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Abstract

This article describes important challenges regarding the
design, specification and implementation of FlexRay-based
automotive networks. The authors outline a design ap-
proach that especially accounts for timing constraints of the
network, namely end-to-end and cycle timing constraints.
The schedule generation for electronic control units (ECU)
as well as bus entities is addressed and constraint compati-
bility with basic FlexRay configuration properties is investi-
gated. The discussed design approach considers three prac-
tical design challenges of the automotive industry: first, the
function-based cycle timing constraints and their depen-
dency to basic bus design is presented. Second, the chal-
lenge of distributed development of modern on-board net-
works by many different teams and an approach for collab-
oration improvement is discussed. Finally, the third part de-
scribes the configuration of time-triggered ECU schedules
with respect to different constraint types.

1 Introduction

Automotive electrical and electronic functions are often
subject to physical constraints regarding their temporal be-
havior. These physical constraints are valid for any tech-
nical implementation. For example, the time interval from
the reading of a sensor value until a reaction occurs at an
actuator typically has a so called end-to-end timing con-
straint (e.g. 10 milliseconds maximum). Synchronizing the
activation of four damper actuators is another example for
the need of reliable temporal behavior. An implementation
of functions through communicating software components,
which are deployed on ECUs, must fulfill all constraints.

One solution to tackle hard real-time constraints and the
corresponding design complexity is the introduction of the
deterministic FlexRay bus system [8] [4]. However, this
communication technology implies some new challenges to
be solved within different phases of system development
due to its two-step development approach [6]. On the one
hand, basic bus configuration parameters like the number
and size of static slots [4] and the length of a communica-
tion cycle need to be defined. On the other hand, due to the
high dependency between bus and ECU schedules in case
of synchronized time bases, both need to be developed con-
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currently at a pre-runtime phase.

As an additional challenge induced by the characteristics
of the automotive industry, many distributed development
teams need to exchange information. In particular, ECU
and bus timing-related information needs to be exchanged
- even across the borders of companies. Common de-
velopment methodologies lack the capability of transfer-
ring timing-related information. On system level, local
timing constraints (i.e. budgets) referred to a particular
ECU or software component (SW-C) have to be derived
from mutual dependent end-to-end timing constraints (typi-
cally sensor-actuator or synchronicity constraints). On ECU
level, these budgets as well as several other non-functional
constraints (like protection or functional precedence) have
to be considered during local scheduling.

In this publication a set of cycle and end-to-end timing con-
straints for the communication of software components is
considered. The authors present a comprehensive design
approach to a) check the compatibility of cycle timing con-
straints and basic timing properties of a given FlexRay con-
figuration, b) develop a bus schedule as well as ECU sched-
ule budgets according to cycle and end-to-end timing con-
straints and c¢) configure the ECU schedules according to
other non-functional constraints, e.g. safety-related con-
straints. In addition, so-called Timing Interfaces for a pre-
cise exchange of timing constraints between development
teams are discussed.

2 Proposed Design Flow

The proposed design flow (see Fig. 1) is aligned to the AU-
TOSAR methodology [1]. AUTOSAR gains increasing im-
portance in the automotive domain and real-time systems
development [9].

The input information, which is the software architecture
and the ECU topology, is considered to be given. The map-
ping of software components to ECUs is one major step in
the AUTOSAR methodology. The mapping is also consid-
ered to be given. Besides this, the following input is re-
quired for the proposed design flow:

e The software architecture represents a decomposition
of functionality by means of software components.



For their interaction end-to-end timing constraints are
specified.

e Mapped SW-Cs imply certain constraints on the send-
ing interval of signals throughout the network, called
cycle timing constraint.

e A defined ECU topology implies given FlexRay con-
figuration properties. For example, the bus bandwidth
and the FlexRay cycle [4] are fixed (not the schedule!).
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Figure 1. Overall Design Flow
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The cycle timing constraints are processed by the Cycle
Compatibility Check as depicted in Fig. 1. In this activity,
cycle timing constraints are analyzed with regard to their
compatibility to the timing properties of a given FlexRay
configuration.

The next step, analyzing the System Schedulability, relies on
the compatibility guarantee and the end-to-end constraints
given by the functions to be integrated. This activity decom-
poses the function-based end-to-end constraints into chain
segment constraints to be fulfilled by the corresponding
ECUs. A methodology is introduced by defining a timing

interface concept between the scheduling activities of sys-
tem and ECU level. This allows a fast and efficient applica-
tion of global bus scheduling strategies.

