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Abstract—Existing architectures for speculative addition are
all based on the assumption that operands have uniformly
distributed bits, which is rarely verified in real applications.
As a consequence, they may be disadvantageous for real-world
workloads, although in principle faster than standard adders. To
address this limitation, we introduce a new architecture based on
an innovative technique for speculative global carry evaluation.
The proposed architecture solves the main drawback of existing
schemes and, evaluated on real-world benchmarks, it exhibits
an interesting performance improvement with respect to both
standard adders and alternative architectures for speculative
addition.

I. INTRODUCTION

Microprocessor performance is deeply affected by arith-

metic operations, especially integer addition. Finding fast and

efficient implementations for this operation, therefore, has

always been one of the major challenges in digital design.

Most of the current high performance processors employ one

of the known parallel adders [3], [5], such as Carry Lookahead,

Brent-Kung, Kogge-Stone, and Carry Select adders. In syn-

chronous designs, the worst case delay of such adders clearly

limits the maximum frequency. Speculative addition, on the

other hand, is based on the idea of performing an incomplete,

but much faster addition, which turns out to be correct most of

the time. Most existing speculative architectures are efficient

only under the assumption that input operands have uniformly

distributed random bits, producing short carry propagation

chains on average. As a preliminary contribution in this work,

we present a framework for dynamic profiling of software

programs, which provides an experimental characterization of

carry chain lengths in real-world benchmarks and confirms the

limitations of existing schemes. Based on the above character-

ization, we develop an innovative architecture for speculative

addition. The new scheme has the same critical path than

previously proposed speculative adders, but can effectively

handle the long carry chains occurring in real benchmarks,

mostly depending on two’s complement operations. Experi-

mental results and comparisons with traditional adders confirm

the effectiveness of our approach and exhibit an interesting

performance improvement measured on real-world programs.

II. SPECULATIVE ADDITION

The most significant bit of an addition result depends, in

the worst case, on all input bits. This happens, in particular,

when each input bit pair ai/bi determines a carry-propagate

condition, i.e. ai ⊕ bi = 1. As a consequence of this de-

pendence, all circuits for n-bit integer addition have a time

complexity of at least O(log n) [5]. Figure 1 gives an example

of different “carry chains”, i.e. sequences of consecutive pairs

ai ⊕ bi = 1 causing a propagation of a possible carry and,

thus, the dependence of output bits on a larger subset of

inputs. A fundamental observation, at the heart of the so-

Fig. 1. Various carry chain lengths.

called speculative addition, is that such carry chains are, on

average, much shorter than the full operand size n, at least

assuming uniformly distributed random inputs. Based on this

observation, speculative adders are structured in such a way

that each output bit depends only on the previous k bits,

with k much smaller than n. The resulting circuit is clearly

faster, but unfortunately it produces a wrong result when there

are carry chains of k bits or more. In such occurrences, a

complete carry propagation is required before producing the

correct result. Besides the adder itself, thus, we also need a

suitable circuit able to detect and notify this error condition.

In an asynchronous design, this corresponds to delaying the

completion of the operation. In a synchronous design, on

the other hand, the error condition will be handled by some

external control circuitry causing one or more additional clock

cycles for further processing.

An interesting question relates to how to decide the value k
of the maximum carry chain to be detected. Intuitively, since

ai ⊕ bi = 1 occurs with a probability of 1/2, the probability

of a single k-bit carry chain is (1/2)k, assuming uniformly

distributed random inputs. It is less trivial to study the dis-

tribution of the maximum carry chain length generated by an

n-bit addition. This is equivalent to solving the “longest run

of heads” problem in a fair coin-tossing experiment. Although

an exact treatment is not straightforward, all previous works

on speculative addition [1], [7], [4], with different arguments,

converge on the fact that such longest chain is in the order

of log n, i.e. much smaller than n, making speculative adders

much faster than complete adders.
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Speculative addition has been firstly proposed in the context

of asynchronous design. In [6], a fast asynchronous k-bit

speculative adder is extended with different abort detection

networks, each associated with a different delay condition

occurring in the addition circuit. Abort detection is com-

puted in parallel with the main datapath computation. Authors

in [6] also consider non-random input distributions obtained

from actual software programs. Based on this, they introduce

some variants to the base architecture, which can handle

long carry propagation due to two’s complement numbers,

although limited to some specific portions of the input bits. A

synchronous solution for speculative execution is used in [2].

