
CUFFS: An Instruction Count Based Architectural Framework
for Security of MPSoCs

Krutartha Patel† Sri Parameswaran† Roshan G. Ragel‡

†School of Computer Science and Engineering, University of New South Wales, Sydney, Australia.
‡Department of Computer Engineering, University of Peradeniya, Sri Lanka.

†{kpatel, sridevan}@cse.unsw.edu.au ‡roshanr@ce.pdn.ac.lk

Abstract—Multiprocessor System on Chip (MPSoC) architecture is
rapidly gaining momentum for modern embedded devices. The vulner-
abilities in software on MPSoCs are often exploited to cause software
attacks, which are the most common type of attacks on embedded systems.
Therefore, we propose an MPSoC architectural framework, CUFFS, for
an Application Specific Instruction set Processor (ASIP) design that has a
dedicated security processor called iGuard for detecting software attacks.

The CUFFS framework instruments the source code in the application
processors at the basic block (BB) level with special instructions that allow
communication with iGuard at runtime. The framework also analyzes
the code in each application processor at compile time to determine
the program control flow graph and the number of instructions in each
basic block, which are then stored in the hardware tables of iGuard. The
iGuard uses its hardware tables to verify the applications’ execution at
runtime. For the first time, we propose a framework that probes the
application processors to obtain their Instruction Count and employs an
actively engaging security processor that can detect attacks even when an
application processor does not communicate with iGuard.

CUFFS relies on the exact number of instructions in the basic block to
determine an attack which is superior to other time-frame based measures
proposed in the literature. We present a systematic analysis on how CUFFS
can thwart common software attacks. Our implementation of CUFFS on
the Xtensa LX2 processor from Tensilica Inc. had a worst case runtime
penalty of 44% and an area overhead of about 28%.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and Design
Aids
General Terms
Design, Performance, Security
Keywords
Architecture, Instruction Count, MPSoC, Attacks, Tensilica

I. INTRODUCTION

A Multiprocessor System-on-a-Chip (MPSoC) has been widely ac-
cepted as an architecture for high performance embedded systems [15].
The multimedia devices such as portable music players and cell-phones
already deploy MPSoCs to exploit data processing parallelism and
provide multiple functionalities [8, 27]. With increased functionalities
the complexity of the design increases, and therefore the susceptibility
of the system to attacks from adversaries.

Embedded systems designers often do not include security in their
design objectives. The short design turnaround times, due to competi-
tive pressure of getting a system out in the market, is often soaked up by
getting the functionality, performance and energy requirements correct
[22]. Weaknesses in system implementation inevitably remain and are
often exploited by the attackers in the form of either physical, software
or side-channel attacks. Software attacks that exploit vulnerabilities in
software code or weaknesses in the system design are the most common
type of attacks [2].

Stack and heap based buffer overflows are the most common type of
software attacks [19]. The buffer overflow vulnerabilities in application
programs have been exploited since 1988 [14] and still continue to be
exploited. On average nearly 10.7% of the vulnerabilities reported by
the US-CERT vulnerability reports pertain to buffer overflow attacks.
Figure 1 shows the percentage of buffer overflow attacks in each month
of 2006 and 2007.

Figure 2 shows an example of a stack buffer overflow attack.
Figure 2(a) shows a snippet of vulnerable C code, Figure 2(b) shows
the layout of the stack when function g is called from function f.
As part of writing data to the array buffer in g, the attacker may
supply malicious code in array buf before making a call to g. Passing
a sufficiently higher value than K (which is 50), in len, would ensure
that the stack overflows and the return address is overwritten as shown

0

5

10

15

20

Ja
n

Fe
b

Ma
r

Ap
r

Ma
y

Ju
n Ju
l

Au
g

Se
p Oc
t

No
v

De
c

Months

Bu
ffe

r O
ve

rfl
ow

 %

2006 2007

Fig. 1. US-CERT reported buffer overflow vulnerabilities

in Figure 2(c). Thus the control flow of the program is changed to
execute malicious code. This change in behavior disrupts the code
integrity and causes fallacious program behavior.

Recent literature suggests that newer security threats targeting
portable electronics like mobile phones and music players may pose
significant risks [4, 6]. Given that such devices already employ MPSoC
architectures, it is imperative that security is considered at design time
rather than be employed as a reactive measure. Incorporating security
in the design definitely increases overheads, but given the ability of
attacks to cause fraud, disrupt activity or threaten the confidentiality
of data, the overheads are worth the cost [2, 21].

buffer[0]
buffer[1]

...
buffer[K-1]

local variables g()
saved FP g()

return address g()
arguments

local variables f()
saved FP f()

return address f()

Lower
Addresses

Higher
Addresses

Attacker’s code
...
...
...
...
...

return address g()
arguments

local variables f()
saved FP f()

return address f()

#define K 50
int f()
{
...
g(buf,len);
...

}
int g(void *s, size_t len)
{
char buffer[K];
memcpy(buffer, s, len);
...

}
(a) (b) (c)

Stack
Growth

Stack
Frame
g()

Stack
Frame
f()

Fig. 2. A stack based buffer overflow attack.

In this paper, we propose an architectural framework CUFFS for
detection of software attacks. We design an MPSoC with a dedicated
security processor called iGuard. Each basic block in the application
processors of the MPSoC has one or two check-points which are
instrumented with a special instruction that reports to iGuard. Our
static analysis tool extracts the control flow of the program and the
number of instructions between two sequential check-points. Both the
control flow, and the number of instructions between two sequential
check-points are recorded inside hardware tables of the iGuard. This
information is created at compile time, and recorded in the hardware
tables at load time.

