
A Generic Platform for Estimation of Multi-threaded
Program Performance on Heterogeneous

Multiprocessors

Aryabartta Sahu, M. Balakrishnan, Preeti Ranjan Panda
Department of Computer Science and Engineering, Indian Institute of Technology Delhi

Hauz Khas, New Delhi, India, 110016, Email: {asahu,mbala,panda}@cse.iitd.ac.in

Abstract—This paper deals with a methodology for software
estimation to enable design space exploration of heterogeneous
multiprocessor systems. Starting from fork-join representation
of application specification along with high level description of
multiprocessor target architecture and mapping of application
components onto architecture resource elements, it estimates the
performance of application on target multiprocessor architecture.
The methodology proposed includes the effect of basic compiler
optimizations, integrates light weight memory simulation and in-
struction mapping for complex instruction to improve the accuracy
of software estimation. To estimate performance degradation due
to contention for shared resources like memory and bus, synthetic
access traces coupled with interval analysis technique is employed.
The methodology has been validated on a real heterogeneous
platform. Results show that using estimation it is possible to predict
performance with average errors of around 11%.

I. INTRODUCTION AND MOTIVATION

Embedded applications in the image processing as well
as media domain are highly parallel and compute intensive.
Further, attempts are being made to include more and more
applications in a small size, battery powered embedded device.
The implication is that millions of lines of application code have
to be ported on to these embedded devices. In such a situation
heterogeneous multiprocessors are the only solution to achieve
the required performance within the limited power budget.
Many factors fuel the use of multiprocessors in embedded
systems. These includes complexity and cost of ASIC design,
saturation of performance enhancement for single processor
platform, significant available parallelism in embedded applica-
tions, power consumption issues with higher operating frequen-
cies and VLSI technology offering high integration density.

During the initial design phase, simulation is a widely used
methodology to explore the large design space to identify the
appropriate components and their configurations, that would
meet the required performance “optimally”. Simulation takes
not only huge amount of time but also requires a complete target
compiler tool chain. Generation of target specific tool chain and
simulator for heterogeneous multiprocessors is time consuming,
especially in the initial design space exploration phase. This
is because the design space in terms of configurations of
processor, memory and interconnection network is large, and
exploring through simulation is not feasible. Alternatively, one
can use software estimation tools to estimate performance
with considerably less effort (2 to 3 order of magnitude) than
simulation, but the accuracy could be an issue [1].

Pthread, OpenMP, PVM and MPI are the widely used parallel
programming tools that use either shared memory or distributed
memory parallel programing model. In both cases, communica-

tion, synchronization and management constructs are written in
high-level C language. It is possible to characterize and estimate
the execution times of these constructs on the target processor
and use this to predict the overall performance.

Estimation of execution time involves analyzing the impact
of application mapping over the architecture. Mapping involves
defining binding of application components like task, data
and communication onto architectural resources like proces-
sor, memory and bus/link. Significant complexity arises due
to the dynamic nature of this analysis which is completely
dependent on mapping and the resulting interaction. The model
and estimation technique should be able to capture overheads
by identifying performance bottlenecks in the system due to
shared resources. This could enable a better mapping/solution.
In case mapping changes are inadequate for meeting the per-
formance objectives, transformation of application to enable
good mapping as well as changing multiprocessor hardware
configuration parameters may be necessary. It is clear that the
latter alternatives are time consuming and thus expensive to
implement.

The main contribution of this paper is a novel methodology
for multiprocessor software estimation and its use in design
space exploration. The methodology incorporates “retargetable
(i.e. user specified target architecture) estimation” of multi
threaded application on user-specified target processor with
basic compiler optimizations and a light weight memory simu-
lation. As a part of our methodology, we have used retargetable
uni-processor estimator to estimate the communication and
synchronization delays by instrumenting the Pthread and other
communication library functions. Further it generates target
machine dependent synthetic memory and bus trace to estimate
delays due to shared resources. It also uses interval analysis
as an effective alternative to queuing simulation to estimate
resource contention delays.

This paper is organized as follows: in Section II, we give
a review of the previous work on multiprocessor performance
estimation. In Section III, we present our inputs, outputs and
overall methodology of performance estimation of multipro-
cessors. Section IV describes software behavior estimation of
mapped task on a specific processor. In Section V, we describe
the method to estimate communication and synchronization
delays of multi-threaded tasks. Section VI presents estimation
of resource contention related delays and its analysis. Sections
VII & VIII contain experimental results, conclusion and future
work.

