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ABSTRACT 

Data-intensive functions on chip, e.g., codec, 3D graphics, pixel 

processing, etc. need to make best use of the increased bandwidth of 

multiple memories enabled by 3D die stacking via accessing 

multiple memories in parallel. Parallel memory accesses with 

originally in-order requirements necessitate reorder buffers to 

avoid deadlock. Reorder buffers are expensive in terms of area and 

power consumption. In addition, conventional reorder buffers suffer 

from a problem of low resource utilization. In our work, we present 

a novel idea, called in-network reorder buffer, to increase the 

utilization of reorder buffer resource. In our method, we move the 

reorder buffer resource and related functions from network 

entry/exit points to network routers. Thus, the in-network reorder 

buffers can be better utilized in two ways. First, they can be utilized 

by other packets without in-order requirements while there are no 

in-order packets. Second, even in-order packets can benefit from in-

network reorder buffers by enjoying more shares of reorder buffers 

than before. Such an increase in reorder buffer utilization enables 

NoC performance improvement while supporting the original in-

order requirements. Experimental results with an industrial 

strength DTV SoC example show that the presented idea improves 

the total execution cycle by 16.9%. 

1. Introduction 
SoCs are requiring more and more on-chip data bandwidth. DTV 

chips are pursuing UD (ultra definition) video decoding [1], 

sophisticated pixel processing for video quality enhancement, etc. 

Mobile SoCs are now supporting HD video coding and 3D graphics 

[2]. This trend of requiring higher data bandwidth will accelerate as 

innovative applications are expected to be realized on many-core 

SoCs [3]. In order to support the ever increasing data bandwidth on 

chip, the notion of 3D stacked (DDR or SRAM) memory has been 

introduced [4][5]. 3D stacked memory enabled by TSV (through 

silicon via) offers multiple independent memory channels thereby 

higher memory bandwidth.  

Data-intensive functions on chip, e.g., codec, 3D graphics, pixel 

processing, etc. need to make best use of the increased memory 

bandwidth, possibly, concurrently accessing multiple memory 

channels (in short, multiple memories throughout this paper). 

Compared with conventional implementations of those data-

intensive functions for one or two memories, we may require a new 

architectural feature, memory access parallelization, in order to 

exploit multiple memories. However, there are two practical 

limitations in obtaining memory access parallelization. First, when 

existing IPs are reused, they need to be redesigned to use multiple 

memories concurrently. However, such a redesign may require high 

design and verification costs due to the restructuring of internal 

architectures (functions as well as interfaces) to exploit parallel 

memory accesses. Second, when designing a new IP, the level of 

memory access parallelism may need to be chosen considering the 

trade-off between the possible performance improvement and the 

overhead of silicon resource and design efforts. Memory parallelism 

may vary from one design (e.g., 2 wide memory ports) to another 

(e.g., +16 narrow memory ports). However, it will be practically 

difficult to design a new IP to support all the possibilities of 

memory parallelism (in a configurable way) or to support only the 

highest parallelism since it may incur significant design efforts 

(especially for configurable designs) or an overdesign (when the 

highest parallelism is targeted). 

Thus, there can be a mismatch between the memory access 

parallelism of IPs and available parallelism in memory. Suppose the 

case that the memory access parallelism of IP (e.g., two memories 

are assumed) is smaller than the actual memory parallelism (e.g., 

eight memories). From the viewpoint of IP, its memory accesses 

have in-order requirements since it is designed to access only a 

limited number of memories in parallel. Thus, it has a limited 

number of independent streams of memory access. In other words, 

it has in-order requirements on each of independent streams 

(identified by the transaction ID1 in the case of AXI bus protocol 

[6]). When such an IP is used in SoCs with a larger memory 

parallelism (e.g., eight memories), the increased memory bandwidth 

may not be fully exploited due to the limited memory access 

parallelism, i.e., the in-order requirements (See Section 3 for the 

example of in-order requirement).  