The last step of the proposed approach, outlined in Sec. 5,
describes a local ECU Scheduling strategy. This task con-
sists of many constraints to fulfill and has a direct depen-
dency to the System Schedulability step. Timing constraints
to be fulfilled by an ECU are transferred using the timing
interface described in Sec. 4. In addition to this, other
non-functional constraints have to be regarded for the de-
velopment of local execution schedules. By reducing these
constraints to a weighted attribute for the task set to be
scheduled, a constructive approach is introduced for the de-
velopment of local execution schedules. This is a typical
optimization problem with additional parameters to be re-
garded. The proposed design flow results in a handover of
timing constraints from the local ECU Scheduling step to
the System Schedulability step. In this case, the constraints
have the semantic representation of a guarantee.

Each step has implications on the decisions and inputs re-
trieved from prior steps in the proposed design flow. These
implications are indicated as feedback arrows in Fig. 1.
It is part of our future work to develop strategies how this
feedback can be dealt with. We consider concepts, how ei-
ther incompatibilities or non-schedulability of timing con-
straints are tackled. End-to-end constraints are mostly given
by physics and thus are fixed. Hence, we basically see two
main options. Either the cycle constraints for communica-
tion can be adapted or the software mapping can be recon-
figured. The core of our future work will be to derive appro-
priate proposals for adjustment of these input parameters.

3 Cycle Compatibility Check

The fulfillment of cycle timing constraints by a FlexRay
network is basically limited by the timing properties of
the given FlexRay configuration. This mandatory limi-
tation yields a division of given cycle timing constraints
into two subsets. The first subset consists of so-called
configuration-compatible cycle timing constraints. These
are constraints, which can basically be fulfilled by the
given FlexRay configuration without any adjustment of a
FlexRay property. The second subset consists of so-called
configuration-incompatible timing constraints. These are
constraints, which can not be fulfilled without any adjust-
ment even if all static slots [4] are available. To be able
to detect configuration-incompatible timing constraints in
an early phase of the development process, a method for
checking the compatibility of signals timing constraints
regarding a given FlexRay configuration was developed
and is presented in this section. In case of detecting
configuration-incompatible timing constraints different ad-
justment strategies such as changing timing properties of a
given FlexRay configuration, changing the function-based
timing constraints or reconfiguring the software mapping



may be applied to establish the compatibility. Although
these adjustment strategies are not in the scope of this paper,
it should be noted that any adjustment strategy is a trade-off
between technical feasibility of functions and development
effort.

The proposed Cycle Compatibility Check is applied to sig-
nal’s cycle timing constraints. It is not of vital importance
whether a single constraint refers to one or a group of sig-
nals. In case of an incompatibility detection of a timing
constraint each signal with this constraint is basically not
schedulable by the given FlexRay configuration.

It should be noted that only periodic sending requests are
considered by the Cycle Compatibility Check. Additionally
the dynamic segment is not considered for meeting timing
constraints due to its non-deterministic behavior. Depen-
dencies between timing constraints are also not considered
since this is a task for the System Schedulability analysis
step (see Fig. 1).

The basis for the Cycle Compatibility Check is both the tim-
ing properties of a given FlexRay configuration and the sig-
nals cycle timing constraints. The timing properties of a
FlexRay configuration are mainly given by the values of
several configuration parameters [4]. For the Cycle Com-
patibility Check, as depicted in Fig. 2, primarily the follow-
ing FlexRay properties are of interest [4]:

e length of communication cycle (7¢)

length of dynamic segment (Tpys)

length of network idle time (T r)

length of symbol window (Tsyy)

length of one static slot (Tssi0t)

number of static slots (Ngsiot)

The signal cycle timing constraint, as described before, is
the periodic sending request (Tpsg).
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Figure 2. Relevant configuration parameters

An essential element of the Cycle Compatibility Check is
the greatest common divisor (GCD) as defined in (1) and

Q).
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The GCD of the cycle length and the periodic sending re-
quest, GCD(T¢, Tpsr), represents the minimum time in-
terval between two required bus accesses of the correspond-
ing node. This time interval is an essential part of the Cycle
Compatibility Check which is based on the following con-
ditions.
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In case of GCD(T¢,Tpsr) # Tc additionally condition
(5) must be fulfilled.