It involves a two-cycle operation. The addition is started in

the first cycle, and the result is assumed to be correct. A

parallel carry propagation network checks whether or not the

operation has long carry paths. Should this be the case, the

system is stalled for the duration of an additional clock cycle

where the original addition operation has sufficient time to

complete. Some bypass logic is required, to allow the sum

to be generated using these early carries. The detection of

long carry chains takes place only in the second cycle, so

the previous result may need to be overwritten. A similar

construction is presented in [1], where some solutions for early

termination detection are described, and a statistical approach

for their area-efficient implementation is discussed. In [4],

the concept of “approximate” addition is proposed, although

authors do not go into detail of its implementation.

A recent contribution has been presented in [7]. We will

describe it in more detail. In its first stage, it has a parallel

prefix structure, as most other solutions. Propagate/Generate

(P /G) signals for single digits –or for groups of digits–

represent respectively carry propagation (the output carry for

those digits is equal to the input carry) and carry generation

(the sum of those digits always produces an output carry

independent of previous carries). For a one-bit digit, P /G are

computed as

Pi = ai ⊕ bi Gi = ai · bi

When applied to a group of digits in position α . . .δ , gen-

eration/propagation signals will be denoted as Pδ−α and

Gδ−α. The combination of P /G for consecutive, possibly

overlapping, digit groups is obtained as follows:

Pδ−α = Pδ−γ · Pβ−α Gδ−α = Gδ−γ + Pδ−γ · Gβ−α

where δ ≥ β ≥ γ ≥ α, and ⊕, ·, and + denote the XOR,

AND, and OR function, respectively. In a k-bit speculative

adder, each output bit depends only on the previous k bits,

so for each position i, we need the signals P(i−1)−(i−k) and

G(i−1)−(i−k). They can be built with the scheme depicted in

Figure 2 (where k = 4), also used in [6]. Sum output bits si

are then easily obtained by P /G signals:

si = Pi ⊕ G(i−1)−(i−k)

while the error condition is raised if at least one k-bit long

Fig. 2. Generation of partial P/G signals.

carry chain exists:

E =
n∑

i=k

P(i−1)−(i−k) (1)

Notice that the critical path of the architecture depends on the

error condition, which is a global signal, and still requires an

O(log n) time complexity. The advantage of the scheme is that

the large OR required by the error condition can be computed

more efficiently than the global carries required by Carry

Lookahead and Parallel Prefix adders. Like other schemes,

there is also an “error recovery circuit” which completes the

addition (based on a Carry Lookahead circuit) in less than two

clock periods and is used in the case E = 1, but only after the

second cycle. The structure of the speculative adder proposed

in [7] is depicted in Figure 3.

Fig. 3. Speculative Adder in [7]

III. CHARACTERIZATION OF REAL WORKLOADS

As mentioned in the introductory section, most previous

works are based on the assumption that input operands have

uniformly distributed random bits, and hence produce short

average carry chains. This condition largely simplifies the de-

sign of speculative adders, since one can just make each output

bit have a purely “local” dependence on addition operands,

i.e. depend only on the previous k bits. Unfortunately, this



assumption is unlikely to be verified in practice. A very simple

example will help clarify the problem. Consider, for instance,

a small program computing the Greatest Common Divisor

(GCD) based on Euclide’s algorithm:

while (b!=0){

if (a > b) a = a - b;

else b = b - a; }

The above code corresponds to two comparisons (at least

one is likely to be implemented as a subtraction) and one

subtraction performed in each iteration. All of them require

a negation of the bits of the subtrahend, followed by an

addition with carry-in equal to 1. Following is a trace of the

algorithm execution, with initial values a=15 and b=25. The

trace includes all additions performed on two’s complement

numbers, including those for comparisons. x and y denote the

actual values processed by the adder. The comparison b!=0 is

assumed to be performed by a dedicated zero-detection circuit

and is not included in the trace.
a and b in 2’complement representation

x = a = 15 00000000000000000000000000001111

y = –b = –25 11111111111111111111111111100111

x = b = 25 00000000000000000000000000011001

y = –a = –15 11111111111111111111111111110001

x = a = 15 00000000000000000000000000001111

y = –b = –10 11111111111111111111111111110110

x = a = 5 00000000000000000000000000000101

y = –b = –10 11111111111111111111111111110110

x = b = 10 00000000000000000000000000001010

y = –a = –5 11111111111111111111111111111011

x = a = 5 00000000000000000000000000000101

y = –b = –5 11111111111111111111111111111011

x = b = 5 00000000000000000000000000000101

y = –a = –5 11111111111111111111111111111011

As emphasized above, very long carry chains, and hence

non-local dependences of output bits on input bits, are very

likely to happen, especially when manipulating number in

two’s complement representation. Because of carry chains

longer than k, existing speculative adders would incur a

significant penalty in the execution time due to misprediction

(e.g., two clock cycles for each addition with the adder in [7]),

which may make them totally ineffective.

