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Abstract

This paper presents a novel technique for the modeling,
simulation, and analysis of real-time applications on Multi-
Processor Systems-on-Chip (MPSoCs). This technique is
based on an application-transparent emulation of OS prim-
itives, including support for RTOS elements. The proposed
methodology enables a quick evaluation of the real-time
performance of an application in front of different design
choices, including the study of system’s behavior as tasks’
deadlines become stricter or looser. The approach has been
verified on a large set of multi-threaded benchmarks. Re-
sults show that our methodology (a) enables accurate real-
time and responsiveness analysis of parallel applications
running on MPSOCs, (b) allows the designer to devise an
optimal interrupt distribution mechanism for the given ap-
plication, and (c) helps dimensioning the system to meet
performance and real-time needs.

1 Introduction

Increasingly large portions of electronic systems are be-
ing implemented in software, with the consequence that
its development effort is becoming a dominant factor in
the development flow. The problem is made worse by
the strong trend from the “classical” embedded systems
towards real-time (RT) systems with explicitly concurrent
hardware, more difficult to analyze and to model. In such
systems, beyond the correctness of algorithms, early verifi-
cation of the real-time behavior and timing constraints is es-
sential. Guaranteeing the required properties with explicitly
concurrent software and hardware adds a degree of com-
plexity, coupled with the fact that software deployment and
testing on target hardware is difficult and time consuming.

To gather timing details and to validate the functionality
of the overall system as soon as possible in the develop-
ment process, high level models of the interactions among
application, operating system, and hardware platform are
needed. Unfortunately, generally used methodologies suffer
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from the code equivalence problem (as presented in [12]):
the code executed by the virtual system is different from the
code executed by the final deployed hardware, especially
for what concerns OS primitives. This may change the over-
all system behaviour leading to less-than-optimal or wrong
design choices. RT systems further complicate the situation
as the correctness of the computation is highly dependent
on its timing behavior; this implies accurate modeling of
scheduling choices, task interactions, and interrupt response
times. Moreover, the implementation of critical RTOS parts
can be carried out either in software or using hardware ac-
celerators, with major consequences on system cost, behav-
ior and timing features.

In this work we provide a co-design environment suit-
able for the development multi-processor systems with real-
time requirements. The base idea consists in the transparent
emulation of RTOS primitives on top of a virtual platform
described at transaction level; the implementation guaran-
tees full compatibility with any POSIX-compliant applica-
tion. Overall, our approach provides fast and accurate sim-
ulation results, allowing effective high-level design space
exploration for multi-core RT systems. Our methodology
can be applied to a variety of tasks, such as analysis of sys-
tem responsiveness in front of different load and of varying
frequency of external events, and as exploration of different
scheduling policies.

This paper is organized as follows: Section 2 describes
previous research on the subject and Section 3 presents how
the proposed methodology addresses the identified issues.
Finally, Section 4 shows the experimental results and Sec-
tion 5 draws some concluding remarks.

2 Previous work

HW/SW co-design flow [11] usually starts at system-
level, when the boundaries between the hardware and soft-
ware parts of the final system have not yet been established.
After functional verification, the HW/SW partitioning takes
place and co-simulation is employed to validate and refine
the system. The tight time-to-market constraints, the high



complexity of current designs, and the low simulation speed
of Instruction Set Simulators (ISSs) push for the addition of
(RT)OS models in system-level Hardware Description Lan-
guages (HDL) (as SystemC or SpecC). This allows native
execution of both the hardware and software models of the
system, consistently speeding-up simulation. In addition,
as both hardware and software partitions are described us-
ing the same HDL, it is easy to move functionalities be-
tween them. Such ideas are presented in [8, 6, 3, 9]: these
works model the application, the hardware, and the services
of the (RT)OS using the same HDL. Due to limitations
in the typical HDL processing model, true concurrency is
not achieved, and a trade-off has to be determined between
simulation speed and accuracy of the inter-task interactions
models. When the design is refined, the RTOS model can
be translated automatically into software services; unfor-
tunately in most real-world situations the use of a widely
adopted RTOS is preferred, meaning that results taken dur-
ing the modeling phase are no longer accurate.

An extension to these works has been implemented by
Schirner and Domer [10] addressing the problem of mod-
eling preemption, interrupts, and inter-task interactions in
abstract RTOS models, but they mainly concentrate on sim-
ulating the system timing behavior and the code equivalence
problem is not taken into account.

He et al. [4] presents a configurable RTOS model imple-
mented on top of SystemC: as opposed to other approaches,
only the software part of the system is modeled, while the
hardware portion is taken into account just through timing
annotations inside the RTOS model.