978-3-9810801-5-5/DATE09 © 2009 EDAA

II. PREVIOUS WORK

Performance estimation methods using complete simulation
as well as address trace simulation have been studied by Zheng
et al. [2] and Kurc et al. [3]. A complete functional simulation
approach and trace driven simulation takes considerable amount
of time even for a small application. Performance estimation
of applications mapped onto multiprocessors using Lost Cycle
Analysis (LCA) method is introduced by Crovella et al. [4].
Lost cycle analysis refers to cycles lost in synchronization,
communication and resource contention. It also addresses the
issue of completeness of estimation using lost cycle analysis.
The approach is restricted to a target platform with a set of
identical processors connected in a network. The focus is on
applications where communication delays are significant.

Mean value analysis (MVA) is a probabilistic method that is
used to evaluate design choices for shared bus multiprocessor
systems in a throughput-oriented environment. This is described
in Chiang et al. [5]. Using MVA technique, performance analy-
sis of subsystems has been done and used for identifying bottle-
necks in the architecture (Lee et al.[6]). Performance analysis of
heterogeneous multiprocessor multi-cluster system by analytical
techniques using probability values has been carried out by
Javadi et al. [7]. The model assumes clusters are loosely coupled
with some network delays whereas, similar processors inside the
cluster are tightly coupled. Probabilistic analytical techniques
have limited applicability in embedded domains because the
target application can be better characterized and analyzed even
at finer granularity.

Snavely et al. [8], presented a performance modeling method-
ology based on system peak-performance metrics and analysis
of application performance by convolving machine signatures
(computing power of processor) with application profiles. They
used the memory access pattern (MAPS) and machine signature
for estimation. Main objective of their analysis is distributed
memory message passing model targeted onto supercomputing
domain. They do not consider the shared memory model and
neither target heterogeneous chip multiprocessors.

We believe our methodology differs from previous works
in the following respects and this make it more useful and
realistic: we have considered (a) heterogeneous multiprocessor,
and the processors are specified in customized high level
machine description, (b) taken complete Pthread library and
other communication library for calculation of communication
and synchronization delays and (c) delays due to shared re-
source contention are analysed at user specified granularity by
abstracting the resoruce access traces using interval analysis
technique.

III. PERFORMANCE ESTIMATION METHODOLOGY

The generic software estimation process described here is
driven by three inputs: application specification, architecture
specification and partition/mapping description. Application
specification is nothing but a fork-join task graph representing
a multi-threaded application, whereas, architecture specification
refers to a high level description of heterogeneous multipro-
cessor architecture. Individual processor, network and memory
are represented in a machine description language. Mapping
information of application components onto architectural com-
ponents is described separately.

A. Application specification

Application can be represented as a set of tasks forming a
fork-join task graph [9] [10]. A fork-join task graph represents
parallel phases of computation (forking of tasks) separated
by full barrier synchronization (joining of tasks). Pthread and
OpenMP standard follow this kind of model. A linear time
scheduling algorithm for fork-join task graph exists [10], and it
has been shown that such graphs are performance predictable
[9]. There are many real life examples from media and pro-
cessing domain that have been represented in fork-join task
graph model. These include Radar beam former, Mpeg2, GSM
decoder, 3GPPP radio access protocol (physical layer), Software
defined radio, JPEG, LU decomposition, FFT, Merge sort and
Bitonic sort [11], [12].

B. Architecture specification

Multiprocessor architecture specification is the second in-
put to the estimator. This contains descriptions of processors,
network and memory. The multiprocessor architecture and its
components are represented in high level machine description.
The architecture description consists of a three-tuple (P, M, L)
where P is the set of heterogeneous processors. The heterogene-
ity of the processors can be in terms of frequency, functional
units, pipeline stages etc. M is the set of memory units and L is
the set of links between processors and memories. These can be
a shared bus or individual dedicated bus. In our methodology
we have used HMDES description [13], [14] to describe P ,
M , and L, which makes the platform description flexible and
generic.

C. Partition description

Application partition in heterogeneous multiprocessors can
be defined as mapping of application three-tuple (task, data,
communication) onto architecture three-tuple (processor, mem-
ory, link or channel). Symbolically it can be represented as
(T, D, C) mapped to (P, M, L). Application performance over
an architecture not only depends on the architectural compo-
nents but also on the partition and/or mapping. The main objec-
tive in design space exploration is to explore different mappings
of application components on to architectural components.