5) GCD(T¢, Tpsgr) mod Tssior = 0

In condition (3) it is required that the minimum time inter-
val between two required bus accesses must be greater than
the total duration of the dynamic segment, the network idle
time and the symbol window. This is justified due to the
non-deterministic characteristics of these parts [4]. In (4)
it is required that the number of required bus accesses per
communication cycle is less or equal than the number of
available static slots. By this condition it is also ensured
that the minimum time interval between two required bus
accesses is greater than the duration of a single static slot.
In (5) it is required that a whole number of slots fits into the
time interval. This is needed because sending in the middle
of a slot is not possible.

If all cycle timing constraints pass the Cycle Compatibil-
ity Check, it can be guaranteed that all of them are com-
patible regarding a given FlexRay configuration. Note
that this does not necessarily mean that an appropriate
FlexRay schedule exists. This is justified due to the non-
consideration of dependencies between timing constraints,
which is part of future work. However, the determined com-
patibility is the basis for the System Schedulability analysis
in the next step, see Fig. 1.

4. System Schedulability of Automotive Real-
time Systems

4.1 Roles and their Activities in Distributed
Development

The automotive industry is characterized by a distributed
development strategy. That is, the overall vehicle electrical
system is developed by many different teams. The vehicle
electrical system consists of several domain clusters (chas-
sis, power train, etc.). In this work we consider a cluster as
a system, e.g. the FlexRay cluster of the chassis domain.
For a description of our approach to improve distributed de-
velopment of an automotive system we first identify three
important roles.



One role is the system integrator who designs, and later on,
integrates the system. The system integrator (typically a car
manufacturer) specifies the system’s ECU network (sensors,
controllers, actuators) and the software components, which
are mapped onto the ECUs (see Fig. 1). The ECUs are then
developed by ECU integrators (typically first tier suppli-
ers). This role integrates the software components and basic
software according to the system integrator’s specification.
As one of AUTOSAR’s proposed benefits, software compo-
nents may be delivered by third party software component
suppliers, which is the third role. It is the system integra-
tor’s task to integrate all ECUs to a functioning system. It
is the ECU integrator’s task to integrate all software com-
ponents on an ECU according to its specification. To avoid
inconsistencies and misunderstandings between these three
roles a common specification format is required. Therefore
AUTOSAR offers a standardized software architecture and
a standardized exchange format [1]. However, the standard
must still be extended to a standardized specification of tim-
ing information [9]. Furthermore, methods must be devel-
oped to use this timing information for improved distributed
development with respect to the fulfillment of global timing
constraints.

4.2 Real-time Constraints in Distributed De-
velopment

The system integrator typically specifies the software archi-
tecture, the available hardware and the mapping of the soft-
ware components to the hardware (see Fig. 1). As described
in the previous section, ECUs are often developed and inte-
grated by different engineering teams. Thus, the function-
based timing constraints now affect the integration work of
different teams (see Fig. 3).

In a time-triggered FlexRay system, as it is discussed in this
publication, the dependency of function-based and ECU-
based (component-based) timing constraints is obvious:
physically distributed software components that share data
need to communicate via the FlexRay bus. At the same
time the software components have to be executed in stat-
ically scheduled OS tasks. The overall latency of an end-
to-end signal path thus is influenced by one or even several
ECU schedules that run the software components and the
bus schedule. In a FlexRay system, these schedules typi-
cally have a common time base and therefore they are inter-
connected as one global schedule. Changes on one of the
schedules can affect the data availability at other ECUs. To
reduce complexity, an approach is needed to decouple the
development of the ECU schedules and the bus schedule
from each other. This means global timing constraints need
to be decoupled to component-specific timing constraints.
A decoupling of ECU and bus schedule configuration would
enable the teams in charge of a certain role to focus on their
specific tasks:

e The system integrator, who has the knowledge of

global function-based timing constraints, must define
a bus schedule. In his schedule generation process he
must consider global timing constraints. As he knows
which ECUs participate in which of these constraints
he must define the FlexRay schedule accordingly. To
guarantee timing correctness of the system he must
specify appropriate timing requirements to the ECU
integrators, with respect to the given bus schedule.

e The ECU integrator must be able to configure the
local ECU schedule according to the bus. He does
not necessarily know the global timing constraints,
which his components are involved in. Thus, his local
changes shall not influence the global timing behavior.
Therefore he needs “configuration boundaries”, i.e.
well-defined local timing constraints.

o The software component supplier cannot directly influ-
ence the timing behavior of his software component as
it is scheduled by the ECU integrator. However, he can
provide component-based timing properties like exe-
cution times or runnable entity execution order con-
straints.