In order to emphasize the limitations of existing speculative

architectures with real-world workloads, we developed an ad-

hoc framework for dynamic profiling of software programs,

i.e. for tracing the actual operand values driven to the processor

adder as they are produced during execution. The traces

collected, with special emphasis on data-intensive algorithms,

are also representative of hardware implementations whose

architecture is based on a single parallel adder.

Figure 4 depicts the structure of the framework. Unlike

the approach taken, for example, in [6], we did not modify

the implementation of a general-purpose processor simulator

in order to collect the traces. Rather, we decided to directly

instrument native code running on a physical machine (e.g.

an IA-32 machine) so as to run benchmarks at real-machine

speed.

Benchmarks can be made of one or more .c/.s modules.

We may be not interested in profiling the entire benchmark,

e.g. there may be a main module preparing test cases, which

Fig. 4. The profiling framework.

should not be profiled in itself. The framework, therefore,

allows the selection of some submodules in the benchmark.

These are separately pre-processed by compiling them to an

.s assembler file (using the GCC GNU compiler), which are

subsequently instrumented by an ad-hoc tool. Instrumentation,

basically, consists in replacing each profiled instruction (e.g.,

ADD, SUB, or CMP), with special code fragments that save the

instruction operands to some trace memory areas. The entire

benchmark is then compiled and linked with a higher-level

main (SA_main), which contains the instantiation of memory

areas used for traces, some definitions, the invocation of the

benchmark main, and the functions processing the traces after

execution and generating textual reports.

For the evaluation presented in this work, we considered a

cryptographic workload including: RSA encryption/decryption

(RSA), Elliptic curve ElGamal encryption/decryption over

prime fields (ECELGP), Diffie-Hellman key exchange (DH),

and Elliptic curve digital signature algorithm over prime fields

(ECDSP). The results of profiling are depicted in Figure 5,

as the relative distribution of maximum carry chain lengths

occurring during addition operations. For each benchmark, the

charts distinguish the chains due to sign extension (white bars)

from the remaining generic carry chains (gray bars). On the

left side, the charts include carry chains up to a certain length,

for which a significant number of samples was found. On the

right side, they include carry chains with lengths close to n, the

full operand width, which are mainly due to two’s complement

operations. This separation makes the characterization mostly

independent of the actual adder width n, due to sign extension

that takes place for two’s complement numbers. It can be easily

seen from such results that long carry chains are far from

rare. As a consequence, the performance of existing solutions

for speculative additions dramatically drops compared to the

assumption of randomly distributed input bits. A quantitative

evaluation will be provided for comparison in the following

sections.

IV. SPECULATIVE ADDER ARCHITECTURE

Although speculative adders in themselves are based only

on local dependences, the associated error detection circuit,

implementing a function like that in Equation 1, depends



Fig. 5. Characterization of carry lengths.

on all input bits (it includes a large OR gate with a fan-in

close to n). This circuit should operate in parallel with the

speculative adder and is thus likely to determine the delay of

the overall structure. Nevertheless, as observed in [7], the error

detection function has a simpler structure and enables a faster

implementation than an complete adder. On the other hand, the

presence of long carry chains, inherent in signed operations,

has the main effect of creating a “global” dependence of output

bits on input bits, which makes existing speculative adders

ineffective. The essential idea behind our architecture is to

introduce a new speculation circuit which, based only on local

information, is able to anticipate the generation of a carry

due to signed operations. As shown later, the complexity of

such a global carry speculation circuit is very similar to the

error detection circuitry, so its presence does not necessarily

increase the delay of the overall speculative adder.