D. Performance estimation methodology

Performance estimation for a given application partition over
a specific architecture is composed of the following phases

• Retargetable estimation of individual task execution time
on the mapped processor, independent of other tasks and
communications: Uni-processor software estimation tech-
nique was used to do this work (details in Section IV).

• Retargetable estimation of communication and synchro-
nization delays as well as dependency delays: A C-
language library for communication and synchronization
tasks is available, and as these library components execute
on some processor, so the overhead due to these also be
estimated using the software estimation technique (details
in Section V).

• Shared resource contention analysis and estimation of as-
sociated delays: Requests from various sources are jointly
analyzed to estimate the delays due to shared resources
(detail in Section VI).

• Estimation of execution time: All the delays and overheads
are combined to generate the expected execution time.

mult array-ref remo array remove ptr incr

by shft mul red indx by ptr reg conv pass

lda r1 A lda r1 A lda r1.s i mov r1 A
mul r2 i n mul r2 i n cvt r2.s r1.s ldc r2 4

mul i,4 add r2 r1 add r2 r1 add r3.s r5.s add r2 r1
lod r3 O(r2) lod r3 O(r2) cvt r4.s r3.s mov A r2
lda r1 A mul r5.s r3.s

⇓ ⇓ ⇓ ⇓ ⇓

lda r1 A add A A 4 lda r1.s i
sl i, 2 sl r2 i lg(n) lod r3 O(A) add r1.s r5.s add A 4

add r2 r1 mul r5.s r1.s
lod r3 O(r2)

TABLE I
MEANING OF COMPILER OPTIMIZATION

IV. ESTIMATION OF EXECUTION TIME OF TASK ON MAPPED

PROCESSOR

Performance estimation essentially refers to predicting the ex-
ecution time of a mapped individual task on a specific processor.
To estimate multiprocessor behavior with shared resources like
memory and bus, we also need the resource access pattern of the
task when it is executed on the processor. Inputs to the estimator
includes processor description and C description of the task.
“Processor signature” can be defined as computing power of
processor independent of application [8]. Processor is described
in a high level machine description (HMDES) which captures
the processor signature. This description includes the number of
pipeline stages, issue-width, register file (RF) size and available
functional units (FUs) and their functionality. “Task profile” can
be defined as detailed listing of the primitives and operations to
be carried out by the task independent of the target processor
on which it is executed. Operations of interest in our estimation
include primitive operations like integer operations, floating
point operations, branch operations and load/store operations.

A. Estimation flow

Performance can be estimated by simply list scheduling
primitive operations on the processor resources. Total execution
time can be estimated as

Texe =

Nbb
∑

bb=1

L[bb] × F [bb] (1)

Where L[bb] is latency of bbth basic block, F [bb] is the
expected/profiled frequency of bbth basic block and Nbb is the
total number of basic blocks in the task. Latency of a basic block
can be found by using list scheduling basic block instructions
on the FUs of the mapped processor. SUIF (Stanford University
Intermediate Format)[15] compiler framework is used for this
purpose. Figure 1 shows the overall framework for the estima-
tion of execution time on a uni-processor.

SUIF compiler generates flat unoptimized assembly codes.
In performance estimation it is necessary to include some basic
compiler optimizations. These basic compiler options include
conversion of index array access to pointer array access, data
type conversions, replacement of multiplication by a constant
to a set of left shift operations, pointer increment, loop index
increment and global register allocation. These compiler op-
tions are specified as part of processor description and act as
directives for the estimation program. In this way, it mimics
the role of cross compilers. Examples of some of the compiler
optimizations, where effect have been estimated in our approach
are given in Table I. Part of the HMDES file combining these
directives is given in Figure 2. Profiling of basic blocks at

For Each Basic Block

Host Machine
Ld/St Address

Trace
Address Trace

For each Phase of the Basic Block

By Memory Analysis

Sequence

Transform (BB, C−ISA)

Comp Optimization Pass

Flush registers & RRC RA

Variable
Mapping

Memory Architecture

HMDESDescProcessor

Custom−ISA(MAC,PADD..)
Compiler Opt DirectivesC source

Compile & Run

Phase Frequency

Basic Block

Trace Compilation

Task

Σ
Nphase[bb]

phase=1bb=1

N
 L[bb][phase] x F[bb][phase]exeT = Σ

List Schedule on Machine

Ld/St Latency Assignment

Latency Assigned Ld/St

Latency Assignment

Classification of Phases of Basic Blocks

Synthetic Trace Execution Time

Prof Code Append

C to MachSUIF

Instrumentation

MachSuif to C

C to MachSUIF

Fig. 1. Framework uniprocessor performance estimation.