At runtime, the application processors report to the iGuard using the
special instructions as to which basic block they are executing and the
value of the processor’s Instruction Counter (IC) register. The iGuard
uses the communicated information to check that the control flow is
correct and that the number of instructions that were executed from one
check-point to the other is in accordance with the information stored in
its tables. However, if the iGuard finds that the control flow is incorrect
or that the number of instructions between two check-points mismatch
with the value in its hardware tables, it sends an interrupt to all the
processors to abort execution.

One of the novel contributions of this paper is the “active” iGuard
processor in our architectural framework. By “active” we mean that

978-3-9810801-5-5/DATE09 © 2009 EDAA

it checks the IC register of the application processors rather than just
relying on only the information communicated to it from the appli-
cation processors. By reading the IC register, the iGuard determines
whether or not an application processor has missed reporting at a
check-point. If the iGuard finds that a check-point has been passed
through without reporting, an attack is inferred and the application
processors’ execution on the MPSoC is interrupted.

The remainder of the paper is organized as follows. Related Work is
presented in Section II. The architectural framework CUFFS is shown
in Section III. Sections IV and V explain the software and hardware
design flows respectively, with Section VI presenting scenarios of how
the framework will protect the MPSoC against attacks. Experimental
results are presented in Section VII and discussion and conclusions are
presented in Section VIII and Section IX respectively.

II. RELATED WORK

The countermeasures to software attacks can be broadly classified
into either software based or architectural (hardware) based. Software
based countermeasures consist of either static or dynamic techniques.
Static analysis tools help in removing possible vulnerabilities in the
code at compile time. Various static analysis techniques have been
proposed in [3, 5, 7, 23]. Dynamic analysis techniques like CCured,
proposed in [13] aim to detect errors or attacks at runtime.

Hardware techniques for detecting attacks usually use customized
hardware blocks for runtime checks. McGregor et al. proposed a
special return address stack (SRAS) in [10] for protecting against buffer
overflow attacks while Arora et al. proposed a hardware monitor in [1]
that uses the trace of the executing instructions and program addresses
for detecting common software and physical attacks. Milenkovic et
al. proposed a signature verification unit in [11] that checks the
instructions that are fetched from the memory. Ragel et al. proposed
a basic block validation scheme in [20] by modifying the processor’s
microinstructions. Nakka et al. proposed a processor pipeline modifi-
cation framework in [12] for detecting a process crash or hang. Wang
et al. proposed checking the instruction counter register at the function
level in [26] for detecting incorrect execution paths in programs. Mao
et al. proposed a hash-based monitoring approach using a hardware
monitor in [9].

Static analysis techniques do not capture all the vulnerabilities in
the code and often raise a number of false positives. Some, like the
Stack Guard in [3], aim to solve specific problems like the buffer
overflow attacks and may not work for other types of software attacks.
Dynamic code analysis techniques often incur high runtime overheads
due to extra processing at runtime. For example, CCured in [13] incurs
performance overhead of up to 150%.

A majority of the proposed hardware based methods need significant
architectural modifications which is a major limitation for commercial
and extensible processors like Tensilica’s Xtensa LX2. Xtensa LX2
provides a base processor implementation which can be extended using
custom instructions defined using TIE (Tensilica Instruction Exten-
sion). Furthermore, the hardware description of the base processor is
unavailable, which restricts major modifications to the processor.

The SRAS in [10] and the hardware monitor in [1] are not scalable
for commercial processors like Xtensa LX2 due to unavailability of a
special stack required for [10] and access to the executed instructions
(at runtime) required for [1]. Access to the instruction register (IR)
is also unavailable in Xtensa LX2 and hence signature verification
proposed in [11] is not possible. The microinstructions modification
required for [20] and the pipeline modification required for [12] are
also not possible due to the unavailability of the base processor’s
hardware description. The approach proposed in [26] needs various
training data sets to build the instruction count values for program
path patterns. New program paths encountered at runtime which are
not in the training set result in false positives. The approach in [9]
is proposed only for monitoring a single processor and may have
additional overheads while monitoring multiple processors.

Therefore the existing single processor software and hardware solu-
tions discussed above are not quite scalable or need significant archi-
tectural modifications which is unrealizable for extensible commercial
processors like Xtensa LX2.

A software solution and two hardware-based solutions for detecting
software attacks in the multiprocessor domain are discussed in [18],
[16] and [17] respectively.

Our work differs from the previous work proposed in the multipro-
cessor domain in the following ways. Our work uses the number of
executed instructions compared to the use of execution time in clock
cycles as proposed in [16–18], to verify correct execution between two
check-points in an application program. We therefore know the exact
number of instructions that must be executed from one check-point to
the next compared to the time reliant methodology proposed in [16–
18], which employed a range of execution times.

The approaches in [16–18], all proposed a dedicated processor for
security which was “passive”; i.e., the security processor would only
perform timing or control flow checks when the application processors
communicated. In contrast, our work proposes an “active” processor
that probes all the application processors on the MPSoC by regularly
reading their IC for security checks. Hence our work even detects
attacks that can hijack the processor for executing malicious code and
never communicate with the security processor whereas none of the
approaches proposed in [16–18] could detect such attacks.