Since such in-order requirements prevent designers from fully 

utilizing the increased memory bandwidth, it is imperative to devise 

solutions to resolve the problem. Recently, a notion called 

transaction ID renaming is presented in [7] to address this problem 

of increasing effective memory utilization in presence of in-order 

requirements. The key idea is to manage two independent sets of 

transaction ID on master and network sides, respectively. In order to 

realize this notion, the authors present an NoC component called 

request parallelizer which consists of reorder buffer (ROB) and 

transaction ID management block. The request parallelizer is 

located at NoC entry and takes in-order requests2 from master IP(s) 

and renames transaction IDs between master and network ID sets.  

Our observation shows that, although the request parallelizer 

improves performance by resolving the in-order problem, its 

                                                                    

1 We assign a distinct transaction ID to an independent stream of 

accesses. Thus, the accesses of the same transaction ID need to be 

processed in order. The order of memory accesses with the same 

transaction ID needs to be maintained at the I/O port of the master. 

However, memory accesses with different transaction IDs can be 

processed out of order. AXI protocol has ‘transaction ID’ and OCP 

has ‘tag ID’ to represent to which transaction, i.e., to which 

independent stream of accesses the request/data/response belongs. 
2 We define packet types in Section 4.2.1. 
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implementation is not area-efficient. Its area (dominated by the 

ROB) occupies a significant portion, up to 30.1%, of total NoC area 

[7]. In addition, according to our observation, the utilization of ROB 

is low. It is used only when in-order packets are in transit.  

In our work, in order to improve the utilization of ROB resource 

previously used only for in-order packets, we propose to move the 

ROB from the NoC entry (i.e., the request parallelizer) to NoC (i.e., 

the network router). To do that, we present a novel idea called in-

network reorder buffer (in short, INROB). We also present a 

microarchitecture of router to realize the idea. In the presented idea, 

the resource of the original ROB in the request parallelizer becomes 

additional virtual channels (VCs) in the network router. The 

additional VCs are used for normal VC operations (when there is no 

in-order packet) as well as reorder buffer operations (when there is 

any in-order packet traversing the router). Assuming that the same 

amount of resource (that was used by the ROB in the request 

parallelizer) is now used for the additional VC’s, our idea can offer 

double benefits: (1) improving overall NoC performance (by 

allowing other packets to use the additional resource and by 

allowing in-order packets to enjoy more share of ROB) and (2) still 

supporting the in-order requirements.  

This paper is organized as follows. Section 2 reviews related 

work. Section 3 exemplifies the in-order requirement problem, and 

presents existing solutions and their limitations. Section 4 presents 

the idea of in-network reorder buffer, a method of virtual channel 

management and a router microarchitecture. Section 5 reports 

experimental results. Section 6 concludes the paper. 

2. Related Work 
The deadlock problem due to the in-order requirement (to be 

explained in Section 3) can be resolved by limiting parallelism. In 

[8], multiple outstanding requests are allowed towards different 

destinations as far as there is only one outstanding request per 

destination. In [7], the notion of transaction ID renaming is 

presented and request parallelizers are placed at network entry or 

fork points to transform in-order requests into out-of-order ones 

using the transaction ID renaming and the reorder buffer. However, 

as Section 3.2 will show, such an implementation of ID renaming 

and reorder buffer can suffer from a low resource utilization. 

Reorder buffers are used in multi-path routing methods to 

maintain the in-order requirement at the reconvergent points 

[9][10][11]. Compared with the reorder buffer in existing multi-path 

routing methods, e.g., [11], the usage of reorder buffer in this paper 

(and in [7]) is different in that the reorder buffer and ID renaming is 

applied to the bi-directional transfer of multi-cast memory access 

requests (from a master to multiple slave DDR memories) and 

corresponding data (from the slave memories to the master) while 

the conventional reorder buffer in adaptive routing handles only the 

uni-directional data transfer (e.g., from a slave DDR memory to a 

master). However, reorder buffer usage in both [7] and conventional 

adaptive routing can suffer from a problem of low utilization of 

reorder buffer to be explained in Section 3.2. 

There have been presented several router architectures for NoC 

purposes [12][13][14]. Among them, the notion of flit reservation 

flow control in [14] is similar to ours in that flit buffers are reserved. 

However, the purposes of flit buffer reservation are different since 

[14] aims at the reduction in the turnaround time in flit control 

while ours reserves flit buffers to realize the reorder buffer. 

