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Abstract—The adoption of AUTOSAR in the development of
automotive electronics can increase the portability and reuse of
functional components. Inside each component, the behavior is
represented by a set of runnables, defining reactions executed in
response to an event or periodic computations. The implementa-
tion of AUTOSAR runnables in a concurrent program executing
as a set of tasks reveals several issues and trade-offs because
of the need to protect communication and state variables and
to ensure time determinism. We discuss some of these tradeoffs
and options and outline a problem formulation that can be used
to compute the solution with minimum memory requirements
executing within the deadlines.

I. INTRODUCTION

The AUTOSAR development partnership, which includes
several OEM manufacturers, Tier 1 suppliers, and tool and
software vendors, has been created to develop an open industry
standard for automotive software architectures. To achieve the
technical goals of modularity, scalability, transferability, and
function reusability, AUTOSAR provides a common software
infrastructure. The current version of the standard includes a
reference architecture and specifications for the definition of
components and their interface.

The AUTOSAR project has focused on the concepts of
location independence, interface standardization, and code
portability. Although these goals are important, their achieve-
ment will not be sufficient. As with most other embedded
systems, car electronics are characterized by functional and
nonfunctional properties, assumptions, and constraints.

The current specification has at least two major shortcom-
ings. The AUTOSAR metamodel, as of now, lacks a clear and
unambiguous communication and synchronization semantics
and a timing model. Similar to UML, the AUTOSAR meta-
model is sufficiently mature in its static or structural part,
but offers an incomplete behavioral description. Developers
plan to remedy this with significant updates in the upcoming
AUTOSAR revision, however.

Further, none of the standard’s several layers address issues
related to timing, performance and reliability. Applications’
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component interactions generate a variety of timing depen-
dencies due to scheduling, communication, synchronization,
arbitration, blocking, and buffering. Ensuring component reuse
is not simply a matter of compile-time guarantees that the
provided and required functions be accessible regardless of
the software module’s location and that formal parameters
and actual parameters match. It also demands that the be-
havior of the reused components can be predicted in the
new configuration and the result of the composition can be
analyzed for timing faults. If developers fail to address this
problem, the composition will eventually lead to possibly
transient timing problems, including missed deadlines, task
and message skipping, or overwriting and buffer overflows.

The definition of a timing model for AUTOSAR, and the
development of a standardized infrastructure for the handling
of time specifications, is the objective of the European Union
ITEA 2 (Information Technology for European Advancement)
project TIMMO (timing model). Started in April 2007, the
project includes car manufacturers like Audi, PSA, Volvo
Technology, and Volkswagen. The project targets networked
automotive real-time systems with the goal of providing -
a description language for time aspects in the development
of automobile control units and networks, - a methodology
for cross-company usage of this description language, and
- a validation of the language by means of prototypical
demonstrators.

Magneti Marelli, a car electronics company from Bologna,
Italy is currently developing several projects for porting (some
of) its applications to AUTOSAR[5]. The target application
that triggered the considerations expressed in this paper is an
automatic transmission control. The application requires flow
preservation on the communication and is very sensitive to
changes in the state variables and time jitter on the communi-
cation side. The application is running on a single processor
and is characterized by timing constraints. The target platform
also imposes tight constraints on memory resources (a serious
concern during the development).

II. SW COMPONENTS, RUNNABLES AND TASKS

In AUTOSAR, the functional architecture of the system
is a collection of SW Components cooperating through their
interfaces (Figure 1). Components interfaces are defined as
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Fig. 1. Autosar components, interfaces and runnables.

a set of ports for data-oriented or service-oriented commu-
nication. In the first case, the port represents (asynchronous)
access to a shared storage in which one component may write
to and others may read from. In the case of service-oriented
communication, a client component may invoke the services
of a server component. Components may interact by matching
ports carrying a request for data access of type ”Receive” with
ports of type ”Send” and ports of type ”Client” with ports of
type ”Server”. These connections occur over the AUTOSAR
Virtual Functional Bus or VFB, for which an actual imple-
mentation is then automatically generated depending on the
placement of the components in the physical architecture. In
our model, each component is labeled as Ci. Ports are labeled
as pi.

The behavior of each component is represented by a set of
runnables, that is, procedures that can be executed in response
to events, such as timer activations (for periodic runnables),
or data writes or other types of application signals. Runnables
of component Ci are denoted as ρij . When reference to the
component is not needed, runnables can be identified by a
single index ρj . For each runnable we assume knowledge of
its best-case execution time or βj and its worst-case execution
time γj .