Section Compiler_Optimization_Options

{

}

remove_index_by_ptr

const_mult_by_shift_and_add

array_reference_mult_reduction

ptr_increment_pass

remove_register_conversion

increment_pass

local_register_allocation

On

On

Off

On

Off

On

Off

Fig. 2. Optimization options as part of HMDES.

machine level is shown on the left side of Figure 1. The input
source code was instrumented using SUIF. The instrumented C
code was run on a host machine to get profile data. The profile
data includes basic block frequencies, basic block sequence and
load/store address trace. Latency assignment to each load-store
request was done by a light weight memory simulation. Memory
simulation takes three inputs; address trace, variable mapping
to memory and memory architecture. Based on latencies of
loads/stores of a basic block, each instance of basic block are
classified into one of the many phases of execution. These
phases of execution of basic block can differ in load-store
latencies for the same address depending of the nature of
access e.g. cold cache, write, scratch pad access etc. Execution
time estimation using profile data and processor resource is
shown on right side of Figure 1. For each basic block, The
estimation process includes register allocation using register
reuse chain algorithm[16], transformation of basic block for
machine compatibility, latency assignment and list scheduling
on processor resources.

B. Generation of shared resource access pattern

Light weight memory simulation tries to annotate a latency
number to each memory reference. The list scheduler uses this
memory latency to annotate cycle information for each opera-
tion in the basic block. Sequence of execution of basic blocks,
list scheduled basic blocks together with cycle time information
are sufficient to generate the cycle annotated memory trace. This
task can be accomplished at the time of estimation of execution
time. In a similar manner traces for other shared resources has
been generated.

C. Uniprocessor estimation result

The components of total execution time are computation time
(integer, float), memory delay, control delay and dependency
overhead. For accurate estimation, it is necessary to take care
of all such latencies including their potential overestimation
(due to overlap) and underestimation (due to stalling or resource

P→ Cradle PE Leon3 with FPU SS-mips

B↓ Act Est %E Act Est %E Act Est %E

dct 98563 104167 -5.6 43947 42539 3.2 53852 50506 6.2

lu 23624 26990 -14.3 10004 10192 -0.1 11864 12061 -6.1

fft 16128 13823 14.3 8184 6335 22.6 6321 5782 8.5

mat 92258 94250 -2.1 40436 38779 4.1 54643 45115 17.4
TABLE II

ESTIMATED AND ACTUAL EXECUTION CYCLES

Tc Tc Tc

Load data

DSPs Execute in Parallel

Join:Wait for DSPs

Fork:Start DSPs

Load data to DSPs

Loop(Ni)

 Seq Allocate DSPs and Load Instrs

DSP DSPDSP

RISC

Control

Compute part

Fig. 3. Parallel DSPs execution initiated by a RISC.

contention). Our model is able to capture all the delay compo-
nents individually and also account for the perturbation due to
their interference. Table II shows the estimation results for three
different processors namely Leon3 (7 stage pipeline, multiport
RF, with FPU) [17], CradlePE (Non-pipeline) [18] and ss-mips
(simplescalar 5 stage pipeline) [19]. Results show an average
error of around 14% between actual and estimated performance.

V. PERFORMANCE OF MULTI-THREADED TASKS

Applications are represented as fork-joins of tasks and
implemented in Pthread kind of parallel programming tool.
Communication, synchronization and management constructs
are written in high-level C language and it executes on one
of the processors. So it is possible to characterize and estimate
the execution times of these constructs on the target processor
and use this to predict the overall performance. In this work,
we have estimated the behavior and execution time of Pthread
library and other communication library using SUIF retargetable
uni-processor estimation framework as described in Section IV.

In many multiprocessor architectures, one or more RISC
processors are used for I/O control, scheduling, as well as
synchronization along with a number of DSPs for mapping
the compute intensive tasks. Cradle CT3400 [18] is one such
architecture, which has been modeled in this work for perfor-
mance estimation. Considering such an architecture, the active
processor is waiting for computation to finish in all the DSPs.
Time to run parallel threads in DSPs as shown in Figure 3. can
be given by the following equation.

