

Variables:

For each message Mi we define
• a binary variable fi indicating whether a retransmis-

sion is scheduled if faulty.
• a pair rsi, rci of integers, if a retransmission is

performed at slot rsi and cycle rci.
• for each possible destination ECU j of Mi, a pair

of integers asij , acij , indicating the slot and cycle
index that are optionally used for transmitting the
acknowledgement sent by ECUj for Mi.

For each slot Si, a binary variable ownij indicates
whether Si is assigned to ECUj . If a slot is initially
unassigned, then ownij = 0 for all j.

A set of binary variables ackijkl is defined, with value 1
iff sink j of faulty message i place its acknowledgement
in slot k cycle l.

A binary variable retikl is defined for each (message,
slot, cycle) triple, with value 1 iff retransmission of faulty
message i is placed in slot k cycle l.

B. Constraints

We describe here the constraints in the MILP. For each
constraint, we first give a mathematical description of the
constraint, using standard logical connectives. Then, we
state the linear constraint that encodes this mathematical
description.
Acknowledgments are placed iff the original message
is protected against faults ∀i, j : {1 ≤ i ≤ nm, j ∈ dei}
and M is a large enough constant,

fi ≤ asij ≤ M × fi (1)
fi ≤ acij ≤ M × fi (2)

Retransmission is placed iff the original message is
protected against faults ∀i : {1 ≤ i ≤ nm},

fi ≤ rsi ≤ M × fi (3)
fi ≤ rci ≤ M × fi (4)

Acknowledgements must follow transmissions For every
faulty message that is to be retransmitted, the acknowl-
edgement slot must occur after the slot to which the
message is allocated.
Hence, ∀i s.t. 1 ≤ i ≤ nm,∀j ∈ dei,

(
fi → (msi+(mci−

1)ns ≤ asij + (acij − 1)ns)
)

The constraint above is represented as a linear inequal-
ity with the standard method that makes use of a large
constant M to model disjunctive constraints:

msi+(mci−1)ns−asij−(acij−1)ns ≤ M(1−fi) (5)

Retransmissions must follow acknowledgements For
every faulty message that is to be retransmitted, the
retransmission slot must occur after the corresponding
acknowledgement slot.
Hence, ∀i s.t. 1 ≤ i ≤ nm,∀j ∈ dei,

(
fi → (asi + (aci −

1)ns ≤ rsij + (rcij − 1)ns)
)

The corresponding linear inequality is:

asij + (acij − 1)ns − ri − (ri − 1)ns ≤ M(1− fi) (6)

Slot Utilization Acknowledgements and retransmission
must be placed in a slot with enough space to accom-
modate them. ∀i, k, l : {1 ≤ i ≤ nm, 1 ≤ k ≤ ns, 1 ≤ l ≤
nc}, (∑

j∈dei

ackijkl

)
+ retikl × wi + schkl ≤ ls (7)

Already assigned slots are set to their corresponding
owner ECUs ∀i s.t. Ownedi 6= 0 (0 means unassigned),

owni,Ownedi
= 1 (8)

A slot can only be owned by one ECU The same slot
for all cycles can only be owned by one ECU. ∀i : {1 ≤
k ≤ ns}, ∑

j∈ecu

ownkj = 1 (9)

Acknowledgments must be sent according to slot own-
ership Acknowledgements must be sent in slots that are
owned by the corresponding ECUs. ∀i, j, k, l : {1 ≤ i ≤
nm, j ∈ dei, 1 ≤ k ≤ ns, 1 ≤ l ≤ nc},

ackijkl ≤ ownkj (10)

Retransmissions must be sent according to slot owner-
ship Retransmissions must be sent in slots that are owned
by the corresponding ECUs. ∀i, j : {1 ≤ i ≤ nm, j ∈
sei, 1 ≤ k ≤ ns, 1 ≤ l ≤ nc},

retikl ≤ ownkj (11)

Deadline constraints Retransmissions must be sent before
the deadlines (constraints on acknowledgements are im-
plicit given the precedence constraints between acknowl-
edgements and retransmission.) ∀i : {1 ≤ i ≤ nm},

rsi + (rci − 1)× ns ≤ di (12)