Runnables may need to update as well as use state variables
for their computations. this often requires exclusive access
(write/read) to such state variables, labeled as sij (the j − th
variable of Ci). In this work, we restrict to runnables that
are activated in response to periodic timer events or provide
implementation to server functions that are called by other
runnables. Therefore, we associate to each runnable ρj a
period Tj and a worst case jitter Jj . For runnables activated
directly by a periodic event, it is Jj = 0 and the period is the
period of the activating event. For a runnable ρk activated
in response to another runnable’s request, we identify the
periodic event that activated the calling runnable or, if it is not
activated periodically, the one calling it and so on iteratively.
If the first runnable in this chain is ρq , then Tk = Tq and
Jk =

∑
i(γi − βi) where the sum is computed over all the

predecessors of ρk in the calling sequence.
Finally, the implementation of runnables consists of the

code implementing the functionality, which is executed by
a set of threads in a task and resource model, although
in AUTOSAR the task level is, somewhat improperly, still

defined as behavioral model. The implementation of runnables
into tasks can be modeled as follows. T = {τ1, . . . , τl}
is the set of tasks. Each task τi has a priority πi and an
activation period Ti. Each task is strictly periodic and starts
with phase φi. A mapping relation m(ρi, τj , k) may be defined
between a runnable ρi and a task τj meaning that the code
implementing the runnable ρi is executed in the context of
task τj with ordering index k. A mapping relation is only
possible if the execution rate of ρi and τj are the same.
Furthermore, runnables must be mapped in such a way that
ordering relations (for example, resulting from a sequence of
calls) are preserved. Although one of the main objectives of
AUTOSAR is to cope with complex distributed architectures
and the placement of SW components on the ECUs of a
distributed system, in this paper, we only deal with timing
issues at the local level, that is for components mapped into
tasks executing on the same ECU. In the end, the mapping
of runnables into tasks takes the shape of Figure 2.

We denote by Cj,k the worst case computation time of the
task τj up to the k-th runnable mapped onto it and by Cj its
worst case computation time. Similarly, we denote as oi,j the
minimum offset between any two activation events of tasks τi
and τj and by Oi,j the maximum such offset.

Cj,k =
∑

i

γi

Where i spans over all the runnables ρi for which the
relation m(ρi, τj , l) is defined with l ≤ k.. Similarly, we define
the worst case response time of task τj (up to the k-th block)
as rj (rj,k). The worst case response time of a task τj and
of a runnable ρi executed as the k-th block of task τj can be
respectively computed by applying the following well-known
formulas [1]:

rj = Bj + Cj +
∑

i

⌈
rj
Ti

⌉
Ci (1)

rj,k = Bj + Cj,k +
∑

i

⌈
rj,k
Ti

⌉
Ci (2)

where the index i spans over higher priority tasks τi (πi ≥
πj). the term Bj represents the worst-case blocking time for
the i-th task or the k-th block mapped into it, respectively, that
is, the time spent by the task or the block waiting for another
task executing at a lower priority level. This blocking time is
the result of blocking because of impossibility of preempting
a lower priority task (if the scheduler is, even if temporarily,
non-preemptive), or the result of a wait on a critical section
or on another type of condition. In real-time applications, like
those that are subject of this research, each runnable must
complete before a deadline di. From the previous formulas,
there are two clear indications. The response time of a runnable
depends on the task into which it is mapped, on its priority
(the higher priority tasks), but also on its order of execution
inside the task. Also, a large value of Bj can possibly affect
schedulability.
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Fig. 2. Mapping of runnables into tasks.

A. Case study

Our target application consists of several tasks and
runnables running at different rates. In this work, we focused
on the tasks and runnables of Table I. All times are in ms.

Task Exec time (avg) Exec time (max) Runnables
2ms 0.85 1.15 50

10ms 1.88 2.13 70
100ms 0.309 0.36 15

TABLE I
TASKS AND RUNNABLES FOR OUR TARGET APPLICATION.

The communication variables among the last two tasks
amount to a total of 214 for a memory requirement of 595
bytes. An additional buffer applied to all of them would result
in almost 600 additional bytes of RAM required. As for the
running times, as shown in the table, the average execution
time of a runnable is from 15 to 26 µs and the γi go from 23
to 30 µs. The overheads for the lock and unlock operations
on shared resources by the (OSEK) OS are 0.5 µs for locking
a resource and 0.9 µs for unlocking it.

III. DATA CONSISTENCY AND TIME DETERMINISM

There may be several types of consistency issues when
mapping runnables into tasks

• Runnables in the same component share variables in the
component’s state and are activated at different rates.
This case is shown in the left hand-side of Figure 3. In
this case, we must ensure access to the state variables is
performed in a mutually exclusive way by the runnables.
Runnable ρ11 activated with a rate of T = 10ms is
writing information that is read by ρ13 executed every
20ms. We assume runnables are mapped into two tasks
executing at their rates and the high rate task has higher
priority. In this case, the task implementing ρ11 can
preempt the task implementing ρ13 while the latter is
updating the state variables, thereby using an inconsistent
version of the component’s state. In this case, we need to
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Fig. 3. Data communication among runnables at different rates.

enforce the impossibility of mutual preemption, at least
during the time needed to access the state variables.