A different technique is employed in [12, 5], for auto-
matic generation of timed OS simulation models. These
models partially re-use unmodified OS primitives, thus mit-
igating the code equivalence problem. High emulation
speed is obtained thanks to native execution on the host ma-
chine, but the timing of the target architecture is not accu-
rately replicated and it does not allow precise modeling of
multi-processor systems. On the contrary, we use ISSs in
our approach: this means lower simulation speed but also,
as the assembly code of the final application is used, min-
imization of the code equivalence problem. Our approach
is also OS-independent, enabling wider design space explo-
ration.

These approaches are valid to help the designer perform
and refine the HW/SW partition, but they do not help in
the validation of the high-level design (for the code equiva-
lence problem), and they are limited in the assessment of the
system’s timing properties. However, the execution on an
ISS of the exact same software which will be deployed on
the embedded system is seldom possible because the RTOS
has to be already chosen and ported to the target hardware,
meaning that it might be difficult or impossible to refine the
HW/SW partitioning (since the OS should be updated ac-
cordingly) and to explore the other system configurations.

In this paper we propose a way to emulate RTOS prim-
itives in order to minimize code equivalence issues while
still maintaining both independence from specific OSes and
high timing accuracy.

3 Proposed Methodology

For the implementation and the evaluation of the de-
sign methodology presented in this paper we use the Open
Source simulation platform ReSP [1].

In this work, we exploit and extend ReSP’s System Call
Emulation subsystem [1] to support the analysis of real-
time systems and applications. The presented functionali-
ties are used for preliminary exploration of the applications’
behaviour, for guiding the designer in the choice of the tar-
get RTOS and as a support for early HW/SW codesign. The
rest of this Section is devoted to a more thorough explana-
tion of such concepts.

3.1 System Call Emulation

System Call Emulation is a technique enabling the execu-
tion of application programs on an Instruction Set Simulator
(ISS) without the need to simulate a complete OS. The low
level calls made by the application to the OS routines (sys-
tem calls, SC) are identified and intercepted by the ISS, and
then redirected to the host environment which takes care
of their actual execution. Suppose, for example, that the
simulated application program contains a call to the open
routine to open file “filename”. Such a call is identified
by the ISS and routed to the host OS, which actually opens
“filename” on the host’s filesystem. The file handle is then
passed back to the simulated environment. A simulation
framework with System Call Emulation capabilities allows
the application developers to start working as early as pos-
sible, even before a definite choice about the target OS is
performed. This can also help in the selection, customiza-
tion, configuration, and validation of the OS itself.

Figure 1 shows ReSP’s innovative System Call emula-
tion mechanism where each ISS communicates with two
components: the centralized Trap Emulator (TE) and the
Concurrency Manager (CM); these are the components re-
sponsible for forwarding the System Calls from the simu-
lated to the host environment, and for managing task cre-
ation, termination, and synchronization. Instead of identi-
fying the SCs through particular assembly instructions or
special addresses (as in most simulator environments), we
use the name (i.e. the symbol) of the corresponding routine.
When the application program is loaded, the names of the
low level SCs (e.g. sbrk, _open, etc.) are associated with
their addresses in the binary file and registered with the TE.
At runtime the ISS then checks for those addresses: when
one is found, the corresponding SCs is emulated on the host



environment. In addition to System Call emulation, these
functionalities can be used, through the CM, for the emula-
tion of concurrency management (thread creation, destruc-
tion, mutex lock, unlock, etc.) routines. With respect to
previous works, these mechanisms show the following ad-
vantages:

1. Independence from the cross-compiler toolchain: since
the names of the system call routines are used, there
is no need to adhere to the conventions with which the
software is built or to create fictitious jumps in the code

2. High interoperability with different ISS types: the IF
is the only component which needs customization to
allow a new ISS to be integrated with the TE

3. Extensibility: the presented mechanism can also be
used for preliminary hardware/software partitioning.
Moreover, by emulating the POSIX-Threads routines,
multi-threaded applications can be easily simulated.

Since only the low level SCs (e.g. sbrk) are emulated and
the rest of the OS code (e.g. malloc) is executed unmodi-
fied in the ISS, our method maintains high code equivalence
with the final software, even at the assembly level.

In this paper, the TE and a modified CM (see Section 3.3)
are used to model real-time tasks and analyze the target ap-
plication’s real-time performance.

int main(...){
memArea = malloc(...) ]
if (memArea)
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Figure 1. Internal structure and working
mechanisms of the function trap emulator

3.2 Pthreads as a Real-Time concurrency model

PThreads are a well known concurrent application pro-
gramming interface (API) and, as part of the POSIX stan-
dard, are available for most operating systems (either na-
tively or as a compatibility layer). The Pthread API pro-
vides extensions for managing real-time threads, in the form
of two scheduling classes:

fifo : threads of equal priority are scheduled following a
first-come first-served policy; if a thread of high pri-
ority is created while one of lower priority is running,
the running thread is preempted.

round-robin : same scheduling policy of fifo, with the dif-
ference that the processor is shared, in a round robin
fashion, among threads of equal priority.