The work proposed in [16–18] requires the program’s execution
trace to find the range of execution times a basic block can take.
Furthermore, the basic blocks that do not fall on the execution path
have their execution times estimated using the processor’s instruction
set architecture (ISA). Our work only needs to know the exact number
of instructions in each basic block which is available by static analysis
of the assembly code and hence our work neither needs any execution
trace analysis nor does it need to resort to any estimation.

Our work targets software attacks on an MPSoC architecture that
may aim to subvert the control flow of the user’s application and instead
execute malicious code. Stack and heap based buffer overflows (code
injection attacks), pointer subterfuge attacks and arc injection attacks
are prime examples of software attacks that we target in this work.

We assume that the system calls are safe and hence need not be
supervised. If needed however, the functions in the system library can
also be easily instrumented using our design tool. We also assume that
iGuard can be completely secured. This is a reasonable assumption
given that iGuard is a dedicated processor for security and only
runs a loop that executes the customized hardware instructions. These
small number of instructions can be easily placed in a ROM as the
instructions need not change.

A. Contributions

The contributions of this paper are as follows:

1) For the first time, an architectural framework is proposed that
employs a dedicated processor iGuard that “actively” monitors
the application processors to detect software attacks on an
MPSoC. Therefore the framework allows detection of attacks
even when the application processors do not communicate with
the iGuard.

2) Our framework uses the exact number of instructions in a basic
block (which can be statically determined), for security checking
at runtime. Hence the iGuard can determine with certainty
whether or not an attack has taken place. The framework does
not rely on the execution profile of the program to gather security
information for runtime checks.

B. Limitations

The limitations of our approach are as follows:

1) Since our approach provides security solution at the granularity
of a basic block, the runtime penalty of the system is dependent
on the size of the basic blocks.

2) The control flow transitions of the basic blocks with indirect
addressing should be deterministic at compile time or from an
execution profile analysis.

3) Our work does not cover data corruption, or any other form of
attacks like physical or side-channel attacks.

III. ARCHITECTURAL FRAMEWORK

We use Xtensa LX2 processor from Tensilica Inc. for implementing
the proposed framework. The Xtensa LX2 processor provides a base
core implementation that contains 80 instructions. The base core can
be further customized from Xtensa’s existing resource pool by adding
co-processors, multiplier units, boolean registers, local memories, etc.
and also changing features such as the pipeline length and instruction

fetch widths. Besides the customizations from the existing resource
pool, user-defined hardware instructions can be created using Tensilica
Instruction Extension (TIE) language. Xtensa LX2 also provides im-
plementation for ports and queues which we use in our architectural
framework. It also allows defining custom register files and storage
tables for constants.

The layout of the CUFFS architectural framework for an MPSoC is
shown in Figure 3. Every basic block in all the application processors
on the MPSoC is instrumented with at least one special instruction
that allow them to communicate with a dedicated security processor
called iGuard. The special instructions are FIFO queue instructions that
allow the application processors to communicate to iGuard through
INS FIFO (designed using Xtensa LX2’s ports and queue interface)
as shown in Figure 3. Using the communicated information, the iGuard
at runtime, checks whether the applications’ control flow is correct and
also the number of instructions that were executed in each basic block.
Any application processor’s failure in either of these checks causes the
iGuard to send an interrupt to all the application processors to abort
execution which is shown using the IN signals in Figure 3.

App. Proc.
P1

iGuard

I2 I3I1

App. Proc.
P2

App. Proc.
P3

App. Proc.
PN

INS_FIFO
1

INS_FIFO
2

INS_FIFO
4

INS_FIFO
3

IN

CHK_IC

10111011
01010111

Shared
Memory

Fig. 3. The design of the CUFFS architectural framework

Besides these checks, the iGuard also uses a hardware unit called
CHK IC that probes all the application processors to obtain their
Instruction Count through a shared memory interface as shown
in Figure 3. The CHK IC allows the iGuard to detect an attack
even in the case of an application processor being hijacked by an
attacker. The CHK IC’s active probing of the application processors
allows the iGuard to foil an attack even if the attacker prevents any
communication from the application processors using the special FIFO
instructions. The methodology is described in detail as a combination
of software and hardware design flows in the following two sections.

IV. SOFTWARE DESIGN

The software design flow used by our framework is shown in
Figure 4. Firstly, the application program’s source code in C/C++ is
compiled to obtain the source code in assembly. The assembly source
code is then divided into basic blocks (BBs) as shown in Figure 5(a).
Once the program is divided into BBs, static analysis is performed to
yield a control flow graph of the program at the BB level which is
shown in Figure 5(b). The static analysis also generates the statistics
about the number of instructions in each BB.

Source.c Compile Front
End

Source.s Basic Block
Division

Modified
Source.s

Instrumented
BinarySoftware

Design Flow
Basic Block

Instrumentation
Control Flow
Extraction

Assemble &
Link

Fig. 4. The software design in the proposed framework

Each processor is assigned a unique processor ID and each BB of
the program in the processor is assigned a unique block ID. Using the
processor ID and the block ID, a special ID called SID is created for
each BB. This SID is then encrypted using a distinct encryption key
(based upon physical uncloneable functions (PUF), proposed in [25],
to acquire an encryption key using the physical properties of integrated
circuits in the MPSoCs) . An exact copy of the encryption key is also
stored in hardware to decrypt the SID at runtime.