• One runnable makes use of state variables and needs to
be executed in response to multiple events at different
rates or multiple asynchronous events. In this case, state
variables can be accesses by multiple instances of the
runnable and they need to be protected against concurrent
read-write access. This is a special version of the previous
case.

• There is (data-oriented) communication using ports with
non-atomic data between runnables activated at different
rates. One such scenario is represented in figure 3.
Runnable ρ13 is activated with a rate of T = 20ms
and writes information that is read by ρ21 executed every
10ms (oversampling). Once again, we assume runnables
are mapped into two tasks executing at their rates and
the high rate task (the receiver in this case) has higher
priority. In case runnables are communicating on a data
port representing a type not accessed in an atomic way,
there can be data consistency issues if ρ13 is preempted
by the task of ρ21 while it is updating the communication
variables. In this case there may be a consistency issue
when part of the variables are written by the current
instance of ρ13 and part by the following instance while
possibly being interrupted in between by ρ21, but also a
time determinism issue since ρ21 can use data produced
by any of the two instances of ρ13. Data consistency
should also be required, and once again, this means
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ensuring access to the communication variables in a
mutually exclusive way by the runnables. However, also
time determinism should be provided to ease verification
of the system properties. In this case, we need to ensure
that ρ21 always uses the values produced by the first
instance of ρ13 and additional mechanisms are needed
like the Rate Transition block described below.

• Runnables operate on multiple inputs coming from
runnables at different rates. In this case, the reader may
require that all inputs are produced by instances of the
writer runnables activated at the same time. This form
of time determinism on the input data may allow better
control or predictability over the functioning of the reader
runnables.
Figure 4 shows a possible counterexample, in which
runnable ρ3, executing at higher rate/priority, reads the
latest value produced by runnable ρ1 and the value
produced by the previous instance of ρ2. In this case,
to ensure this type of time determinism, it is necessary
to prevent the reader runnable from executing between
the updates of the communication variables by any of
the writers belonging to the same instance set. A simpler
solution would be to consider all the writer runnables as
a non-preemptable set by the reader.

IV. PROVIDING DATA CONSISTENCY AND TIME
DETERMINISM

There are several ways to make sure that the runnable
implementation into tasks does not incur in any of the previous
problems. Before discussing the possible approaches, however

a) Ensuring there is no preemption by time analysis: The
first option consists in using time analysis to demonstrate the
impossibility of mutual preemption between writer and reader
(this also ensures time determinism). These conditions can be
summarized by the following cases.

A high priority writer runnable ρw will not preempt a low
priority reader runnable ρr if

rw ≤ Tw −Owr

where Owr is the maximum offset between the activation of
the writer and the corresponding reader instance. If writer and
reader are harmonic and activated by the same event, then

r
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Fig. 5. Conditions for absence of preeemption between a high priority and
a low priority task.
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Fig. 6. Conditions for absence of preeemption between a low priority and
a high priority task.

Owr = 0. In the case of a low priority reader and high priority
writer (typical of oversampling), the condition is

owr > rw ∨ (owr = Owr = 0 ∧ rw ≤ Tr)

where the second condition is the only one with practical
applicability.

When this type of guarantee is possible, there is clearly no
additional cost for the implementation. Note, however, that the
previous constraints depend on the relative phases of reader
and writers and on the completion time of the reader and writer
runnable (or the runnable accessing the state information).
This completion time depends on how the runnable is mapped
inside the task (Equation 2).

b) Disabling preemption among runnables: The sec-
ond option consists in simply preventing preemption while
runnables are executing and allowing it at the boundaries
between runnables. This option has minimum impact on
the code and results in an additional blocking time when
computing the schedulability of the tasks. The worst case
blocking time is the duration of the longest runnable. From the
memory standpoint, it does not require any additional memory
for buffering mechanisms. The major practical consequence is
the delaying of the worst case response time of runnables. In
this case, the ri,k of each runnable is computed considering a
term Bi that is equal to the maximum of the terms γj where
the runnables to be considered are those mapped into a task
with priority lower than the priority of ρi.

c) Wait free methods (Rate transition blocks): When the
execution time of each runnable is significant if compared
with the execution time of a task, the previous approach
can result in excessive blocking and a different approach is
required. The first alternative consists in protecting the state
or communication variables using wait-free methods. A wait-
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free approach for protecting communication buffers is the
Rate Transition buffer approach of the code generators by
Mathworks [6].

