
Automated Data Analysis Solutions to Silicon Debug

Yu-Shen Yang
Dept. of ECE

University of Toronto
Toronto, M5S 3G4

yangy@eecg.utronto.ca

Nicola Nicolici
Dept. of ECE

McMaster University
Hamilton, L8S 4K1

nicola@ece.mcmaster.ca

Andreas Veneris
Dept. of ECE & CS

University of Toronto
Toronto, M5S 3G4

veneris@eecg.utronto.ca

ABSTRACT
Since pre-silicon functional verification is insufficient to detect all de-
sign errors, re-spins are often needed due to malfunctions that escape
into the silicon. This paper presents an automated software solution to
analyze the data collected during silicon debug. The proposed method-
ology analyzes the test sequences to detect suspects in both the spatial
and the temporal domain. A set of software debug techniques are pro-
posed to analyze the acquired data from the hardware testing and pro-
vide suggestions for the setup of the test environment in the next debug
session. A comprehensive set of experiments demonstrate its effective-
ness in terms of run-time and resolution.

1. Introduction
During the integrated circuit development cycle, designs often go

through several verification steps (e.g., functional, timing, power) be-
fore a silicon prototype is manufactured. Pre-silicon verification uses
formal methods [1, 2] or simulation approaches [3] to check the func-
tionality of the Register-Transfer Level (RTL) model against its speci-
fication (e.g. a behavior model). As the design size increases and the
intellectual property (IP) blocks developed by different vendors are inte-
grated together, silicon prototypes are rarely bug-free. There are several
reasons for this to happen. Due to time-to-market constraints, 100%
verification coverage at the RTL level remains an elusive task. As such,
functional bugs may escape pre-silicon verification only to be discov-
ered during in-system silicon validation where the design is exercised
at speed. In addition, parasitics and the unmodeled process variation
effects during the fabrication also take their toll.

With the above observations at hand, it comes as no surprise that
more than 60% of design tape-outs require a re-spin. More than half
of the failures are not due to power or timing defects but due to log-
ical or functional errors not discovered during verification [4]. These
silicon re-spins increase costs and the time-to-market margins dramat-
ically. Despite the use of dedicated data-collection hardware mecha-
nisms embedded directly into the silicon, there exists little in automated
software solutions to help the validation engineer identify the root cause
of the failure with the data acquired.

The challenge for automated software solutions for analyzing data in
silicon debug is multifold. Unlike RTL verification, the error/defect be-
havior can be either deterministic or non-deterministic. Deterministic
errors replicate their behavior with the same set of test vectors. This is
the case if the circuit is debugged on the tester or on an application board
where the inputs are controlled synchronously. On the other hand, if the
sources of the board have non-deterministic behavior (e.g., interrupts
from peripherals or timing of refresh cycles for dynamic memories [5]),
the error can be triggered by an event that cannot be replicated deter-
ministically. Another difference between RTL verification and silicon
debug is that in simulation, traces can be collected for as many signals
and as many clock cycles as the verification engineers decides to probe.
In contrast, silicon debug observability is restricted in both space and
time. Although Design-for-Debug (DfD) techniques (e.g. scan chains,

trace buffers, etc) improve the observability of the internal signals, the
amount of data extracted from a chip is limited by these techniques.

Once silicon fails test, a typical debug process consists of several
iterative sessions to find the error. In each debug session, shown in
Figure 1, test engineers setup the environment to obtain appropriate data
from a certain subset of nets at pre-determined operational cycles. This
data is analyzed to prune the candidate causes and to determine the best-
fit environment for the next debug session. A series of debug sessions
is iterated until the root cause is determined.