Intermediate Variables Intermediate Variables for ac-
knowledgements and retransmissions are constrained cor-
respondingly.
Acknowledgements ∀i, j : {1 ≤ i ≤ m, j ∈ dei}.∑

1≤k≤ns,1≤l≤nc

ackijkl = fi (13)∑
1≤k≤ns,1≤l≤nc

ackijkl(k + l × ns) = asij + acij × ns

(14)
Retransmissions ∀i : {1 ≤ i ≤ m}.∑

1≤k≤ns,1≤l≤nc

retikl = fi (15)∑
1≤k≤ns,1≤l≤nc

retikl(k + l × ns) = rsi + rci × ns (16)

C. Two-stage Optimization

We first optimize the number of fault recovery oppor-
tunities.

maximize :
∑

1≤i≤nm

fi (17)

At the second stage, given the set of messages M that
can be recovered, we optimize in an enumerative way the
placement of acknowledgements and retransmission such
that the retransmission happens as soon as possible for
each of these messages.

∀i∈M ,minimize : rsi + (rci − 1)× ns. (18)

V. Case Study
The FlexRay schedule in Figure 4 is obtained from an

X-by-Wire application from General Motors. The number
on each occupied slot corresponds to the weight of the
corresponding message. The application has 10 ECUs
interconnected by one single FlexRay bus. There are a total
of 56 tasks and 78 messages in a span of 8 cycles (this is
the application cycle of the schedule). The scheduler gives
a total of 22 slots, each with a size of 192 bits. Out of
these 22 static slots, 18 slots have already been assigned
by the scheduler (in bold). For example, in Figure 4, slot1
is assigned to ECU1.

The mathematical formulation is encoded in AMPL [8].
The ILOG CPLEX 11.0.0 optimization solver is used on an
i686 server running Linux. The average runtime for the first
stage optimization is 13.1s. We first automatically extract
the deadline constraints from the raw data. The resulting
deadline constraints on each message are in terms of slots
(starting from the beginning of the application cycle). With
these additional deadlines, we then generate a data file for
the AMPL program.

1 2 3 4 5 6 7 8
1 ECU1 32 160
2 ECU2 32 160
3 ECU3 32 160
4 ECU4 32 160
5 ECU5 160 160 160 160 160 160 160 160
6 ECU6 160 160 160 160 160 160 160 160
7 ECU7 192 192 192 192 192 192 192 192
8 ECU8 192 192 192 192 192 192 192 192
9 ECU9 192

10 ECU9 192
11 ECU8
12 ECU5
13 ECU7 1 1 1 1 1 1 1 1
14 ECU8 64 64 64 64 64 64 64 64
15 ECU9 120
16 ECU5 112 112 112 112 112 112 112 112
17 ECU6 112 112 112 112 112 112 112 112
18 ECU8
19 ECU9 128
20 ECU10 128
21 ECU9 1
22 ECU5

Fig. 4: Schedule with Weights (8 cycles and 22 slots)

The first stage optimization results in a maximum
of 43 messages being resilient to single fault using the
acknowledgement and retransmission scheme. The optimal

slot assignment assigns slot11 to ECU8, slot12 to ECU5,
slot18 to ECU8 and slot22 to ECU5 (the ones in italic).
We compared the optimal solution with the alternatives of
not using the unassigned slots (worst case) or randomly
assigning them. Using our MILP formulation, 55.1% of
possibly faulty messages can be recovered. However, if
we randomly assign the unassigned slots, only 40.8% are
recoverable. If we do not use the unassigned slots at
all, only 33.3% are recoverable. Hence, effective use of
unassigned slots can significantly increase fault tolerance.

Figure 5 shows how the fault recovery rate changes
as we increase the load. Messages are randomly added
to both occupied and unoccupied slots. Fault recovery
rate increases initially because the original schedule still
has enough vacant transmission time for the additional
acknowledgements and retransmissions. However, the rate
drops as the number of added messages increases to 15.
This is because some of the unassigned slots that we
originally use for acknowledgements and retransmissions
have become unavailable as they are now assigned to
the source ECUs of the added messages. Intuitively, the
more unassigned slots and vacant transmission time we
have, the more slack we have for acknowledgements and
retransmissions.