Timing interfaces are an approach to achieve this desired
decoupling of responsibilities. The next section describes
how the proposed timing extension of AUTOSAR [9] can
be utilized for this purpose.
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Figure 3. Distributed Development

4.3 Using Timing Interfaces for a more Flex-
ible System Design

In this section we want to outline, how timing interfaces
can be used to obtain a more flexible design process. Basi-



cally they enable a decoupling of system, ECU and software
component timing treatment. The proposed AUTOSAR
timing extensions [9] can directly be used to specify system-
, ECU- and component timing constraints. The AUTOSAR
timing extensions are based on so called timing chains. An
expected causal sequence of observable events can be speci-
fied by using timing chains. Typically, timing chains follow
a signal path, e.g. of an end-to-end communication. In a
distributed development scenario such a signal path can af-
fect different teams, e.g. two ECU integrators and a system
integrator (signal comes from a sensor ECU, data is trans-
mitted to a controller and actuator ECU). That is, certain
parts of the specified timing chain and their events belong to
different responsibilities. However, a timing constraint for
the complete path must be fulfilled. Figure 3 depicts such
kind of scenario. Timing interfaces are based on the concept
of contract-based timing specification. Rich Components
[3] are a similar concept to add non-functional requirements
to component models. In our context, timing interfaces de-
fine explicit hand-over-points (HOPs) within timing chains
[10] to add timing contract information. Thus, HOPs can be
attached to observable events which concern more than one
responsibilities, i.e. development teams. In this way, tim-
ing constraints can be added to AUTOSAR-compliant enti-
ties. It is the system integrator’s task to translate function-
based end-to-end timing constraints (for the complete tim-
ing chain) to appropriate local timing constraints, from one
HOP to another HOP of the timing chain. The goal is that
the overall timing constraint must in all cases be fulfilled, if
the local constraints are fulfilled. In this way each ECU in-
tegrator has an own local scheduling goal and does not nec-
essarily need to know about the global dependencies, which
his component is participating in. This way his schedule
development is decoupled from the bus schedule develop-
ment. The local constraints can for example directly be
attached to the AUTOSAR ECU Extract, which describes
the ECU configuration (software components, basic soft-
ware etc.). Of course, the following challenges have to be
considered:

e Global timing constraints have to be translated to lo-
cal constraints using HOPs. Defining HOPs is not a
difficult task as responsibilities are clear and the AU-
TOSAR timing extensions allow for a well defined set
of observable events. However, local constraints must
be defined wisely and with respect to the rest of a com-
plete timing chain. The system integrator must pre-
cisely define the local constraints to be met.

e The system integrator has to consider that in an au-
tomotive system many signal paths with timing chain
constraints can exist. First, these timing chains influ-
ence each other. Second, several timing chain seg-
ments that belong to one responsibility all have to
be fulfilled by this role. Thus, the system integrator
should propose a set of constraints for each ECU inte-

grator that probably is satisfiable.

If global timing constraints have successfully been trans-
lated to local constraints, each role can perform its dedi-
cated scheduling according to all its constraints. That is, bus
scheduling is done by the system integrator and the ECU
scheduling is done by the ECU integrators. The system in-
tegrator proposes the local constraints as requirements of
the ECU configuration (see Fig. 3).

The timing interface approach targets an iterative process.
ECU integrators are able to reflect their scheduling results
back to the system integrator as so called timing guarantees
with respect to the given requirements. The system integra-
tor can collect this data and, in a next iteration, can process
adapted local constraints. It is unrealistic that a solution is
found at once that produces local constraints that can all be
fulfilled by the ECU integrators. In the envisioned iterative
process a good global solution can be approached. Between
process steps, timing requirements and guarantees are ex-
changed that are attached to AUTOSAR-compliant specifi-
cation sheets.