This paper proposes an automated software-based debug methodol-
ogy to aid the engineer in discovering the root cause (i.e., location) of
chip failure. This methodology acts complementary to current silicon
debug hardware and software solutions used for data acquisition. The
major contribution of this work is that it automates the data analysis
step in Figure 1 to help identify the location of the suspect(s) in a hi-
erarchical manner. It also provides suggestions for the setup of the test
environment in the next debug session by giving a better estimate for
the window (time interval) of cycles the engineer should concentrate to
catch the error. This data is added to the subsequent automated data
analysis cycle to eventually determine the root cause.

A set of comprehensive experiments on OpenCores circuits is con-
ducted. Results show that our methodology successfully determines the
location of the error and it also specifies with accuracy the time interval
that it is excited. As such, the proposed methodology adds value to any
silicon debug environment.

In the remaining paper, Section 2 summarizes the known DfD tech-
niques. Section 3 illustrates the new methodology. Section 4 contains
experiments and Section 5 concludes the work.

2. Background
The silicon debug process entails different hardware and software

components. The former refers to DfD techniques that improve sig-
nal observability. The later includes debugging software and the overall
environment setup to integrate the different tools that collect and ana-
lyze the data from the tester. In the following subsections, we briefly
review some of this background material.

2.1 Design for Debug Hardware Solutions
There are two main DfD techniques used in practice: scan chains and

trace buffers. Scan chains are commonly employed in manufacturing
test as a Design-for-Test (DfT) technique. This hardware can be re-
used during silicon debug [6]. During the test mode, the state for all
the scanned registers can be extracted by performing a scan dump. Un-
less each scanned register has two elements, which leads to excessive
area investment, after each scan dump the test environment needs to be
restarted. Even if two state elements are present in each scanned regis-
ter, a new state capture cannot occur until the previous scan dump has
been completed [7].

Another DfD technique uses trace buffers [8, 9]. A trace buffer is
based on an on-chip memory that records internal signals. It contains
control logic, called trigger logic (e.g., embedded hardware assertions),

978-3-9810801-5-5/DATE09 © 2009 EDAA

No

Yes

Success

Diagnosis

110011
100110

Root
Cause?

Refine
Capture Events

CUD

JTAG

Data Analysis

Capture
Events

Figure 1: A typical silicon debug flow

employed for on-line monitoring of circuit behavior. Once the trigger
condition is asserted the on-chip memory can start/stop recording the
logic values of the selected signals. Subsequently, the recorder data can
be read via a low-bandwidth interface, such as boundary scan. Typical
sizes for trace buffers range from 8K to 256K. Clearly, due to the size
limitation for this on-chip memory, only a subset of pre-selected signals
can be traced in each debug session.

2.2 Related Work on Debug Data Analysis
In this section we examine some of the relevant data analysis so-

lutions. The method proposed by Caty et. al. [10] identifies the fault
propagation paths by back tracing from the failing registers for each
timeframe. Then it performs a forward tracing from the registers to fur-
ther narrow down the root cause candidates. Their analysis relies on
scan dumps for multiple consecutive cycles.

Yen et. al. [11] propose a similar approach. Their methodology iso-
lates the critical cycles using a binary search paradigm based on the
comparison between the observed data and the simulation results. A
critical cycle is the first cycle in which the state elements show a dis-
crepancy between the expected responses and the actual ones. After the
cycle is identified, the suspect list is pruned using both a path-tracing
method [12] and simulating the faulty value of the suspect in the golden
model.

For previously described methods to work, the complete golden ref-
erence has to be available, a pre-requisite which is not always true. For
instance, in the case of functional errors, the golden model can be a
behavior model (e.g. a software program in MATLAB, C/C++). This
model can be simulated to obtain the expected responses at the primary
outputs, but there may not exist one-to-one signal mapping from all reg-
isters in the actual design to variables in the behavioral model. Hence,
there may be only a partial state equivalence between the implementa-
tion and the specification. In this case, only logic values for the registers
that have a reference mapping in the golden model can be checked, a
fact that may deteriorate the final resolution, as explained in [13].