3. Background 

3.1 In-Order Requirement Problem  
Figure 1 illustrates the in-order requirement problem and a solution 

that resolves it by limiting parallelism. Figure 1 (a) shows a 2x2 

NoC connected with two masters, and two DDR memories (via their 

memory controllers). Figure 1 (b) shows a scenario of memory read 

accesses from the masters. In the scenario, master 2 sends a request 

A to memory 1 at time 1. Master 1 sends a request C to memory 2 at 

time 2 and a request D to memory 1 at time 3, respectively. Master 

2 sends a request B to memory 1 at time 4. Assume that each master 

uses a distinct transaction ID for its memory accesses. Thus, 

memory accesses are in-order ones for each of masters. For instance, 

request A needs to be served earlier than request B from the 

viewpoint of master 2. However, requests from different masters are 

independent from each other. 3  Thus, memory controller 1 can 

reorder independent requests A and D (the same for memory 

controller 2) in order to increase memory utilization. Suppose that 

memory controller 1 reorders the two requests A and D since 

request D accesses an already open row in the DDR memory. Thus, 

the data of request D (in short, data D) is read out earlier than data 

A as Figure 1 (b) shows. Suppose also that memory 2 serves request 

B earlier than request C due to the same reason of favoring the open 

row access.  

 
Figure 1 Multiple memory accesses and deadlock problem  

We assume zero NoC delay in our examples in Figures 1, 2, and 3. 

However, our arguments hold in presence of real NoC delay. As 

shown in Figure 1 (b), at time 6, master 2 cannot receive data B due 

to the in-order requirement that master 2 needs to receive data A 

before data B. Thus, master 2 stops data B at its input port while 

waiting for data A. The same situation occurs at master 1. At time 7, 

master 1 stops data D at its input port while waiting for data C. 

However, data A and C cannot advance due to the blocked data D 

and B, respectively. Thus, a deadlock happens. 

Figure 1 (c) shows a solution to resolving the deadlock by limiting 

parallelism. As shown in the figure, it does not issue requests D and 

                                                                    

3 The requests and data with the same shading in the figure have the 

same transaction ID. 
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B until data C and A are received by the masters. By doing that, the 

deadlock does not occur since each IP can have outstanding 

requests for only one destination memory. However, performance 

suffers from limited parallelism. 

3.2 Existing Transaction ID Renaming Solution 
Figure 2 (a) illustrates a recent solution of transaction ID renaming 

[7]. It breaks the in-order requirements by managing two sets of 

transaction ID: master ID and network ID. The transaction ID is 

renamed by a block called request parallelizer (RP). The RP has an 

internal reorder buffer (ROB) as Figure 2 (a) shows. When a new 

inorder read request is issued by a master to the RP, first, the 

availability of ROB is checked. If there is an available buffer space 

for the return data of the request, the RP reserves it for the return 

data of the request4, issues a new network ID to the request and 

sends the renamed request to the network. When the data arrive at 

the RP, they are stored in the previously reserved buffer space. Then, 

the data in the ROB are transferred to the master according to the 

original issue order of requests by the master. 

 

Figure 2 Reorder buffer usage at the entrance of NoC [7] 

The transaction ID renaming outperforms the solution of Figure 1 

(c) since it allows masters to issue multiple outstanding requests to 

multiple memories (i.e., multiple outstanding requests per memory), 

which enables higher memory utilization by memory access 

reordering. However, it has two limitations. One is a high area 

overhead of reorder buffer. According to [7], the ROBs in the RPs 

occupy up to 30.1% of total NoC area. The other limitation is its 

low utilization of such an expensive ROB resource. Figure 2 (b) 

illustrates the limitation. In this case, there are two RPs, each for 

master 1 and 2, respectively. Assume that master 1 tries to make 

four consecutive read requests A, B, C and D (B and D to memory 1, 

and A and C to memory 2). Assume also that the ROB in the RP 

supports up to two outstanding requests for reorder operation. As 

shown in Figure 2 (b), master 1 can have three outstanding 

requests. 5  Request D can be issued only after master 1 finishes 

receiving data A. From the viewpoint of resource utilization, the 

ROB for master 2 is not utilized in this scenario. In our work, we try 

                                                                    

4 Buffer reservation is necessary to avoid the deadlock [7]. 

5 Note that the first request A does not reserve the ROB since it 

does not have any in-order requirement with previously issued 

requests. 

to utilize the unused ROB resource of master 2 by moving it to the 

network router in order to improve the overall performance of NoC 

as well as that of master 1’s requests. 