Fig. 5: Fault Recovery Rate vs. Load
At the second stage, we fix the slot assignments using

the optimal solution found in the first stage. For each faulty
message that can be recovered, we optimize the placement
of its acknowledgements and retransmission such that they
are sent as soon as possible by using the second objective
function in Section IV-C. For example, in Figure 4, if
message1 (in slot5 cycle1) becomes faulty, the scheme
will place an acknowledgement from ECU7 in slot13 and
an acknowledgement from ECU8 in slot14. ECU5 then
retransmits the message in slot22.

VI. Conclusion and Future Work

We have presented a MILP formulation for implement-
ing an application-level acknowledgement and retransmis-
sion scheme in FlexRay communication. The formulation
allows the scheme to be optimized for fault tolerance.
The choice of a fixed schedule consisting of only static
slots simplifies the formulation of the problem. However,

this represents a realistic setting in which the additional
support for reliability must be obtained with minimal
changes to the existing subsystems. In addition, post-
assigning slots through an optimization procedure with
an application-level acknowledgement and retransmission
scheme is consistent with the FlexRay protocol. In terms
of architecture parametrization, we have limited insight on
the tradeoffs with fault tolerance. Even so, we hypothesize
that a small idle dynamic window may be useful for
increasing fault tolerance because it can guarantee that
acknowledgements and retransmission are placed at the
end of a communication cycle in the worst case. For-
mulating the problem as an optimization problem offers
advantages such as ease of use and the guarantee of
optimal solutions with respect to some objective functions.
However, this procedure can be computationally expensive
and thus may not scale to larger designs. We are currently
working on investigating how much more fault tolerance
we can harness if the optimization is done at schedule
time. We are also working on a variant of this formulation
in which messages are recovered based on some priority
assignments. In the future, we would like to explore other
fault tolerant mechanisms such as forward error correction.

Acknowledgements. The authors gratefully acknowledge
the support of the Hellman Family Faculty Fund and
the support of the Gigascale Systems Research Focus
Center, one of five research centers funded under the Focus
Center Research Program. The authors would also like
to acknowledge the support of ArtistDesign network of
Excellence and the STREP project COMBEST.

References

[1] Cei international standard. iec 61508.
[2] R. Bosch. Can specification, v. 2.0., 1991.
[3] A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and

A. Sangiovanni-Vincentelli. Period optimization for hard real-time
distributed automotive systems. In DAC ’07: Proceedings of the
44th annual conference on Design automation, pages 278–283, New
York, NY, USA, 2007. ACM.

[4] S. Ding, N. Murakami, H. Tomiyama, and H. Takada. A ga-
based scheduling method for flexray systems. In EMSOFT ’05:
Proceedings of the 5th ACM international conference on Embedded
software, pages 110–113, New York, NY, USA, 2005. ACM.

[5] J. Ferreira, A. Oliveira, P. Fonseca, and J. A. Fonseca. An
experiment to assess bit error rate in can. In 3rd Intl Workshop
on Real-Time Networks, Catania, Italy, June 2004.

[6] T. Forest, A. Ferrari, G. Audisio, M. Sabatini, A. Sangiovanni-
Vincentelli, and M. D. Natale. Physical architectures of automotive
systems. In DATE ’08: Proceedings of the conference on Design,
automation and test in Europe, pages 391–395, New York, NY,
USA, 2008. ACM.

[7] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of
the flexray communication protocol. Real-Time Syst., 39(1-3):205–
235, 2008.

[8] www.ampl.com. A mathematical programming language.
[9] www.flexray.com. Flexray specification.

[10] W. Zheng, M. D. Natale, C. Pinello, P. Giusto, and A. Sangiovanni-
Vincentelli. Synthesis of task and message activation models in
real-time distributed automotive systems. In DATE’07: Proceedings
of the Design, Automation and Test in Europe Conference, Nice,
France, April 2007.

[11] K. M. Zuberi and K. G. Shin. Scheduling messages on controller
area network for real-time cim applications. Robotics and Automa-
tion, IEEE Transactions on, 13(2):310–316, April 1997.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