3. Proposed Methodology
In this section, we describe the novel silicon debug data analysis

methodology. We use the following assumptions:

• The erroneous silicon behavior is deterministic. Given the same
input sequence, the responses are consistent in all debug sessions.
This assumption is necessary to replicate experiments and obtain

16

16

16

16

16

JTAG

1024

16

Controller

CUD

Figure 2: Trace buffer configuration

512 512

16

Group A

100 − 500

@ cycle

Group B

800 − 1200

@ cycle

Segment 1 Segment 2

Figure 3: Trace buffer segmentation

the values of multiple state elements at different cycles. It is also
the fundamental underlying assumption of a silicon debug envi-
ronment such as the one depicted in Figure 1.

• We assume that access to the values of internal states is available,
because scan chains and trace buffers (Section 2.1) are utilized.
In this scenario, the design is fully scanned and trace buffers can
be programmed to capture the value of specific state elements (as
explained later in the paper).

• In this paper we deal with functional errors (bugs) in the design.
For examples of functional bugs that escape to silicon, we refer
the reader to [14]. Malfunctions due to electrical and fabrication
defects are not considered in this paper.

• The golden model during diagnosis is a high-level behavioral
model. Hence, the proposed framework assumes a partial state
equivalence. That is, there are state elements which cannot be
mapped from the silicon implementation to the golden model.

• We assume that all discrepancies are due to a single error present
in the silicon. Since most test vectors target specific functionali-
ties of the design, it is realistic to ascertain that a test vector that
fails is due to a single error [15].

Note, not every signal from the circuit can be probed into the trace-
buffer (this will lead to unacceptable area of the debug module). Instead,
we define groups of signals of width equal to the trace buffer width and
we place a multiplexer at the data input of the trace buffer. This is
illustrated in Figure 2 where four groups of 16-bit signals are fed into a
trace buffer of depth 1024 and width 16. Another common trace buffer
feature that is used is the segmentation. For example, in Figure 3, a trace
buffer of depth 1024 has two segments: in the first segment we sample
group A from clock cycles 100 to 500; in the second segment we sample
group B from clock cycles 800 to 1200. This feature is relevant when
the length of the test vector traces is reduced below the depth of the trace
buffer. By exploiting segmentation, useful data can be collected from
two different groups (required for two different suspects) at different
times in the same debug session.

3.1 Methodology Overview
The complete flow of the methodology is summarized in Figure 4.

An overview of the methodology is given in this subsection with the

Diagnosis Steps

Generated

Information

Modules

Suspect

Windows

Activated

X−simulation be Traced

States to

Hierarchical

Diagnosis

N−level

Timeframe

Diagnosis

Figure 4: A single debug session

details of the implementation described in the remaining subsections.
The objective of the proposed methodology has three main goals: to
identify the suspect modules that contain the error, to find the critical
interval of the error, and to find the state elements that may be on the
error propagation paths. Note, a critical interval is a window of cycles
that contains the critical cycle. Unlike for source code (or RTL debug),
the above objective must be achieved with a conscious usage of the
on-chip debug hardware resources. This objective is unique to silicon
debug and it motivates the key contributions in this paper.

The algorithm begins with reducing the length of the test trace by
finding a new starting clock cycle for it, since the test trace can be long
to manipulate. The idea is that vectors before the critical cycle can be
safely removed for debugging analysis. This is because this portion
of the sequence contains information unrelated to the error which is
excited at the critical cycle. The initial state of state elements can be
replaced with the value from a scan dump at the new starting cycle.

Next, the algorithm performs debugging in three steps. First, it di-
agnoses the circuit in a hierarchical manner to reduce the complexity
of the analysis. It has been shown that using the design hierarchy in-
formation for searching between different components of a design is
effective [16]. Then, timeframe diagnosis is carried out to find a greater
precision estimate for the window of clock cycles in which the error may
be excited. This interval can further reduce the length of the test vec-
tor trace needed to be analyzed in the next debug session. In addition,
during the test, signals only need to be traced within the new reduced
window. Finally, X-simulation [17], simulating the design with logic
unknown at the output ports of the suspects, is performed to identify the
state elements where the error effects propagate. The above information
feeds back to the algorithm to drive the next debug session where the al-
gorithm iterates the three steps in Figure 4. During each debug session,
a single scan-dump is conducted to collect additional register values for
one clock cycle at the begin and end of the critical interval.