Tfgd
= Nd (ta + tli) + Ni (Nd (tlr + ts) + tcd

+ γr) (2)

Where Nd is the number of DSPs used, Ni is the number of
iterations, tlr is time to load the data to DSP, tli is time to
load the instruction to instruction memory of DSP, ts is start
up time of DSP from PE, ta is time to allocate a free DSP
and tcd

is the computation time of function in DSP. γr is delay
due to shared resource contention (detail about this delays is
described in Section VI). C sources of library of communication
constructs, library of synchronization constructs and parallel
task are mostly available. All these constructs and tasks execute
on some processor. So the values of tcd

tlr, tli and ta can be
estimated using retargetable uni-processor software estimation
framework as described in Section IV. Time for the whole

t∆

 µ

{ {

1

Input Generation

∆τ

Interval AnalysisGenerate

Synthetic

Trace

, length, λ

Comparision

Interval
Analysis

Error{

2

Nthread

Queing Simulation

Fig. 4. Experimental framework for interval analysis.

application can be estimated by summing up the time for all
fork-joins along with some sequential pre and post processing.
Normally a complete application is composed of nested fork-
joins. And in such each fork-join, a forked path is assigned to
a processor. A fork-join may also be iterated for a number of
times. The total execution time can be estimated as

T = Tpre + Tpost +

NestedSum
∑

(Tsq +

Nfg [i]
∑

i=0

Tfg[i]) (3)

Where Tpre and Tpost are pre-processing and post-processing
time respectively for using a single PE and Nfg[i] and Tfg[i]
is the iteration count and time taken respectively by the ith
fork-join.

VI. RESOURCE CONTENTION ANALYSIS OF FORK-JOIN

Resource contention delays depend upon the number of pro-
cessors executing in parallel, request rate of the task executing
on them, contention resolution policies and bandwidth of the
shared resource. Typically shared resources in the system are
bus, lock, cache, scratch pad memory and DRAM. If access
request patterns of resources are available, than all additional
delays due to contention for a shared resource can be estimated
by first timed summing up of requests for the shared resource
followed by interval based bandwidth analysis. Shared resource
access pattern from a single task is the trace of access to
a shared resource when a task gets executed on a mapped
processor. In this section, it is shown that “interval analysis
is an effective alternative solution to queuing simulation” to
estimate the resource contention delay.

A. Interval analysis: An abstract interpretation

The approach presented here treats individual request streams
as a ”queue” and uses interval analysis to generate effective
access rate data. To some extent, accuracy can be traded off with
analysis time by changing the size of interval. Thus, interval
queuing analysis in this context implies analyzing the trace. One
basic parameter required for analysis is the size (in time) of the
interval. It is easy to realize that the analysis accuracy improves
by reducing the interval period while analysis time goes up.
To understand this trade off, extensive experimentation with
synthetic traces were carried out. Our experimental framework
for interval period - analysis time trade off is shown in Figure
4. In this work, we have generated synthetic traces for N
threads with each thread having its own request rate distribution.
Assuming there is a single server, all threads are fed to a
queuing simulation as well as to interval analysis module.

B. Delay calculation in interval analysis

For simplicity of analysis and understanding, lets us assume
there is a single request source per processor and there is a

(∆ t) λ (∆ t) λ

(∆ t) Sf

100 25

20 µ =

(∆ t) λ

(∆ t) λ

(∆ t) λ

(∆ t) λ

(∆ t) λ 25 =

Sf
Sf

Sf

Sf

Sf

Sf

Sf
Sf

1

2

3

=

=

=

=

*

*

5/25

6/25

10/25

4/254

*

*

Sf
(∆ t) λ − µ t δ) (= 25=

(∆ t)
20 µ =

t δ
=

100

5

=

= 25

4

1

2

3

4

P1

P2

P3

P4

=

=

=

=

5

6

10

Fig. 5. Spreading of interval.

t ∆

t ∆

t ∆

t ∆

t ∆

t ∆

t ∆

 0

104

110

106

105 205

206

210

204

1

2

3

4

[105,205]

[106,206]

[110,210]

[104, 204]

1

2

3

4
100

=[0,100]

=[0,100]

=[0,100]

=[0,100]