In order to manage these functionalities, PThreads provide
routines for setting/reading/changing thread priorities and
scheduling policies. However, even when using POSIX-
Threads RT extension, the standard does not fully allow the
management of RT systems. Important features, such as
task scheduling based on deadlines, are not present and this
prevents an effective modeling and analysis of a wide range
of RT systems. For this reason our emulation layers ex-
tends the POSIX-Thread standard with the introduction of
the Earliest Deadline First (EDF) [7] scheduling policy and
with the possibility of declaring a task as un-preemptible.
However, theoretical results [2] expose that EDF scheduling
brings better performance with respect to standard priority
based scheduling. In our implementation, the emulated RT
features are compatible with the popular OS RTEMS task
management policies.
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Figure 2. Exploration flow of RT policies: note
how task attributes are modified at runtime
throught Python’s cosole.

The main objective of this work consists in enabling ex-
ploration, tuning and analysis of RT systems: in order to
effectively and efficiently perform this, we need to be able
to explore the task scheduling policies, their priorities, and
in general, tasks’ attributes. As modifying the source code
is not suitable to fast co-exploration, thread attributes and
scheduling policies can be specified also outside the sim-
ulations space, using ReSP’s capabilities. This gives the
designer two possible alternatives: specifying the desired
RT behaviour directly in the application’s source code, or
via Python scripting. This means that the system load and
RT behaviour can be modified during simulation, enabling
an effective exploration of the system’s real-time behavior.



The former mechanism is simply obtained by emulation of
all threading related primitives; in particular the calls made
by the application software to the functions for managing
thread attributes are redirected to the CM, which takes care
of managing and scheduling the tasks according to such at-
tributes. The latter method, consists of using Python to di-
rectly export the internal structure of the CM to ReSP. As
such, it is possible, either before or during the simulation,
to modify the CM status and change the thread management
policies without modifications to the application’s source
code.

3.3 A Real-Time Concurrency Manager

The TE was extended for the emulation of concurrency
management routines with an additional unit, called Con-
currency Manager. The overall mechanism is analogous to
the one depicted in Figure 1, but instead of trapping 1/O or
memory management, the TE traps routines for thread cre-
ation, destruction, synchronization etc. During execution,
all calls to pthread routines are trapped and forwarded
to the Concurrency Manager in the simulator environment.
If the application software is compiled with a recent GNU
GCC compiler (at least version 4.2) it is also possible to
successfully emulate OpenMP directives.

This concurrency manager was augmented to deal with
Real-Time extensions and to correctly keep statistics about
issues such as missed deadlines, serviced interrupts, etc.

Real-Time scheduler: we implemented it in three differ-
ent versions: FIFO, Round-Robin, and Earliest Deadline
First (EDF). Each task can be assigned a scheduling pol-
icy and tasks with different policies can co-exist in the sys-
tem. Tasks’ policies can be varied at runtime either from
the application code or by directly interacting with ReSP
through the Python console. The latter mechanism has been
implemented to enable flexible task management, thus al-
lowing an effective and efficient exploration of the different
scheduling policies and priorities, and the different RTOS
configurations. Tasks with the EDF policy are assigned the
highest priority. The scheduler is able to manage shared
memory platforms with an arbitrary number of symmetric
processors. Since scheduling and, in general, task man-
agement operations are performed in the host environment,
it is possible to add features such as deadlock and race-
conditions detection without altering the system’s behavior,
as it would, instead, happen if such features were imple-
mented inside the simulated software. For this reason, our
system can be also successfully used for verification of the
system correctness.

Interrupt Management: it is composed of an emulated
interrupt generator and and Interrupt Service Routine (ISR)

manager. While the former is present only to emulate ex-
ternal events and to force execution of ISRs (to enable the
analysis of the system behavior under different realistic en-
vironmental conditions), the latter feature is used to deal
with ISRs no matter how they are triggered. No major modi-
fications were necessary to the system to control ISRs since,
after creation, they are treated as standard real-time tasks.

Python Integration: this features enables tasks control
from outside of the simulated application. This means that
from ReSP’s interactive shell it is possible to manage task
priorities, deadlines, etc. As such there is no need to modify
the simulated software to perform an effective exploration
and to analyze the effects of different scheduling policies
and/or priorities.
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Figure 3. Detailed Structure of the Real-Time
Concurrency Manager (CM): through the TE
the CM communicates with the simulated ap-
plication. in the CM RT-tasks are organized in
queues of different priorities.