3.2 Hierarchical Diagnosis
The backbone of our diagnosis algorithm is based on hierarchical

diagnosis similar to that proposed by Ali et. al. [16]. In brief, the algo-
rithm takes in the RTL code, failing input test vectors and the expected
(i.e., correct) output responses and builds a Boolean satisfiability in-
stance. It then enters different rounds of hierarchical diagnosis as it
goes deeper in the design hierarchy by considering only sub-modules

C2 C3
C

C1

A1
A2

A
B1

B

CbCa
C2

(a) Hierarchical design

BA C

C2C1 C3

Ca Cb

(b) History of
hierarchical di-
agnosis

Figure 5: Hierarchical diagnosis

Algorithm 1 Timeframe diagnosis
1: MList := list of suspect modules
2: k := size of timeframe interval
3: Tb(Te) := beginning(end) timeframe of the trace

4: procedure TIMEFRAMEDIAGNOSIS(MList , k, Tb, Te)
5: T MList := the new list containing timeframe modules
6: T Msol := the timeframe diagnosis solutions
7: for all S ∈ MList do
8: for t = Tb to Te incremented by k do
9: T Mnew := A new timeframe module consists of

{St · · ·St+k}
10: Add T Mnew to T MList
11: end for
12: end for
13: T Msol ← Debug with candidates from T MList
14: return T Msol
15: end procedure

of the modules that are determined to be suspects previously. This is re-
peated until the lowest level of hierarchy is reached where it terminates
and returns the suspects. The following example illustrates the concept
of debugging using hierarchy information.

EXAMPLE 1. Figure 5(a) shows a design and its hierarchical struc-
ture. Applying hierarchical diagnosis on this design for two rounds is
shown in Figure 5(b). The design has three modules at the top level.
After the first iteration, module C (shaded box) is diagnosed to be the
solution. Therefore, in the second round, only the sub-modules of mod-
ule C, namely, C1, C2, and C3 are considered as suspects. At that round,
C2 is identified as the solution and the suspect candidate list for the
third round contains only Ca and Cb.

In the proposed setup, in every debug session the algorithm parses
suspect modules from the previous session and performs hierarchical di-
agnosis for at most n levels from the level ended in the last session. The
number n is the number of hierarchy levels that the algorithm would ex-
pand in each session. This process terminates when the method reaches
the lowest level of design hierarchy. For example, if n = 2 and the max-
imum hierarchy depth of the design is 10, the algorithm will run at most
five sessions. Each time, it goes deeper in the hierarchy by two lev-
els and truncates the test vector trace (using the technique in the next
sub-section) to increase performance and resolution.

3.3 Timeframe Diagnosis
In RTL debugging the length of the collected traces used in diagno-

sis is not limited by the amount of data that can be stored on the chip.

Error

Excited

Timeframe Timeframe

Module 1 Module 2

Tn Tn+6Tn+3

Figure 6: Timeframe diagnosis

However, in silicon debug, the depth of the trace buffer limits the num-
ber of samples that are acquired in one debug experiment. This unique
constraint, motivates timeframe diagnosis.

A timeframe diagnosis pass narrows down the critical interval and
it helps set up the next debug experiment, such that data acquisition
starts at the right cycle(s), i.e., the one(s) as close to the critical cycle as
possible. Note, the test still runs from the beginning of the test vector
sequence. The trace buffer is programmed to begin the capture at a
later cycle. In the following description, a module M at timeframe t is
denoted as Mt . INPUT (M) (OUT PUT (M)) indicates the input (output)
nets of M.