 +1 =

 +1 =

 +1 =

 +1 =

t ∆

Fig. 6. Time references for next interval.

single shared resource. The processors are generating load/store
request with an arrival rate λ and the requests are being served at
the rate µ. Typically, processors cannot generate further requests
if a pending request is not served completely (blocking request).
This implies that a processor can have at most ∆t

δt
number of

requests in the time interval ∆t. So λi(∆t) ≤ ∆t
δt

. Total requests
to a shared resource is sum of requests from all processors

λ(∆t) =

p
∑

i=0

λi(∆t) (4)

There will be a contention in a particular time interval if
µ(= ∆t

δt
) <

∑p

i=0 λi(∆t). But in a time interval λ(∆t), all
the requests have to absorbed due to blocking behavior of
the processor. Thus, these periods will be extended due to
congestion as shown in Fig. 5. This corresponds to spreading
of the interval. The spreading factor of time interval depends
on the present request rate in that interval.

Sf (∆t) = (λ(∆t) − µ).
1

µ
(5)

The interval spread seen by different processors depends upon
the request rates from all the processor and reflects the interac-
tion effect as shown in Figure 5. This is given by

Sfi
(∆t) = (λ(∆t) − µ).

1

µ
.
λi(∆t)

λ(∆t)
= Sf (∆t).

λi(∆t)

λ(∆t)
(6)

For the next time slot, the actual time interval will be different
for different processors due to variable spreading as shown
in Figure 6. This has to be accommodated for computing the
joint request rate. The total delay due to the shared resource
contention can be estimated by summing up the maximum of
spreads observed by all the processors in each time interval.

γr = Delayres cont = max(

Ninterval
∑

j=1

Sfi
(∆jt)) (7)

The above analysis assumed equal priority for all requests. On
the other hand, priority of request type r from ithprocessor can
also be characterized and the delays can be calculated as follows

Sfi
(∆t)r =

{

0 if
∑Pr

k=0 λk < µ

µ −
∑Pr

k=0 λk otherwise
(8)

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8

%
 E

rr
o
r

log(∆t)

λ(∆t)=10.0 Nthr=2 λmax=10
λ(∆t)=6.66 Nthr=2 λmax=15
λ(∆t)=5.00 Nthr=1 λmax=10
λ(∆t)=5.00 Nthr=2 λmax=20
λ(∆t)=3.33 Nthr=1 λmax=15

Fig. 7. Errors of estimation.

 4

 5

 6

 7

 8

 9

 10

 11

 12

 2 3 4 5 6 7 8

S
p
e
e
d
u
p

log(∆t)

λ(∆t)=10.0 Nthr=2 λmax=10
λ(∆t)=6.66 Nthr=2 λmax=15
λ(∆t)=5.00 Nthr=1 λmax=10
λ(∆t)=5.00 Nthr=2 λmax=20
λ(∆t)=3.33 Nthr=1 λmax=15

Fig. 8. Speedup of estimation.

C. Result of interval analysis

Error and speed up between the queuing simulation and
interval analysis are shown in Figures 7 and 8 respectively. In
both the figures X-axis corresponds to the size of interval in log
scale, where as Y-axis corresponds to % error in Figure 7 and
speed up in Figure 8 respectively. The following observations
follow:

• Estimation error is marginal in the curve corresponding to
high request rate regions (λ(∆t) ≥ 5) where most of the
contention delays occurs.

• Estimation error is high in the curve corresponding to low
request rate regions but delay contribution to the system
is much less and can be ignored.

Due to the above factors, we conclude that interval analysis
works reasonably well in all situations. From result graphs it is
clear that for higher request rates, speeds up to 12x is possible
while error in estimation is lower then 7%.

VII. EXPERIMENTS AND RESULTS

For detailed experimentation, we took the Cradle Rapid
Development System (RDS)[18] as an example of a hetero-
geneous multiprocessor platform. This board has a CT3400
heterogeneous multiprocessor chip. As shown in Figure 9a, it
consists of 4 RISC processors (PE, 32 bit), 8 DSPs (Digital
Signal Engine), 1 four threaded DMA, 32KB Instruction cache
and 64KB data cache/scratch pad memory, all are connected on
a shared bus. The device is supported by an external board with
256 MB DRAM and gcc compiler for the RISC processors. We
have implemented eight different partitions of JPEG application
(Figure 9b) and obtained the actual performance numbers. The

Data Bus

Instuction Bus

PE0

M
T

E

PE2 PE3

 Semaphores

 CT Bits
 +

Data Mem

64 KB

D Cache

I Cache
32 KB

D
S

E
0

D
S

E
2

D
S

E
3

D
S

E
4

D
S

E
5

D
S

E
6

D
S

E
7

IM IM IM IM IM IM IM IM

D
S

E
1

PE1

MSP1MSP0 MSP2 MSP3

 Global Bus Master :
MTE Xfer, Cache refil &

PE/DSE Acess to GB

Global Bus

Global Bus Target :

External Acess to Quad

COMPUTE QUAD

(a) Architecture of Cradle CT3400.