4. In-Network Reorder Buffer Scheme 
In this section, we first introduce the basic idea of in-network 

reorder buffer (INROB). Then, we explain the management of 

INROB and present the micro-architecture of network router to 

realize the INROB. In our work, we assume that the control and 

data network share the same routers in the NoC. 

4.1 Basic Idea 
Figure 3 illustrates the case that the ROB resources (and transaction 

ID renaming functions) are moved from the request parallelizers to 

the network routers as compared with Figure 2 (a). Figure 3 (a) 

shows that the routers have additional virtual channels (VCs) called 

reorder VCs (RVCs). We show RVCs in the figure only for the 

illustrative purpose in order to explain that some additional VCs are 

added to the router (to be exact, as VCs for the data network). In 

reality, there is no difference between normal VC and RVC since 

any VC can be used for a reorder or normal purpose by the virtual 

channel management to be explained in Section 4.2. In the NoC 

with the INROB, the router needs to maintain the in-order 

information while performing transaction ID renaming.  

 
Figure 3 Proposed idea: in-network reorder buffer 

Assume the same scenario shown in Figure 2 (b) with the NoC of 

Figure 3 (a). Each router is assumed to have the additional RVC to 

support the reservation of (the return data of) one request.6 Thus, the 

overall ROB resource is the same as in Figure 2 (a). Master 1 issues 

four read requests from time 1 to 4. Request A traverses routers R1 

and R4 without transaction ID renaming and RVC reservation since 

it does not have any in-order requirement with previously issued 

requests. Router R1 is a fork router towards the two memories. 

Request B is renamed at router R1 and an RVC is reserved for the 

return data of request B. Request C is renamed at R1. However, 

request C cannot reserve any RVC at R1 since request B already 

used up the RVC quota allocated to router R1. Thus, the renamed 

request C is routed to router R4 and reserves an RVC at the router. 

Due to the same reason (R1’s RVC is occupied by request B), 

request D is renamed at R1 and reserves an RVC at R2.  

                                                                    

6 To be exact, the RVC quota is allocated on an input port basis as 

explained in Section 4.2. 
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At time 6, memory 2 sends data C to router R4. They are stored 

in the previously reserved RVC at R4. At time 7, memory 1 sends 

data B to router R1. They are stored in the RVC at R1. At time 8, 

memory 2 provides data A. They pass the two routers (R4 and R1) 

and arrive at master 1. At time 10, R1 detects the end of data A’s 

transfer. R1 starts to transfer data B since data B is now independent. 

At time 11, memory 1 sends data D to the RVC of R2. At time 12, 

when the transfer of data B finishes, R1 informs R4 of the 

completion of data B’s transfer by sending a control packet called a 

RVC release packet (in short, release packet). On receiving the 

release packet, router R4 starts to transfer data C to master 1. At 

time 14, when the transfer of data C finishes, R1 sends a new RVC 

release packet to R2 to inform that data D are now independent and 

ready to be transferred.  

Compared with the scenario in Figure 2 (b), the concept of 

INROB improves by three cycles the total execution cycle of 

completing the four requests. The improvement in Figure 3 (b) 

mainly results from the fact that the requests of master 1 can utilize 

more ROB resources (supporting three requests) in Figure 3 (b) than 

in Figure 2 (b) (supporting only two requests). 

4.2 Reorder Virtual Channel Management 

Basically, the router supports normal VC management [15]. In 

addition to the basic function, we add new functions: transaction ID 

renaming, RVC reservation and release.  

4.2.1 Packet Types 
The NoC has two types of packets: control and data packets. The 

control packet has three sub-types: request, response and release 

packets. The request packet has two modes, complete and 

incomplete modes, for the purpose of RVC management. 