DEFINITION 1. A timeframe module T M for a design module M
over a set of clock cycles {Tn · · ·Tn+k} is an conceptual entity that con-
tains the instances MTn · · ·MTn+k of module M over this set of clock cy-
cles such that INPUT (T M)=

STn+k
t=Tn

INPUT (Mt) and OUT PUT (T M)=STn+k
t=Tn

OUT PUT (Mt)

Pseudo-code to identify the critical interval is described in Algo-
rithm 1. Recall, hierarchical diagnosis returns a list of suspect modules.
Timeframe diagnosis divides the trace into several intervals of width k
and constructs a timeframe module for each interval. The timeframe
module considers the suspect module in each cycle of the interval as a
single suspect. This is shown in lines 8–11. Intuitively, instead of diag-
nosing single-cycle timeframe modules, we examine timeframe mod-
ules that are sets-of-cycles. Consequently, suspects are selected from
this new set. If the timeframe module contains the critical cycle, or it is
the interval between the critical cycle and the cycle in which the erro-
neous effects is observed, it will be selected as a solution. The resulting
critical interval is the union of the timeframe modules in the solution.

EXAMPLE 2. We continue from Example 1 in Figure 6. Assume we
examine a test vector interval between cycles Tn and Tn+6. From hi-
erarchical diagnosis, we know that Module C2, shown in a gray box
through the different cycles, is a suspect. To improve the estimate where
the error is excited, we do not look at a single cycle, but we consider
timeframe modules three cycles at a time. The timeframe modules for
k = 3 are shown in dotted rectangles. If the error is excited at cycle
Tn+1 (gray box marked with an X) and the values of registers at Tn+3
are observable, timeframe diagnosis can deduce that the time interval
defined by Timeframe Module 1 is a critical interval.

The algorithm guarantees that one of the selected timeframes mod-
ules is the critical interval. Hence, the subsequent analysis can focus
on the trace within the begin/end cycles defined by the solution time-
frame module. In Example 2, because Timeframe Module 1 is the
only timeframe module selected, we analyze the set of cycles between
Tn and Tn+3 in the next debug session. The value of k defines a trade-
off between performance and resolution. The more timeframe modules
one has to examine, the more candidates need to be considered at every
iteration of the algorithm. In early debugging sessions, a larger value
for k may be more preferable for some coarse-grain analysis. Since

Initial

Module

S1

S2

S3

Error

Excited

TnT0 Tm

��
�
�
�
�

��

����
��
��
��
��

��
��
��
��

��
�
�
�
�

��

��
��
��
��

��
��
��
��

����

��
�
�
�
�

��

��
�
�
�
�

�
�
�
�

��
�
�
�
�

�
�
�
�

Figure 7: Test vector trace reduction

failing test vectors can contain many cycles, short timeframe modules
will introduce a lot of candidates that take more time to screen. On the
other hand, having excessively long timeframe modules intervals may
not always be a good practice at later stages.

3.4 Test Vector Trace Reduction
In silicon debug, the length of the test vector trace determines how

many debug experiments need to be carried out to collect the trace of
interest. One way to reduce the length is by comparing scan dumps and
the golden model simulation results, as described in [11]. If they match,
we can assume that the error is excited in a later cycle. Therefore, this
provides a conservative estimate for the new initial cycle for the test
vector trace. However, this approach would require time-consuming
scan dumps and it is limited when we have partial state equivalence. If
the error effect propagates through the state elements with no golden
model reference, the discrepancy will not be detected early.

To ensure that diagnosis fails when the error is excited at an earlier
cycle, we introduce an additional coarse-grain module, called initial
module, in the suspect list. This module considers all the state elements
of the initial cycle as one candidate suspect. If the critical cycle is before
the new truncated test vector trace, the initial module will be selected
by the diagnosis algorithm to indicate that the error effects originate at
a cycle before the initial state. In that case, the complete set of debug
sessions is repeated with a new initial state at an earlier cycle.