Each BB is then instrumented with one or two special instructions
as shown in Figure 5(c) by our automated static analyzer. A special
iBeatB instruction is added as the first instruction in each BB. A
BB that ends with a system call instruction is instrumented with two

L3:
addi.n a11, a10, 1
l32i a11, a1, 172
l32i a10, a1, 168
l32i a12, a1, 164
mull a9, a10, a11
beqz a5, L4
movi.n a11, 1
mov.n a6, a10
mov.n a12, a7
mov.n a10, a4
mov.n a13, a6
movi.n a6, 0
call8 fread

L4:
l8ui a8, a10, 0
send6 a8
addi.n a6, a6, 1
addi.n a10, a10, 1
xor a7, a7, a8
bne a5, a6, L4

L5:
movi.n a6, 0
xor a5, a4, a3
add a8, a7, a5
l32r a8, .LC0
addi.n a6, a6, 1
bne a6, 50, L5

L3: addi.n a11, a10, 1
l32i a11, a1, 172
l32i a10, a1, 168
l32i a12, a1, 164
mull a9, a10, a11
beqz a5, L4

movi.n a11, 1
mov.n a6, a10
mov.n a12, a7
mov.n a10, a4
mov.n a13, a6
movi.n a6, 0
call8 fread

L4: l8ui a8, a10, 0
send6 a8
addi.n a6, a6, 1
addi.n a10, a10, 1
xor a7, a7, a8
bne a5, a6, L4

L5: movi.n a6, 0
xor a5, a4, a3
add a8, a7, a5
l32r a8, .LC0
addi.n a6, a6, 1
bne a6, 50, L5

L3: iBeatB 6302
addi.n a11, a10, 1
l32i a11, a1, 172
l32i a10, a1, 168
l32i a12, a1, 164
mull a9, a10, a11
beqz a5, L4

iBeatB 6079
movi.n a11, 1
mov.n a6, a10
mov.n a12, a7
mov.n a10, a4
mov.n a13, a6
movi.n a6, 0
iBeatE 6079
call8 fread

L4: iBeatB 6522
l8ui a8, a10, 0
send6 a8
addi.n a6, a6, 1
addi.n a10, a10, 1
xor a7, a7, a8
bne a5, a6, L4

L5: iBeatB 6279
mL5: movi.n a6, 0

xor a5, a4, a3
add a8, a7, a5
l32r a8, .LC0
addi.n a6, a6, 1
bne a6, 50, mL5

(a) a code segment (b) BB division of code segment (c) CF graph with instructions

Fig. 5. Basic block division and control flow extraction

special instructions, iBeatB and iBeatE as shown in the second BB
box in Figure 5(c). The number in the iBeatB and iBeatE instruction
is the encrypted SID. A BB representing a loop where the frequency of
execution can be statically known is instrumented slightly differently
by our static analyzer as shown in the last BB of Figure 5(c). An extra
label is inserted after the iBeatB instruction and the target of the branch
is changed to this extra label. This type of instrumentation allows the
iBeatB instruction to be executed only once per loop, thus reducing
communication overhead.

The information regarding the control flow of the program and the
number of instructions in each basic block are stored in hardware
tables. These tables will be used at runtime by iGuard for security
checking. We also refer to places where special instructions iBeatB and
iBeatE are inserted as “check-points” in the paper. Both the iBeatB
and iBeatE are hardware instructions that write to a FIFO queue
when executed. The special features of the FIFO queue are detailed in
Section V.

V. HARDWARE DESIGN

The hardware design flow employed by our framework is shown
in Figure 6. We start with a base processor core configuration that
is customized in two stages. It must be noted that our framework is
concerned with integrating an iGuard processor on the MPSoC and that
the customizations that lead to application processors on the MPSoC
are according to the user’s specifications.

Base
Processor

Customization
using Existing
Resources
A,B,C,D,E,F

INS_FIFO Queues
Register File
Storage Tables
CHK_IC HW Insn
GUARD HW Insn

INS_FIFO Queues

Pipeline
Length

Boolean
Registers

Max Insn
Width

MIN/MAX/
MINU/MAXU

Co-
processors

MUL16/
MUL32

Customization
using Existing

Resources A,B,C

MPSoC

iGuard

Application
Processors

A B C D E F
Existing Resource Pool

Hardware
Design Flow

Fig. 6. The hardware design in the proposed framework

The first stage involves the processor’s customization using the
existing pool of resources which may involve greater or fewer number
of items than the ones shown in Figure 6. Some of the customizations
that are possible in the Xtensa LX2 processor are modification of the
pipeline length, maximum instruction width and addition of boolean
registers, instructions, co-processors and multiplier units. Since we are
proposing a simple iGuard processor for security, it is customized
independently of the application processors selecting only the features
that are needed. For example, as shown in Figure 6, resources A, B
and C are needed for the iGuard but not resources D, E and F.

The second stage of customization involves defining custom hard-
ware instructions. The Xtensa LX2 processor allows users to define
custom hardware using TIE language. We define implementation for
the INS FIFO queues, a register file, storage tables and some hardware
logic. The INS FIFO queues are designed so that the application
processors on the MPSoC can communicate to the iGuard and a custom
register file is designed to have faster access to data for the hardware
instructions. The storage tables are used to store the control flow graphs
and number of instructions per basic block for the programs in each
of the application processors. The CHK IC and GUARD hardware
instructions are used to design some runtime security checks which
are further discussed in Section V-A.