Completeness represents the requirement or status of RVC 

reservation. All the requests start from the master with the complete 

mode. Then, when it is assigned a new network ID (at the fork 

router to be explained in Section 4.2.3), its mode changes to the 

incomplete mode since RVC reservation is required. After the 

reservation finishes, the mode changes back to the complete mode. 

We denote a request packet with the complete (incomplete) mode 

with a CR (IR) packet.  

The request packet has a field called ROB_size which represents 

the required size of ROB. Initially, it is set to the size of 

corresponding data packet. When the request finishes RVC 

reservation, this field becomes zero indicating that the mode 

becomes complete.  

4.2.2 Reorder VC Budgeting 
Each input port of router has a quota, i.e., a threshold in RVC usage. 

Setting the threshold, i.e., RVC budgeting plays an important role in 

the efficiency of INROB. There can be a design space for both 

design-time and runtime RVC budgeting. We will investigate this in 

our future work. In the experiments, we used a uniform RVC 

allocation (one RVC per input port) whose details will be given in 

Section 5. 

RVC budgeting needs a special attention not to cause deadlock in 

network routing. To be specific, in order to avoid deadlock, RVC 

budgeting takes the same approach of building a deadlock free NoC 

with adaptive routing [16]. We assume that a deadlock free network 

is already designed (e.g., by using distance classes, deadlock free 

routing such as dimension order routing, etc.). Then, additional 

resources (e.g., RVCs) are added (with RVC budgeting) on top of 

the deadlock free network.  

 

4.2.3 Transaction ID Renaming 
The transaction ID renaming (between master and network IDs) of 

the original request parallelizer is performed by the router (called 

fork router) where request packets with the same master ID 

bifurcate towards different destinations. Note that the router 

renames request packets with the same transaction ID only when 

their destinations are different. In order to detect the difference in 

the destination, the router keeps the information of destination (i.e., 

outport) per active transaction ID.7 Thus, the router monitors the 

transaction ID of incoming packet and checks to see if it matches 

any of active transaction IDs. If so, the destination check is 

performed. If the bifurcation in destinations is detected, then the 

router performs transaction ID renaming and changes the mode of 

incoming request into the incomplete mode since it now requires 

RVC reservation.  

Renaming is implemented as assigning an increasing counter 

value to the NoC sequence field of request packet. The transaction 

ID of data/response/release packet follows that of the corresponding 

request packet. The fork router also issues release packets in a look-

ahead manner as explained in Section 4.2.5. 

4.2.4 Reorder VC Reservation 
Figure 4 shows the pseudo code of RVC reservation. For each 

incoming incomplete request (IR) packet, the RVC availability 

(within the RVC budget) is checked for the port of return data path 

(line 2). If there is availability, the router tries to reserve the VC up 

to the ROB_size of the IR packet within the RVC budget (line 3). If 

the reservation is incomplete, i.e., only a part of required buffer 

space (no buffer space) is reserved, the ROB_size field of the 

packet is updated (unchanged) (lines 4-5). Then, the request packet 

is routed towards its destination (line 6). The IR packet can arrive at 

the last router connected to the destination without completing the 

reservation. In such a case, the request is kept at the last router as a 

pending request occupying a VC in the control network. We set a 

threshold of maximum number of pending IR packets that a router 

can support. Thus, if the threshold is reached, the router blocks 

incoming IR packets until the pending ones are resolved. The 

pending request will be resolved later when a release packet arrives 

at the router as explained in Section 4.2.5. 

 
Figure 4 Reorder VC reservation 

4.2.5 Reorder VC release 
Reorder VC release is managed by a release packet sent by the fork 

router that previously renamed the corresponding request packet. 

The router sends the release packet for the next request in the 

original request packet order. For instance, in the case of Figure 3 

(b), at time 12, router R1 sends a release packet to R4 to inform that 

data C becomes ready to be transferred since the previous data B 

completes the data transfer. The release packet contains the 

transaction ID of the corresponding packet (for which the ROB 

setup was tried). The release packet has a higher priority than the 

other packet types, request, response and data packets. 

                                                                    

7 When there is any outstanding request, the transaction ID of the 

outstanding request is called active transaction ID. 