EXAMPLE 3. The design in Figure 7 contains three state elements,
{S1,S2,S3}. Assume that only S1 and S2 have a golden model reference,
and that the error is excited at cycle Tm and propagated along the path
shown in the figure. In this case, one may consider cycle Tn as the new
initial starting cycle of the test vector trace during diagnosis, since S1
and S2 contain no discrepancy. This can result in an incorrect diagnosis
result. Hence, by introducing an initial module (the dotted rectangle)
that contains {S1,S2,S3} at the timeframe Tn, diagnosis will capture the
error effects by returning the initial module as the solution. At that time,
diagnosis has to be restarted with a new initial cycle estimate before Tn.

4. Experiments
In this section, experiments on industrial designs are presented. We

investigate two factors that impact the method performance and its res-
olution from Section 3, namely, the depth of the hierarchical rounds in
each debug session (n) and the width of the interval in timeframe diag-
nosis (k). Experiments are carried out on OpenCores circuits and run on
a Core 2 Duo 2.4 GHz processor with 4 GB of memory. All runtimes
are reported in seconds.

Each experiment contains the average of five runs. In each run, a
random functional error (wrong assignment, incorrect case statements,
etc) is inserted into the RTL code. The test vector is extracted from the
testbench provided by OpenCores. In experiments, unless mentioned
otherwise, we use the following set of parameters:

• We randomly select 80% of the state elements to generate an en-
vironment with partial state equivalence.

Table 1: Benchmark characteristics
ckt. ckt. # of # of state # of trace hier. depth

name description gates elements modules max avg
divider 16-bits divider 5276 510 26 7 4.3

spi spi core 1889 162 8 10 4.6
wb WISHBONE Conmax IP core 2253 110 6 11 4.9

rsdecoder Reed-Solomon Decoder 10265 521 27 12 5.4

Table 2: Performance of the methodology
ckt. # of total total # of % of

sessions time groups final trace
(sec) traced suspects reduced

divider 4 123.1 7 11 88%
spi 4 351.5 6 8 89%
wb 3 101.4 3 6 86%

rsdecoder 4 162.2 5 15 90%

• During hierarchical diagnosis we set n = 2, that is, the algorithm
goes two levels in the hierarchy deep at each debug session.

• At each session, timeframe diagnosis divides the test vector trace
into four timeframe modules of an equal number of cycles each.

The size of the trace buffer is assumed to be 16x128 bits. We divide
the state elements that can be traced during debugging into groups of
16. The buffer can be used to store one of the groups for at most 128
cycles or two groups for at most 64 cycles.

Experiments are conducted on four OpenCores circuits. Their char-
acteristics are summarized in Table 1. A short description of the design
is given in Column two. The next two columns show the number of gate
and state elements of the circuits, respectively. The number of groups
of state elements that can be traced is shown in Column five. Column
six contains the number of the modules at the lowest level of hierar-
chy. This is also the total number of suspects one needs to examine in a
brute-force manual silicon debug approach. The final two columns have
the maximum and average hierarchical depth for each design.

Table 2 outlines general performance metrics for the methodology.
The number of debug sessions and the total runtime for all sessions
are shown in Column two and three, respectively. The next column
shows the total number of groups of state elements that are traced during
debug sessions. For example, seven groups are traced during debugging
divider: one group is traced during the first session and two groups
are traced during each of the remaining three sessions. One can see that
in most cases two groups can be traced in one session. This is because
that our methodology often reduces critical intervals to more than half
in the first 1-2 sessions. As mentioned in Section 3. trace buffers can be
divided into segments. Hence, when the width of the critical interval is
smaller than the half of the width of trace buffers, two groups of signals
can be traced in one hardware run. Column five has the number of final
suspects in the lowest level of hierarchy need to be investigated by the
engineers. Comparing this result to the total number of modules shown
in Table 1, we observe more than a 90% improvement in resolution.
The percentage of reduction in the length of the final test vector trace
is shown in the last column. One can see that the length of the final
test vector trace is 90% shorter in the best case and 88% shorter, on the
average, than the original.