RLRLRL

ZigZag ZigZagZigZag

Quant Quant Quant

MCT

Get a Block

Image Read

DCTDCT

UY

DCT

V

Wring to Buff

num_blk < tot_blk

Image Write

(b) JPEG application

Fig. 9. Architecture and application

ta tsdse
tspe

4652 5467 1.4e6

tlimct
tlidct

tlizz

15191 16005 15242

tldmct
tlddct

tldzz

8466 12882 6432

get
blk

mct
dct
1-3

qnt
1-3

ZZ
1-3

RL
1–3

1P P0 P0 P0 P0 P0 P0

3P P0 P0 P012 P0 P0 P0

1P3D P0 P0 D012 P0 P0 P0

1P5D P0 D0 D123 P0 D4 P0

1P7D P0 D0 D123 P0 D456 P0

3P2D P0 D0 P012 P0 D123 P0

3P4D P0 D3 D012 P0 P02 P0

3P7D P0 D0 D1-6 P0 P012 P0

TABLE III
(A) COMMUNICATION TIME (B) MAPPING DESCRIPTION

same performance was estimated using our framework. The
main motivation behind taking one application is to compare
results of several different mapping of application onto the
target architecture.

Number of cycles for communication time between PEs and
DSE’s, allocation of DSE (ta), starting a DSE (tsdse

), starting
other PE (tspe

), loading data (tld) and instruction (tli) to DSE
are shown in Table III(a). The values shown are estimated
using retargetable uni-processor estimator, using source code
of Cradle thread library and communication library as input.
Table III(b) shows the mapping of JPEG application over Cradle
architecture. Each column corresponds to a task and each row
corresponds to a mapped configuration. 3P4D refers to 3 RISC
and 4 DSE configuration. Each entry specifies the binding of the
task to one or more processors. D012 in 6th row, 4th column
implies, that DCT 1-3 are bound to DSE 0, 1, and 2.

Figure 10a and Figure 10b shows the actual execution cycles
and estimated execution cycles of eight mappings of JPEG ap-
plication over Cradle architecture. Without taking into account
the resource contention delays, the errors range from 7.27%
to 36.2% with an average error of 17.6%. After adding the

 Actual Performance

 Estimated performance

 Estimated performance

 (Without contention delay)

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

1P
3P

1P+3D
1P+5D

1P+7D
3P+2D 3P+7D

3P+4D

E
x
e
c
u

t
io

n
 C

y
c
le

 0

Configurations

(a) Actual and estimated execution
cycles

 % Error

 %Error without contention delay

 0

 5

 10

 15

 20

 25

 30

 35

 40

1P 1P+3D
3P 1P+5D

1P+7D
3P+2D

3P+4D
3P+7D

Configurations

P
e
r
c
e
n

t
a
g
e
 e

r
r
o
r

(b) %Error without and with resource
contention

Fig. 10. Estimation result

delay due to resource contention part of the system (taking
∆t = 8 ∗ tMemRead), the errors reduce significantly and range
from 7%to 14%, with the average being around 11.3%.

VIII. CONCLUSION AND FUTURE WORK

Performance of the applications mapped onto a multiproces-
sor architecture depends considerably on mapping or binding
of application components onto the architecture resources. In
multiprocessor environment, mapping not only influences ef-
fective use of concurrent resource but also has a significant
impact on delays due to synchronization and resource con-
tention. In this paper we have presented a framework for retar-
getable performance estimation of multi-threaded applications
onto heterogeneous multiprocessors. Experimental results show
that the estimation errors are around 11% implying that the
methodology can be useful in the first phase of design space
exploration. Further, identifying performance bottlenecks to
provide feedback to the designer for architecture enhancement
is another possible application of this methodology.