1   For each IR packet

2     If VC is available at the port of return data path
3       Reserve the VC as RVC at the port

4 If the reservation is incomplete

5         Update the ROB_size field in the packet
6   Forward the request packet towards the destination



 
Figure 5 Router behavior on receiving a release packet 

Figure 5 shows the pseudo code of handling the release packet. 

Upon receiving a release packet (for instance, at R4, time 12 in 

Figure 3 (b)), the router checks to see if there is any RVC that the 

release packet targets (line 1 in Figure 5). If so, it changes the status 

of RVC into ‘Normal VC’ (line 2) since the corresponding request 

(request C in the example) is now independent and does not require 

RVC reservation. Then, the contents of RVC (now, normal VC) are 

sent to the corresponding master. If the corresponding IR packet 

resides at the router as a pending request (line 3) due to a partial 

RVC reservation or a flow control, the router changes the status of 

IR request from ‘incomplete’ to ‘complete’ since the request is now 

independent (line 4). The CR (complete request) packet is 

forwarded towards its destination (line 5).  

The delay from the issue of release packet to the arrival of next 

data at the fork node can affect the performance of INROB scheme. 

In order to reduce the effect, the fork router performs a look-ahead 

issue of release packet. When detecting the first flit of currently 

ready data packet, the fork router issues a release packet to inform 

the next data packet. As shown in Section 5, the look-ahead release 

packet improves the performance of INROB scheme significantly. 

4.3 Router Architecture  
Figure 6 shows the structure of router supporting the concept of 

INROB. It consists of three pipe stages: Route Compute/VC 

allocation/RVC management – VC selection (for the input of 

crossbar) – Outport arbitration (for the output channel of router). 

The RVC management includes RVC allocation to an IR packet (if 

there is available buffer space for RVC), status update from a 

pending IR packet to a CR packet, VC allocation to an IR packet (if 

it is blocked by the next router), and sending a release packet (if the 

router is the fork one).  

 
Figure 6 Router architecture 

The look-ahead release packet makes multiple data streams 

(corresponding to consecutive request packets) advance towards the 

master. When the router performs port arbitration (pipe stages 2 and 

3 for the inport and outport arbitration of crossbar), the router 

utilizes the original in-order information (i.e., network ID which is 

the sequence number in the packet header) to select the arbitration 

winner as in [7]. 

5. Experimental Results 
In our experiments, we use two test cases: synthetic ones and 

industrial strength DTV SoC example. 

5.1 Network-on-Chip 
Figure 7 illustrates the entire architecture consisting of a 16 node 

mesh NoC, eight processing elements (PEs, denoted with ‘P’ in the 

figure) and eight memory sub-systems (denoted with ‘M’) each 

consisting of a memory controller and a 32b DDR memory (CL-

tRP-tRCD=3-3-3, 4 banks/memory). We use a commercial memory 

controller (PL340) [6]. The memory controller has the data FIFO of 

size 16 (64b words). 

 
Figure 7 A 16 node mesh NoC 

The NoC uses 64b flits. The control packet has 1 flit, and the data 

packet 8 flits. The router performs X-Y routing and wormhole 

switching. For the data network, the baseline router has a 4-flit deep 

buffer per VC and 2 VCs per input port. For the control network, 

the router has four VCs (each 1-flit deep buffer) per input port. 

5.2 Synthetic Test Cases 
In the synthetic test cases, four PEs (among total eight) accesses 

eight memories in three scenarios: random, local, and mixed traffics. 

In the random traffic, the four PEs send in-order read requests to 

eight memories with randomly generated addresses. Thus, the 

memories are selected randomly for each read request. In the local 

traffic, the four PEs send random in-order read requests to the near 

memories more than other remote memories. We used the 

weighting factor proportional to 1/2d where d is the distance 

between the PE and the memory according to [17]. In the mixed 

mode, one PE sends in-order read requests to eight memories 

randomly while each of the other three PEs sends, to its own 

designated memory, read requests that do not require RVC 

reservation. In the three scenarios, each PE sends burst 8 read 

requests to the memories depending on the given request rates (e.g., 

given 20%, a burst 8 request is sent every 40 cycles). 