In the next set of experiments, we first examine the performance of
the method for a varying value of n, the number of hierarchy level that
hierarchical diagnosis examines at each session. Results for this ex-
periment are depicted in Figure 8, which shows the total numbers of

divider spi wb rsdecoder
0

5

10

15

20

Benchmark

N
o

.
o

f
s
u

s
p

e
c
ts

n=1 n=2 n=3 n=4

(a) Final suspect percentage

divider spi wb rsdecoder
0

0.5

1

1.5

2

2.5

3

Benchmark
N

o
rm

a
liz

e
d

 R
u

n
ti
m

e

n=1 n=2 n=3 n=4

(b) Total runtime

Figure 8: Impact of depth n in performance

modules returned by each hierarchical diagnosis round. In general, the
number are increased as the hierarchical diagnosis runs more rounds in
one debug session. This is because there are less state elements pro-
vided and the diagnosis algorithm cannot distinguish some of the sus-
pects. However, in some cases, like circuit rsdecoder, the numbers of
the modules are the same in all cases. The runtime is plotted in Fig-
ure 8(b) and is normalized by comparing it to the runtime of n = 1 in
each benchmark. As shown, the runtime is increased as n increases.
This is because the hierarchical diagnosis does not take the benefit from
the trace reduction when it runs more iterations in one debug session.
Recall that the timeframe diagnosis is carried out after the completion
of n-level hierarchical diagnosis. Hence, with smaller values of n, di-
agnosis iterates less for the longer traces. One may notice that in some
cases the best runtime happens when n = 2 and not when n = 1. This
is because the timeframe diagnosis is carried out more frequently when
n = 1. As the result, the overhead is greater than the time saved from
the vector trace reduction.

Next, we profile the performance of the method for different time-
frame module interval sizes in timeframe diagnosis. Figure 9(a) shows
the percentage of the reduction of the test vector traces in the final debug
session. As expected, greater reductions are achieved with finer-grain
intervals. The only exception is the case where the interval is 16 for the
circuit wb. In this case, the error happens to be excited across two inter-

2 4 8 16

60

70

80

90

100

of intervals

%
 o

f
s
e

q
u

e
n

c
e

 r
e

d
u

c
ti
o

n

divider spi wb rsdecoder

(a) Final test vector trace reduction

divider spi wb rsdecoder
0

0.5

1

1.5

Benchmark

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

2 4 8 16

(b) Total runtime

Figure 9: Performance effects of interval size k

Table 3: Reduction of test vector trace
ckt. # of intervals

2 4 8 16 32
divider 53% 77% 76% 77% 77%

spi 74% 88% 90% 91% 91%
wb 25% 60% 63% 66% 68%

rsdecoder 77% 94% 96% 96% 96%

vals, which results in a wide range. In all cases, over 50% of reduction
in the trace length is achieved. Table 3 summarizes the percentage of
the reduction after the first half of debug sessions. It can be seen that
in most cases, at least 50% of the traces are truncated after the first few
rounds of timeframe diagnosis, an observation that reinforces the fact
that the process is most effective at the beginning of the debug cycle.

The normalized runtime of those experiments is depicted in Figure 9(b).
In general, as discussed in Section 3.3, it requires more computation if
smaller intervals are used, since timeframe diagnosis has more candi-
dates to screen. However, using spi as example, its runtime is reduced
as the number of intervals increases. This is because approximately
90% of the traces are truncated after the first few sessions when the
number of intervals is over eight, as shown in Table 3. As a result, the
diagnosis in the latter debug sessions has much smaller traces to analyze
and requires less computation.