4 Experimental Results

The methodology has been tested on a large set of
OpenMP-based benchmarks (namely the OMPScr suite)
and a large parallel application, namely ffmpeg (video en-
coding/decoding).

The basic assumption of this work is that the system is
subject to a mixed application workload: a computationally
intensive element with soft real-time constraints, and a set
of elements with very strict hard real-time characteristics,
here called computational and real-time parts, respectively.
The number and parameters of both the computational and
real-time parts varies and strictly depends on the system
being considered. This model well represents applications
such as observation spacecraft payload, where massive data
processing is needed with high availability, while response
to external stimuli within a given time is paramount (for ex-
ample for the spacecraft’s navigation system).



The purpose of our methodology is to answer a set of key
questions during the development of real-time applications
running on an MPSoC:

1. What is the performance of the real-time applications?
Is the system missing any deadlines with the current
hardware and scheduling setup?

2. What is the performance of the computational part? Is
it performing within requirements?

3. How much performance can the current hardware and
software setup deliver? Is it possible to add addi-
tional computational or real-time tasks without affect-
ing global performance? Can we reduce the number
of hardware resources? What is the benefit of moving
parts of the application or OS to hardware?

This leads to two sets of experiments that can be easily per-
formed using the proposed methodology, as shown in the
following.

All tests have been executed using ReSP on a multi-
ARM architecture consisting of a variable number of cores
with caches, and a shared memory, all interconnected by a
shared bus. Simulations where timing was recorded were
run on a Core 2 Duo 2.66GHz Linux machine.

4.1 Real-Time Performance Evaluation

Using the proposed methodology, a designer can ver-
ify the real-time performance of a multi-processor system
under load and explore the use of different interrupt dis-
tribution and handling schemes. As proof-of-concept, we
ran the benchmarks as computationally intensive applica-
tions, while the real-time tasks are implemented by syn-
thetic functions, with varying deadlines. These functions
can be categorized as: (a) housekeeping: scheduled regu-
larly, perform sanity checks, repetitive tasks, etc., and (b)
response to external events: when an alarm is fired, its re-
sponse is usually required within a given deadline.

A first analysis that is performed with the current
methodology is to run the real-time part separately from the
computational part, reducing all OS related latencies (such
as the latency of the mutex lock operation) to zero: the
obtained concurrency profile shows the number of active
PEs in time, i.e. the effective utilization of the system re-
sources. A similar graph is derived for the computational
part, allowing the designer to determine if sufficient re-
sources are available to run the application within its perfor-
mance constraints. Finally, the computational and real-time
parts are combined together and the concurrency profile is
drawn as shown inf Figure 4. This graph helps the designer
tweaking the hardware and software to match the desired re-
quirements. As an example, the combination diagram (Fig-
ure 4(b)) can show a lower-than-expected utilization in case
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Figure 5. Fraction of missed deadlines with
different schedulers and high RT workload
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access to a shared bus represents a bottleneck in the system.
If, instead, utilization is already at a maximum, the designer
can conclude that more processing elements are needed to
reach the performance requirements. Simulating the system
with realistic OS-related latencies (that can be targeted to
any possible OS choice) leads to determining the best OS
choice for the current application.

Figure 5 shows how the methodology is used to deter-
mine the best scheduler for the system: the performance is
graphed for two schedulers (PRIORITY and EDF).

4.2 Computational Performance Evaluation
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Figure 6. The performance impact of the RT
part on the computational part, i.e. their rela-
tive execution time when compared to execu-
tion without the RT part

Running the application with and without RT tasks
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Figure 4. The concurrency profiles of the ffmpeg benchmark, showing the computational parts ((a))
and the combination of the computational and real-time parts ((b))

shows the different computational performance of the sys-
tem, as depicted in Figure 6. As in our methodology the RT
or non-RT status of a task can be changed without modifi-
cations to the code, this evaluation is simply made with two
runs of the simulator. The designer can see how changes in
the OS scheduling affect the performance of the system.

5 Concluding Remarks

In this paper we presented an innovative mechanism for
Operating System emulation inside Instruction Set Simula-
tors. In addition to being non intrusive in the ISS source
code, the described techniques are extended for the emu-
lation of real-time tasks. High code equivalence is main-
tained, enabling fast and accurate simulation of real-time
applications.

Our methodology has been applied to many mixed-
workload (real-time and non real-time) applications and
benchmarks, showing how it can be used to analyse their
real-time behavior and how the system can be sized to ob-
tain the desired peformance for both the real-time and non-
real time parts.
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