When the method in [7] is applied, the ROB size of request 

parallelizer per PE is 4*8*64b (supporting five outstanding in-order 

requests of 64b burst 8), which corresponds to eight (4-flit deep) 

VCs in the data network. In the NoC with INROB, we distribute the 

ROB resource of request parallelizers (equivalent to total 64 VCs) 

to 16 routers. Thus, each router has four additional VCs (i.e., one 

additional VC per input port) as the RVCs. The RVC budget is set 

to one VC per input port. The threshold of the number of maximum 

pending IR packets is set to three.8 For each input port, the router 

keeps up to eight pairs of information of active transaction ID and 

destination for the destination check. 

We run RTL simulation with the NoC and PE models (written in 

Specman), the RTL code of PL340, and the Denali DDR memory 

                                                                    

8 We leave, for the release packet, one VC (among four) at the input 

port of router in the control network. 

1   If there is any RVC reserved for the corresponding packet

2     Change the status of RVC to normal VC
3   If the corresponding packet is pending at the router

4     Change the pending IR packet to a CR packet

5     Forward the CR packet towards the destination
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model. The simulation runs until all the PEs complete the same 

amount of memory accesses.  

Figure 8 shows the simulation results. We measure latency from 

the time when a packet of memory access request is issued from the 

PE to the time when the data are completely received by the PE 

from the memory. As Figure 8 shows, compared with the existing 

method (RP) in [7], the presented methods (INROB_L and INROB) 

decrease average read latency as the request rate increases. For 

instance, in the case (shown with arrows in the figure) that the 

request rate is 90% for the random traffic, the presented method 

with the look-ahead release packet (INROB_L) gives 27.3% 

reduction in average read latency.  

The benefit of the presented method becomes much clearer in the 

mixed traffic scenario as Figure 8 (c) shows. The presented method 

(INROB_L) gives 32.8% reduction in the latency in the case of 

request rate of 90%. The main reason of such a performance 

improvement is that the packets that do not require RVC reservation 

benefit from the increased resource, i.e., four VCs per router. 

 
Figure 8 Performance evaluation under synthetic test cases 

5.3 DTV SoC Case 
We use an industrial strength DTV SoC case used in [7]. It supports 

MPEG2 decoding for QFHD size (3840x2160) video processing [1]. 

We apply the presented approach to the backbone NoC, 4x4 mesh 

as shown in Figure 7. The architecture has, as masters, four video 

codec IPs and four different pixel processing IPs, e.g., noise 

reduction, mixer, etc. The DTV example uses four DDR memories 

(located at the central two columns in Figure 7). Each of the four 

codec IPs accesses only its own dedicated DDR memory. Thus, the 

memory accesses of codec IPs do not require RVC reservation. 

Each of the other four IPs has two master transaction IDs and 

accesses all the four memories. We use the same configuration of 

NoC and memory controller as in the synthetic test cases.  
Table 1 Performance comparison with the DTV case 

 Avg. Latency Normalized Exec. Cycle 

RP [7] 138 1 

INROB 131 0.907 

INROB_L 119 0.831 

 

 

Table 1 shows the performance comparison. The presented method 

gives 16.9% reduction in total execution cycle compared with the 

method in [7]. The main reason is analyzed as follows. The 

communication periods of the eight IPs do not always overlap with 

each other. Thus, in our method, there are possibilities that the 

codec IPs as well as the pixel IPs benefit from the increased VC 

resource in the router. In this case, the look-ahead release packet 

gives further improvement (7.6%) in the total execution cycle. 

6. Conclusion 
This paper presented a novel idea of in-network reorder buffer that 

improves the utilization of reorder buffers by embedding them into 

the network routers. Compared with the existing method, the 

presented idea allows both in-order and other packets to utilize the 

increased resource (reorder virtual channel, RVC) in the routers 

while supporting the in-order requirements. We presented the 

method of RVC management that performs the reservation and 

release of RVCs. We also presented the micro-architecture of router 

that supports RVC management. Experimental results show that the 

presented idea improves overall system performance by 16.9% in 

the case of DTV SoC example. In our future work, we will work on 

the architectural exploration of RVC budgeting, IR packet threshold 

assignment, QoS guarantee for in-order requests, etc.  
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