5. Conclusion
Automated software-based silicon debug solutions are a necessity to-

day to ease the task of the test/design engineer during chip failure anal-
ysis. In this paper, we propose a novel debugging methodology that
comprises of multiple iterative debug sessions. At each session, debug-
ging is performed using the circuit hierarchy. Additionally, the length
of the failing test vector traces is reduced to alleviate the problem com-
plexity for the next session. An extensive suite of experiments confirm

the robustness and effectiveness of the approach that can be used as a
stand-alone methodology or it can complement contemporary silicon
debug software and hardware practice.

6. References
[1] J. Jan, A. Narayan, M. Fujita, and A. S. Vincentelli, “A survey of

techniques for formal verification of combinational circuits,” in
Int’l Conf. on Comp. Design, Oct. 1997, pp. 445–454.

[2] G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and L.-C. Wang,
“Safety property verification using sequential SAT and bounded
model checking,” IEEE Design & Test of Comp., vol. 21, no. 2,
pp. 132–143, March 2004.

[3] A. Gupta, S. Malik, and P. Ashar, “Toward formalizing a
validation methodology using simulation coverage,” in Design
Automation Conf., June 1997, pp. 740–745.

[4] J. Jaeger, “Virtually every ASIC ends up an FPGA,”
EETimes.com, Dec. 7 2007.

[5] S. Sarangi, B. Greskamp, and J. Torrellas, “CADRE:
Cycle-Accurate Deterministic Replay for Hardware Debugging,”
in IEEE International Conference on Dependable Systems and
Networks (IDSN), June 2006, pp. 301 – 312.

[6] B. Vermeulen, T. Waayers, and S. K. Goel, “Core-based scan
architecture for silicon debug,” in Proc. of Int’l Test Conf., Oct.
2002, pp. 638–646.

[7] P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan
architecture with mutually exclusive scan segment activation for
shift- and capture-power reduction,” IEEE Trans. on CAD,
vol. 23, no. 7, pp. 1142–1153, July 2004.

[8] A. Abramovici and Y.C.Hsu, “A new approach to silicon debug,”
in IEEE International Silicon Debug and Diagnosis Workshop,
Nov. 2005.

[9] E. Anis and N. Nicolici, “Low cost debug architecture using lossy
compression for silicon debug,” in Proc. of Design, Automation
and Test in Europe, April 2007, pp. 1–6.

[10] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor
silicon debug based on failure propagation tracing,” in Proc. of
Int’l Test Conf., Oct. 2005, pp. 1–10.

[11] C. C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y. C. Hsu,
“Diagnosing silicon failures based on functional test patterns,” in
Int’l Workshop on Microprocessor Test and Verification, Dec.
2006, pp. 94–97.

[12] S. Venkataraman and W. K. Fuchs, “A deductive technique for
diagnosis for bridging faults,” in Proc. of Int’l Conf. on CAD,
Nov. 1997, pp. 562–567.

[13] Y. Yang, A. Veneris, P. Thadikaran, and S. Venkataraman,
“Extraction error modeling and automated model debugging in
high-performance custom designs,” IEEE Trans. on VLSI
Systems, vol. 14, no. 7, pp. 763–776, July 2006.

[14] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder,
and J. Torrellas, “Patching processor design errors with
programmable hardware,” IEEE. Micro, vol. 27, no. 1, pp. 12–25,
Feb. 2007.

[15] L. Huisman, “Diagnosing arbitrary defects in logic designs using
single location at a time (SLAT),” IEEE Trans. on CAD, vol. 23,
no. 1, pp. 91–101, Jan. 2004.

[16] M. F. Ali, S. Safarpour, A. Veneris, M. S. Abadir, and
R. Drechsler, “Post-verification debugging of hierarchical
designs,” in Proc. of Int’l Conf. on CAD, Nov. 2005, pp. 6–10.

[17] V. Boppana and M. Fujita, “Modeling the unknown! towards
model-independent fault and error diagnosis,” in Proc. of Int’l
Test Conf., Oct. 1998, pp. 1094–1101.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