Writing and debugging of multi-threaded code is a difficult
exercise. Cilk [12], StreamIt [11] and X10 [20] are parallel
programming languages, where one can specify the application
and its parallelism at algorithmic level or capture the graphical
structure of the application. Integration of this framework with
Cilk or StreamIt-like high level compiler is being pursued in
the next phase.

REFERENCES
[1] S. Kwon, C. Lee, S. Kim, Y. Yi, and S. Ha, “Fast design space exploration

framework with an efficient performance estimation technique,” Embed-
ded Systems for Real-Time Multimedia, pp. 27–32, Sept. 2004.

[2] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé, “Simulation-
Based Performance Prediction for Large Parallel Machines,” Int. J.
Parallel Program., vol. 33, no. 2, pp. 183–207, 2005.

[3] T. Kurc, M. Uysal, and et. al., “Efficient Performance Prediction for Large-
Scale, Data-Intensive Applications,” Int. Journal of High Performance
Computing Applications, vol. 14, no. 3, pp. 216–227, 2000.

[4] M. E. Crovella and T. J. LeBlanc, “Parallel performance prediction using
lost cycles analysis,” in Proc. of ACM/IEEE conf. on Supercomputing,
1994, pp. 600–609.

[5] M.-C. Chiang and G. S. Sohi, “Evaluating Design Choices for Shared Bus
Multiprocessors in a Throughput-Oriented Environment,” IEEE Trans.
Comput., vol. 41, no. 3, pp. 297–317, 1992.

[6] C.-S. Lee and T.-M. Parng, “A Subsystem-Oriented Performance Analysis
Methodology for Shared-Bus Multiprocessors,” IEEE Trans. on Parallel
and Distributed Systems, vol. 07, no. 7, pp. 755–767, 1996.

[7] B. Javadi and J. H. Abawajy, “Performance Analysis of Heterogeneous
Multi-Cluster Systems,” in Proc. of the Int. Conf. on Parallel Processing
Workshops, 2005, pp. 493–500.

[8] A. Snavely, N. Wolter, and L. Carrington, “Modeling Application Perfor-
mance by Convolving Machine Signatures with Application Profiles,” in
IEEE Workshop on Workload Characterization, 2001, pp. 149–156.

[9] V. S. Adve and M. K. Vernon, “Parallel Program Performance Prediction
using Deterministic Task Graph Analysis,” ACM Trans. on Computer
Systems (TOCS), vol. 22, no. 1, pp. 94–136, 2004.

[10] Q. Li, Y. Ruan, ShidaYang, and T. Jiang, “An optimal scheduling
algorithm for fork-join task graphs,” Parallel and Distributed Computing,
Applications and Technologies, pp. 587–589, Aug. 2003.

[11] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-Grained
Task, Data, and Pipeline Parallelism in Stream Programs,” in Int. Conf.
on ASPLOS, 2006, pp. 151–162.

[12] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation of
the Cilk-5 Multithreaded Language,” in Proc. of the ACM SIGPLAN conf.
on PLDI, 1998, pp. 212–223.

[13] L. N. Chakrapani, J. Gyllenhaal, and et. al., “Trimaran: An Infrastructure
for Research,” in in Instruction-Level Parallelism. LNCS, 2004, p. 2005.

[14] A. Halambi and P. Grun, “EXPRESSION: A Language for Architecture
Exploration through Compiler/Simulator Retargetability,” in In Proc. of
the DATE, May, 1999.

[15] R. P. Wilson and all, “SUIF: An Infrastructure for Research on Paral-
lelizing and Optimizing Compilers,” ACM SIGPLAN Notices, vol. 29, pp.
31–37, 1994.

[16] L. Wehmeyer, M. Jain, and all., “Analysis of the Influence of Register
File Size on Energy Consumption, Code Size, and Execution Time,” IEEE
Trans. on CAD of IC and Systems., vol. 20, pp. 1329–1337, Nov 2001.

[17] “LEON3 SPARC V8 Processor Core,” http://www.gaisler.com/.
[18] “Cradle Technologies CT3400 Data Sheet,” http://www.cradle.com.
[19] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for

Computer System Modeling,” Computer, vol. 35, no. 2, Feb 2002.
[20] S. Agarwal and et al., “May-Happen-in-Parallel Analysis of X10 Pro-

grams,” in Proc. of ACM SIGPLAN PPoPP, 2007, pp. 183–193.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