Finally, these customizations yield an iGuard processor that can be
used for detection of software attacks in the application processors on
an MPSoC as shown in Figure 6.

A. Runtime Functionality

The iGuard processor at runtime employs a fixed set of instructions
to check the control flow (CF), the instruction count (IC) and a
timeout (TO) for processors that have missed reporting at any of
their check-points. The algorithm employed by the iGuard is shown
in Algorithm 1.

Algorithm 1 The algorithm employed by iGuard for security

Initialize error = 0, done = 0;
while ((error == 0) AND (done == 0)) do

for j = 1 to N do
if (INS FIFOPj

not EMPTY) then
Read and Decrypt INS FIFOPj

Information
end if

end for
GUARD(error, done);
CHK IC();

end while

The Algorithm 1 does three things: (1) Reads the incoming
INS FIFO queue if they are not empty; and (2) Executes the GUARD
hardware instruction; and (3) Executes the CHK IC hardware instruc-
tion;

If the INS FIFO contains information, it is read and decrypted using
the hardware key as shown in Figure 7. The resulting information is
stored in a storage state FIFOINFO of iGuard.

FIFOINFO

INS COUNT

Decrypt

HW_KEY
iGuardApp. Proc. PN

iBeatB
iBeatE

Instruction
Memory

SID
SID

INS_FIFO

Fig. 7. The FIFO between application processors and iGuard

Since both (2) and (3) are hardware instructions, they are executed
in parallel. We discuss (2) first which is the GUARD instruction. The
runtime logic that allows the GUARD instruction in Algorithm 1 to
compute the error signal is shown in Figure 8. The iGuard uses the
FIFOINFO to know the BBs that are currently executing (currBB) in
the application processors, the current instruction count value (currIC)
in the application processor and also the type of FIFO information
(currCode). The iBeatB and iBeatE have currCode of 0 and 1
respectively. The last iBeatE instruction that an application processor
sends has a currCode of 3 and if the FIFOINFO does not contain
new information, the currCode is 2.

The prevBB, prevIC and prevCode are all storage states that are
designed to hold the previous BB, IC and type of iBeat instruction
that were read from the INS FIFO. All the three storage states
prevBB, prevIC and prevCode are updated from currBB, currIC
and currCode respectively, which is shown by three dotted lines with
arrows at the end in Figure 8. The updating takes place at the end of
the hardware instruction after the error signal has been computed from
the logic shown in Figure 8. The possible values of prevCode is 0 or
1 because 2 denotes that no new information was communicated and
3 denotes that the execution has finished in a particular application
processor.

prevCodeN

FIFOINFON

currCodeN
0, 1, 2, 3 currBBN

prevBBN

Insn
Count
Check

Control
Flow
Check

CHK_IC
0 1S

0 1S

0 1SprevCodeN

2
0

currCodeN
errorN

3

prevICN

currICN prevCodeN
0, 1

CFEN

TOEN

ICEN

Fig. 8. The logic employed by the GUARD instruction

The Insn Count Check uses the currBB to index into the hardware
table for instruction counts and obtain the number of instructions
for currBB. It then compares the table entry with the difference of
currIC and prevIC. If the table entry does not match exactly an error
signal instruction count error ICE=1 is generated, otherwise ICE=0 is
generated.

Similarly, the Control Flow Check uses the prevBB to index into
the hardware table for control flow and obtain the possible transitions
from the basic block prevBB. If the currBB does not exist in the
hardware table for control flow, as one of the valid transitions from
prevBB, then an error signal CFE=1 is generated, otherwise CFE=0
is generated.

Since not all the checks are valid at all the time, appropriate signals
are selected from the MUX based on the value of firstly the prevCode
and then the currCode. For example, if the FIFOINFO received was
an iBeatB instruction followed by another iBeatB instruction; which
is prevCode=0 and currCode=0, both the ICE and CFE must be
checked. However if an iBeatB instruction (prevCode=0) followed by
an iBeatE instruction (currCode=1) was received, only the ICE must
be checked.

If no information was received through the INS FIFO for a partic-
ular application processor, i.e., currCode=2, the time out error signal
TOE generated from the CHK IC hardware instruction is selected
from the MUX as the errorN . The block diagram of the logic used
in the hardware of CHK IC instruction is shown in Figure 9.

App. Proc.
P1

S2
S3

S1

App. Proc.
P2

App. Proc.
P3

App. Proc.
PN

S4

10111011
01010111IC IC IC IC
Shared
Memory

TOEN10111011
01010111

HW Table
Insn Count

prevBBN

prevICN

If (ICN – prevICN) >
tabICN

ICN

tabICN

Fig. 9. The hardware logic for the CHK IC instruction

The CHK IC hardware block sends out a signal S to all the appli-
cation processors and obtains the value of the application processor’s
IC. The CHK IC hardware is also aware of the last received IC which
is available in prevIC and the last received BB information, available
in prevBB. The prevBB is used to index into the instruction count
hardware table and the table entry is compared to the difference of IC
and prevIC. If the difference is greater than the table entry, a TOE=1
is generated indicating that the application processor has likely missed
out reporting on a check-point due to an attack, otherwise TOE=0 is
generated.