S. Improving ECU Configuration and Schedul-
ing

As mentioned before, the ECU integrator retrieves timing
constraints to be fulfilled by the implementation and, fur-
thermore, by the scheduling configuration of the local ECU.
This section outlines an approach to construct local sched-
ules on the basis of such “boundaries”, in the following
termed as constraints.

Figure 3 shows the exemplary ECU 2, which is to be con-
figured. It has access to a FlexRay bus and two software
components are mapped on this ECU. For simplicity, each
SW-C implements one runnable entity (RE) with cycle tim-
ing constraints for the execution, e.g. 5 and 20 milliseconds.
Basic software was left out of this consideration completely.
Obviously, the timing constraints need well-defined entities
within the system which they refer to. Therefore, HOPs
were introduced in Sec. 4.3. They are also marked in Fig.
2. Based on these HOPs, local timing constraints can be
specified.

For example, such a constraint may restrict the latency be-
tween two referenced observable events to a minimum and
a maximum time value. Typically, this kind of constraint
is not the only one needed for a proper description of the
ECU’s timing behavior. The proposed AUTOSAR timing
extensions [9] provide some more of them, especially re-
lated to communication.

There are a lot more non-functional constraints affecting the
local scheduling problem of the ECU. Runnable entities of
SW-Cs have to be mapped to operating system tasks. This
mapping decision may be restricted by such non-functional
constraints. For example, external requirements can pre-



scribe that certain REs have to be separated for the sake
of system’s safety. This may lead to a non-functional con-
straint that these REs cannot be mapped to the same task.
Another example for a non-functional constraint is the over-
head for preemption, activation and termination of tasks.
Certain suppliers provide a fixed task-set for mapping of
RESs only. Thus, there is no freedom of task definition with
other cycle times anymore.

The constraints mentioned in the last paragraph do not af-
fect the scheduling problem but rather the task-set con-
struction problem. Much work has been done on task-
dispatching algorithms, but either they rely on a previously
defined set of tasks [7] to be scheduled or dynamic schedul-
ing algorithms [5] are discussed. Both of these are not fea-
sible for automotive ECU implementations. The follow-
ing section outlines basic ideas for a task-construction ap-
proach. Task-construction and scheduling is a search prob-
lem. Of course, this concept regards all non-functional con-
straints mentioned before.

5.1 Task Set Construction

Typically, there are different severities of constraints. Cer-
tain constraints are really stringent and have to be fulfilled
in any case. Others can be relaxed if no ECU configura-
tion can be found otherwise. This leads to a weighting ap-
proach for each constraint to be regarded. One example for
a stringent constraint is the required execution cycle time of
runnable entities. This helps in reducing the search space to
be traversed.

Let RE be a runnable entity, ¢(x) the cycle time of (task or
RE) x and T the task-set to be constructed. The allocation
between runnable and task cycle times leads to a very easy
but mighty heuristic:

(6) VRE: 3j €T : t(j) | t(RE)

With this restriction, the potential tasks for the RE mapping
are directly derived. Applying additional constraints like
the exclusion of mapping two runnable entities together on
one task leads to additional implications to the constructed
task-set.

The weightings not only help to reduce search space, but
also serve as a quality metric for the constructed task set. If
an appropriate task-set has been found, standard approaches
[2] can be applied to this set respecting local execution bud-
gets. The found schedule is planned statically by means of
a schedule table. Thus, it is possible to traverse given data
paths (available in the software architecture) and summing
up execution times of involved REs. This results in a decla-
ration of latency within the configured ECU. Providing this
latency over the timing interface, the ECU scheduling ac-
tivity can guarantee the timing constraints required by the
System Schedulability step.

6. Summary

This paper presented a comprehensive design approach for
improving the distributed development of FlexRay-based
automotive real-time systems. Mainly three challenges
were discussed. First, the relation and the basic compatibil-
ity of communication-specific cycle timing constraints re-
garding a given FlexRay configuration was discussed. This
leads to a method for checking their compatibility. Second,
the challenge of distributed development of modern on-
board networks by many different teams was outlined. This
leads to an approach for collaboration improvement. There-
fore, the concept of timing interfaces was explained. Third,
the configuration of time-triggered ECU schedules with re-
spect to timing constraints as well as other non-functional
constraint types was considered.
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