The Rate Transition block behaves like a Zero-Order Hold
block (for fast to slow transitions) or a Unit Delay block plus
a Hold block or Sample and Hold (for slow to fast transitions).
Its implementation consists of a switched buffer.

Conceptually, in the fast to slow (high to low priority)
case, the RT block output update function executes at the
rate of the slower block, but with the priority of the faster
block (dashed box in the left side of Figure 7.) In low to
high rate (priority) transitions, the RT block output update
function runs in the context of the fast task, but at the rate
of the slow task as the first function (dashed box in the
bottom-right side of the Figure) and it feeds the runnables
of the fast task. The RT state update function executes in the
context of the slow task as the last function and update the
internal buffer state (the striped box in the right side of the
Figure.) The output function uses the state of the RT that
was updated in the previous instance of the slow task. In
the case of synchronous activation of communicating tasks
(when owr = Owr = 0, the RT block controls the timing
of data transfer in a completely predictable way, avoiding
data consistency issues and guaranteeing time determinism. In
the cases in which activations are not synchronous, different
mechanisms can be used [7], [2], [3].

The cost of these mechanisms is additional memory for the
implementation of the communication buffers. For the case
of Rate transition blocks, this memory is an additional set of
output variables for transitions from high to low rate (priority)
and an additional set pair of state and output variables for
transitions from low to high rate (priority). The mechanisms
require also some timing overhead for the management of
the communication buffers. This timing overhead is typically
included in the computation time of the runnables.

d) Semaphore locks: The other possibility is the use of
immediate priority ceiling semaphores (or OSEK resources).
In this case, access to the state and communication variables
is protected by lock and unlock primitives (get and release
resource). The impact of this solution on the memory and
time characteristics of the application is the following. On the
memory side, there is no need for replicating any state or
communication variable. However, the implementation of the
semaphores require a minimum amount of additional memory,
even when they are immediate priority ceiling semaphores

and the only required action is to raise the priority of a task
(runnable) to the ceiling priority of the resource whenever
it starts using it. From the point of view of the timing
properties, these mechanisms result in a contribution to the
blocking term Bi equal to the longest critical section used for
accessing communication or state variables by lower priority
runnables/tasks. This value may be much smaller than the
execution time of the entire runnable and bring a significant
advantage with respect to the case of preventing preemption
among runnables.

V. PORTING LEGACY CODE

When runnables are implemented by porting legacy code,
an additional requirement must be considered. The mecha-
nisms for data consistency and flow preservation should be
implemented with minimum changes to the existing code.
Clearly, the proposed methods require different approaches
and may have widely different costs. Disabling preemption
at the beginning of runnables and enabling it again at the
end has requires very limited changes (one or two lines of
code at the beginning and at the end of each runnable. Also,
the implementation of wait-free buffering mechanisms can be
implemented with very little changes in many cases, by simply
adding an additional header file with a few macros to the code
implementing the reader runnables and adding a small portion
of code at the end of the writer runnable. Adding the code for
getting and releasing an (immediate priority ceiling) OSEK
(or AUTOSAR OS) resource before and after the use of each
set of communication or state variables is however much more
difficult and would require multiple changes.

VI. OPTIMIZATION OPPORTUNITIES

As stated in the previous section, several methods can
be used to ensure data consistency and time determinism.
In some cases, it is possible to achieve safe operation
without additional costs, by simply demonstrating absence
of preemption. This sometimes requires careful selection
of the mapping order of runnables into tasks. In the other
cases, several methods are available that offer tradeoffs
between the required amount of additional memory and
the runtime costs of operating systems mechanisms versus
the amount of additional blocking time that is imposed
over tasks. These methods can be used in a combination,
for example, by executing first inside tasks runnables with
large sets of communication and shared state variables,
using time analysis to guarantee their consistency, and then
by preventing preemption among runnables, when those
runnables are very short, leaving the other mechanisms to the
remaining cases. By formalizing the memory cost and the
amount of additional execution time or blocking time that is
required by the following methods, it should be possible to
define an optimization problem as follows.

Define Runnables mapping and protection mechanisms to
Minimize Memory requirements,



Subject to Timing constraints

and to formally look for the memory optimal solution to the
problem.

VII. CONCLUSIONS

We described some of the issues in the implementation of a
set of AUTOSAR runnables providing the functional behavior
of an automatic gear application into a set of concurrent tasks.
The requirements for the consistency of communication and
state variables and the possible additional requirements of
flow preservation (time determinism on the communication)
can be satisfied using several protection mechanisms. The
available methods offer tradeoffs between time response (and
time overheads) and demand for additional (RAM) memory.
Memory costs need to be analyzed, in light of the time
constraints of the application, to select the best mechanism for
the application runnables or possibly a combination of them
within the same application.
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