We have N identical hardware units shown in Figure 8 for each of
the N application processors on the MPSoC to allow fast computation
of the errorN and doneN signals. The overall error signal is computed
based on a logical OR operation of the individual errorN signals
and the done signal is changed to 1 when the final processor finishes

execution, i.e., currCode for the final processor is 3. An error signal
of 1 sends an interrupt to the application processors to abort execution.

VI. SYSTEM PROTECTION MECHANISMS

In this section, we discuss how the CUFFS architectural framework
can be used for an MPSoC’s protection. Errors are indicated using CFE
(Control Flow Error), ICE (Instruction Count Error) and TOE (Time
Out Error). If any of these are active, the execution of all the application
processors on the MPSoC is aborted. The MPSoC security can be said
to be compromised if any of the application processors is under attack.
Software attacks in systems usually aim to execute malicious code that
is either already present in the system or is injected.

The CUFFS framework monitors for security at the BB level. If we
can ensure that each BB execution in terms of the control flow and the
number of instructions executed are correct, we know that the control
flow and the number of instructions executed for the entire program are
correct. We classify the BBs into three types: (1) ending in a system
call; (2) ending in a control flow instruction (CFI); and (3) ends in
neither a system call nor a CFI. We show in this section that CUFFS
is able to detect the attacks for each of the three types of BBs and
hence secures the application.

(a) original code segment

L3: iBeatB 6302
addi.n a11, a10, 1
...
mull a9, a10, a11
beqz a5, L4

iBeatB 6079
movi.n a11, 1
...
movi.n a6, 0
iBeatE 6079
call8 fread

L4: iBeatB 6522
l8ui a8, a10, 0
...
xor a7, a7, a8
bne a5, a6, L4

(b) BB 6079 Attack 1

L3: iBeatB 6302
addi.n a11, a10, 1
...
mull a9, a10, a11
beqz a5, L4

attack Insn
attack Insn
...
attack Insn
attack Insn
attack Insn

L4: iBeatB 6522
l8ui a8, a10, 0
...
xor a7, a7, a8
bne a5, a6, L4

(c) BB 6079 Attack 2

L3: iBeatB 6302
addi.n a11, a10, 1
...
mull a9, a10, a11
beqz a5, L4

iBeatB ????
attack Insn
...
attack Insn
iBeatE ????
attack Insn

L4: iBeatB 6522
l8ui a8, a10, 0
...
xor a7, a7, a8
bne a5, a6, L4

Fig. 10. A basic block ending with a system call under attack

The attack scenario in which the attacker’s BB does not communi-
cate with iGuard using the iBeat instructions is shown in Figure 10(b)
(for BB type 1) and Figure 11(b) (for BB type 2). The BB with SID
6079 or 6522 was supposed to follow the BB with SID 6302. But
since the attacker’s BB does not use an iBeat instruction to report to
the iGuard, the iGuard will infer an error due to a timeout, generating
a TOE. The works in [17] and [16] would not be able to detect such an
attack as their approaches are reactive, i.e., would only respond if the
application processor(s) initiated the communication. Our work easily
detects such an attack since the iGuard is proactive and is alerted if it
does not receive any communication from the application processor(s).

(a) original code segment

L3: iBeatB 6302
addi.n a11, a10, 1
...
mull a9, a10, a11
beqz a5, L4

iBeatB 6079
movi.n a11, 1
...
movi.n a6, 0
iBeatE 6079
call8 fread

L4: iBeatB 6522
l8ui a8, a10, 0
...
xor a7, a7, a8
bne a5, a6, L4

(b) BB 6522 Attack 1

L3: iBeatB 6302
addi.n a11, a10, 1
...
mull a9, a10, a11
beqz a5, L4

iBeatB 6079
movi.n a11, 1
...
movi.n a6, 0
iBeatE 6079
call8 fread

L4: attack Insn
attack Insn
...
attack Insn
attack Insn

(c) BB 6522 Attack 2

L3: iBeatB 6302
addi.n a11, a10, 1
...
mull a9, a10, a11
beqz a5, L4

iBeatB 6079
movi.n a11, 1
...
movi.n a6, 0
iBeatE 6079
call8 fread

L4: iBeatB ????
attack Insn
...
attack Insn
attack Insn

Fig. 11. A basic block ending in a CFI under attack

The attack scenario when the attacker’s BB does communicate to
iGuard using the iBeat instructions is shown in Figure 10(c) (for BB
type 1) and Figure 11(c) (for BB type 2). The attacker employs the
iBeat instruction as the first instruction in the BB. Since the iBeat
instructions have the SID which is encrypted, the iGuard will cause a
CFE when the SID is decrypted to an unknown value that will cause
the control flow check to fail.

The iBeat instruction in the attack scenario in Figure 10(c) and
Figure 11(c) can also be employed by the attacker such that it is not
the first instruction in the BB. When the iBeat instruction is not used as
the first instruction in the BB, it would fail the instruction count check
when it does communicate to the iGuard, causing an ICE. However,
it is quite likely that a TOE would be generated before the ICE, since
the CHK IC module of the “active” iGuard processor will detect that
a reporting instruction was missed.

When a BB of type 3 faces the attack scenarios mentioned above,
it would have an exact same behavior as that shown by a BB of type
2. Both type 2 and type 3 BBs have only one iBeat instruction per
BB, which is the first instruction in that BB. Thus we have shown that
using the CUFFS architectural framework with the “active” iGuard
processor can be used to detect attacks at the basic block level.

VII. EXPERIMENTAL SETUP AND RESULTS

We tested the CUFFS architectural framework using Xtensa LX2
processor from Tensilica Inc. The framework was tested using three
multiprocessor multimedia benchmarks (JPEG Encoder, MP3 and
JPEG Decoder) of varying complexities. These multiprocessor bench-
marks were obtained from the authors of [24] and [28] who had
previously partitioned these benchmarks using Tensilica toolset. The
details of the processor cores designed for testing each of the three
benchmarks is shown in Table I.

Bench- Processor No. of Tech- Speed Power Area
mark Type Proc. nology (MHz) (mW) (mm2)

JPEG Enc.
Application 6 130nm 303 335.58 3.58
iGuard 1 130nm 332 40.52 0.72

MP3
Application 5 90nm 533 678.35 2.08
iGuard 1 90nm 585 93.34 0.53

JPEG Dec.
Application 5 90nm 533 637.55 1.48
iGuard 1 90nm 585 93.34 0.40

TABLE I
THE CORE CONFIGURATIONS FOR THE MPSOC

The first column of Table I shows the benchmark that was tested.
The second column states the type of processor, either application or
iGuard. The third column states the number of application processors
or iGuard processors in the MPSoC system. The fourth column lists
the type of technology used for each of the processor core and the fifth
column states the individual core speed. The sixth and seventh columns
outline the power and area statistics. In the case of application type
processors the power and area figures are a collective statistics for
all the application processors on the MPSoC whereas for the iGuard
processor type the power and area refer only to the iGuard processor.

We have designed the iGuard processor with only the minimal
required features such that its clock speed is higher than the other
application processors on the MPSoC. This would allow the INS FIFO
communication from the application processors to be processed at a
faster rate, as long as the iGuard processor was clocked separately

A. Performance Overheads

The performance overheads resulting from the tests on the three
multimedia benchmarks are shown in Figure 12. The JPEG encoder
benchmark has performance overheads of less than 1% whereas the
MP3 and the JPEG decoder which are more complicated benchmarks
have higher performance overheads.

We also compared our result with the approach proposed in [16]
which has the least amount of performance overhead among all previ-
ously proposed methods for detecting software attacks on MPSoCs. We
also refer to the work in [16] as “LOCS” in Figure 12 and Figure 13.

Figure 12 clearly shows that the performance overheads resulting
from our architectural framework are only slightly higher than the
method proposed in [16]. However, for slightly higher performance
overheads, our approach provides a security framework that can detect
a greater range of attacks compared to [16] and [17] as described in
Section VI.

0.67 0.68 0.68 0.79 0.71

19

0.4 0.42 0.4 0.45 0.36

5.6

24

16.9

1.9

0

4

8

12

16

20

24

grandmom mom mom-
daughter

flower
garden

tennis music galois pattern pip%
 In

cr
ea

se
 in

 R
un

tim
e

O
ve

rh
ea

d CUFFS LOCS

JPEG Encoder Images JPEG Decoder ImagesMP3

26.3 43.9 37.5

Fig. 12. Performance Overheads for CUFFS and LOCS

0

10

20

30

40

50

JPEG Enc. MP3 JPEG Dec.
Benchmarks

%
 In

cr
ea

se
 in

 C
od

e
Si

ze

CUFFS LOCS

(a) Code Size

0

10

20

30

40

50

JPEG Enc. MP3 JPEG Dec.
Benchmarks

%
 In

cr
ea

se
 in

 A
re

a

CUFFS LOCS

(b) Area

Fig. 13. Percentage Inc. in Code & Area for CUFFS & LOCS

B. Area Overheads

The code and area overheads incurred in the MPSoC system due to
our framework are shown in Figure 13(a) and Figure 13(b) respectively.
Our framework, CUFFS, has a higher percentage of code overhead as
shown in Figure 13(a) compared to the approach in [16]. The approach
in [16] has the least amount of code overhead among previously
proposed methods for detecting software attacks on MPSoCs. The
higher code overhead in our approach is a result of employing two
special instructions per basic block when a basic block ends in a system
call.

The CUFFS framework, however, has a lower percentage of area
overhead shown in Figure 13(b) compared to the approach in [16]. A
lower percentage of area is achieved mainly because CUFFS employs
a simple iGuard processor with only the required features compared
to the approach in [16]. It should be noted that we have not accounted
for the communication between the application processors and the
iGuard in our area estimation. It is difficult to estimate the area for
the communication channels at this high level of abstraction without
resorting to place and route methods.

VIII. DISCUSSION

Our framework can also handle the case when the execution of a
basic block is interrupted in a program. A new signal called deduct can
be used to identify whenever an interrupt occurs before a basic block
has finished execution. The number of instructions executed in the
interrupt service handler (ISH) can be recorded by getting the first and
the last instructions of the ISH to record the value of the IC register.
Hence the number of executed instructions in ISH can be calculated and
stored e.g., in IC ISH. Thus, in the case of deduct signal being active,
the application processor communicates to iGuard the (IC - IC ISH)
value, whereas normally when there is no interrupt, the deduct signal
would be low and the IC value would be communicated.

Although we have implemented our framework on Xtensa LX2
processor from Tensilica Inc., the simplicity of algorithm in iGuard
and the simplicity of custom hardware mean that the framework can
be easily adapted for other MPSoC architectures. Our framework
can be scaled to larger systems with many application processors by
employing a greater number of iGuard processors keeping in mind the
performance and area constraints of the MPSoC.

IX. CONCLUSIONS

In this paper, we presented an architectural framework, CUFFS, for
protecting against software attacks. CUFFS uses a dedicated processor
that actively monitors the application processors by probing their
instruction count registers. We have presented an analysis that shows
that our framework can ensure the secure execution of programs in

the application processors in terms of control flow and the number
of instructions executed. Our results showed that compared to other
hardware based counter-measures for detecting software attacks on
MPSoCs, the runtime penalty for CUFFS was slightly worse although
the area overheads were much lower. We believe that our framework
is scalable and general enough to be applied to other processors for
detection of software attacks in MPSoCs.

REFERENCES

[1] D. Arora et al. Secure embedded processing through hardware-assisted
run-time monitoring. In DATE ’05, pages 178–183, Washington, DC,
USA, 2005.

[2] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar. Seca: security-
enhanced communication architecture. In CASES ’05, pages 78–89, NY,
USA, 2005. ACM.

[3] C. Cowan et al. StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proc. 7th USENIX Security Conference,
pages 63–78, San Antonio, Texas, Jan 1998.

[4] T. S. T. Dagon, D. Martin. Mobile phones as computing devices: the
viruses are coming! IEEE Pervasive Computing, 03.

[5] N. Dor, M. Rodeh, and M. Sagiv. Cssv: towards a realistic tool for
statically detecting all buffer overflows in c. In PLDI ’03, pages 155–
167, NY, USA, 2003.

[6] M. Hypponen. Malware goes mobile. Scientific American, 295.
[7] D. Larochelle and D. Evans. Statically detecting likely buffer overflow

vulnerabilities. pages 177–190, 2001.
[8] M. Loghi, M. Poncino, and L. Benini. Cycle-accurate power analysis for

multiprocessor systems-on-a-chip. In GLSVLSI ’04, pages 410–406, NY,
USA, 2004.

[9] S. Mao and T. Wolf. In Proc. of 44th Design Automation Conference
(DAC), San Diego, CA, 2007.

[10] J. Mcgregor et al. A processor architecture defense against buffer overflow
attacks. pages 243–250, 2003.

[11] M. Milenkovic, A. Milenkovic, and E. Jovanov. Hardware support for
code integrity in embedded processors. In CASES ’05, pages 55–65, NY,
USA, 2005.

[12] N. Nakka, G. P. Saggese, Z. Kalbarczyk, and R. K. Iyer. An architectural
framework for detecting process hangs/crashes. In M. D. Cin, M. Kaniche,
and A. Pataricza, editors, EDCC, volume 3463 of Lecture Notes in
Computer Science, pages 103–121. Springer, 2005.

[13] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe retrofitting
of legacy code. In POPL ’02, pages 128–139, New York, NY, USA, 2002.

[14] J. Nelißen. Buffer overflows for dummies.
(http://www.sans.org/reading room/whitepapers/threats/481.php), 2002.

[15] J. Park, H. Song, S. Cho, N. Han, K. Kim, and J. Park. A real-time
media framework for asymmetric mpsoc. In ISORC ’06, pages 205–207,
Washington, DC, USA, 2006. IEEE Computer Society.

[16] K. Patel and S. Parameswaran. Locs: a low overhead profiler-driven design
flow for security of mpsocs. In CODES+ISSS, pages 79–84, New York,
NY, USA, 2008. ACM.

[17] K. Patel and S. Parameswaran. Shield: A software hardware design
methodology for security and reliability of mpsocs. DAC ’08, pages 858–
861, June 2008.

[18] K. Patel, S. Parameswaran, and S. L. Shee. Ensuring secure program exe-
cution in multiprocessor embedded systems: a case study. In CODES+ISSS
’07, pages 57–62, New York, NY, USA, 2007. ACM.

[19] J. Pincus and B. Baker. Beyond stack smashing: Recent advances in
exploiting buffer overruns. IEEE Security and Privacy, 2(4):20–27, 2004.

[20] R. G. Ragel and S. Parameswaran. Impres: integrated monitoring for
processor reliability and security. In DAC ’06, pages 502–505, New York,
NY, USA, 2006.

[21] A. Raghunathan, S. Ravi, S. Hattangady, and J.-J. Quisquater. Securing
mobile appliances: new challenges for the system designer. DATE ’03,
pages 176–181, 2003.

[22] S. Ravi et al. Security in embedded systems: Design challenges. ACM
Trans. Embedded Comput. Syst., 3(3):461–491, 2004.

[23] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. In PLDI ’00, pages 182–195, NY,
USA, 2000.

[24] S. L. Shee and S. Parameswaran. Design methodology for pipelined
heterogeneous multiprocessor system. In DAC, pages 811–816, 2007.

[25] G. E. Suh and S. Devadas. Physical unclonable functions for device
authentication and secret key generation. In DAC ’07, pages 9–14, New
York, USA, 2007. ACM.

[26] L. Wang and R. K. Iyer. Count&check: Counting instructions to detect
incorrect paths. In Workshop on Compiler and Architectural Techniques
for Application Reliability and Security (CATARS), 2008.

[27] W. Wolf. The future of multiprocessor systems-on-chips. In DAC ’04,
pages 681–685, New York, NY, USA, 2004.

[28] J. Wong, A. Ignjatovic, and A. Janapsatya. Multiprocessor implementation
of image compression algorithms. In BE Thesis, School of CSE, The
University of New South Wales, 2007.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