Figure 6 presents the structure of a cell in our speculative

addition architecture. Consider the cell i and call PR and

GR the P /G signals coming from the k cells on the right,

and PL the propagate signal coming from the k cells on the

left. Notice that these signals are always available when a

structure like that in Figure 2 is adopted. As can be seen

in Figure 6, each cell implements the usual sum equation

si = Pi ⊕ (GR + PR · C) by using the PR/GR signals and

Fig. 6. A Speculative Adder cell.

the global carry C as the incoming carry. The global carry,

in turn, can be high only if there is (at least) one cell which

generates (Gi = 1) followed by k propagates on the left

(PL = 1). The error condition Ei is raised if there is at

least one cell having k consecutive propagates on the right

(PR = 1), unless these are followed by a further propagate

on the left (Pi = 1). This structure is sufficient to produce a

correct result in presence of long carry chains due to signed

operations, independent of their length. This can be justified

as follows. If there is a long propagate chain reaching the left

end of the adder (due to sign extension), the first cell from the

left which does not propagate, say the ith cell, is responsible

for carry generation. If Gi = 1, then the global carry C will

be 1 and will be used as the carry-in by all subsequent cells

up to the most significant bit. Indeed, in the case there are k
consecutive propagates determining PR = 1, not included in

the sign extension chain, the global carry will be erroneously

used as the carry-in also by that chain, regardless of where

it is located in the adder. If present, such an “inner” chain

will however be recognized by the error detection circuitry,

leading to an invalid condition. A long propagation chain

which does not reach the left end of the adder, in fact,

is always detected, because there will be at some point a

non-propagating cell (Pi = 0, PR = 1 ⇒ Ei = 1) raising

the error condition. In other words, the error detection

circuit used in the base speculative adder scheme is mostly

reused for detecting a mispredicted global carry. Notice that,

according to our experimental results, long chains not due

to sign extension, i.e. not reaching the most significant bit,

are actually rare in real workloads, so the occurrence of such

error conditions can be tolerated in practice. Some examples

will help clarify the scheme. Assume n = 16 and k = 4:

(1) Pi 1111111100001110 (2) Pi 1111111111000111

Gi 0000000000000000 Gi 0000000000100000

Ci 0000000000000000 Ci 0000000000100000

Si 1111111100001110 Si 10000000000000111

Ei 0000000000000000 Ei 0000000000000000



(3) Pi 1111110000111110 (4) Pi 1111110000111110

Gi 0000001000000000 Gi 0000000000000001

Ci 0000001000000000 Ci 0000000000000001

Si 10000000001011110 Si 10011110001000000

Ei 0000000001000000 Ei 0000000001000000

The result S is always correct when all Ei are zero. In

example (3), the global carry C =
∑

Ci is high due to

a generate followed by a long propagate chain on the left.

Unfortunately, C is also spuriously used as the carry-input by

another 4-bit propagate inner chain. However, the same 4-bit

propagate chain is responsible for an error generation, so the

result is not valid in this case. As emphasized by example (4),

any propagate chain which does not reach the most significant

bit may determine a spurious global carry C, but it is always

detected since the cell where the propagate chain ends will

raise an error.

As for similar solutions [7], the speculative adder is com-

pleted with some “error recovery” circuitry, which takes an ad-

ditional clock cycle to complete the operation upon error. The

error recovery circuit is based on a carry-lookahead scheme

and is not critical for the timing of the overall architecture,

since its delay spans two clock cycles.

As emphasized in the upper portion of Figure 7, the global

carry C is shared among all cells, so a given output bit si may

be influenced by cells in higher positions. In fact, this can only

happen if si is preceded by a long “inner” chain (PR = 1), and

is thus affected by the global carry C even if this is generated

in higher positions. Such an inner chain, however, corresponds

to a “don’t care” situation for the speculative adder output,

since it is always associated to an error condition. In other

words, the dependence of output bits si can be limited to

local carries coming from the right, and this can create some

opportunities for further optimization. In particular, we may

want to reduce the fan-out of the large OR gate generating C.

This can be done as in the lower portion of Figure 7, where

incoming carries are partitioned into different groups. Each

Fig. 7. Two different solutions for generation of global carries.

cell receives a carry input which is an OR of (at least) all

local carry outputs on its right side. OR gates with a lower

fan-in (those used to drive cells in lower positions) are less

critical and may have a larger fan-out. Clearly, a great deal of

sub-expression sharing can be exploited among the different

OR gates, and the partitioning can be chosen (possibly by a

synthesis tool) so as to privilege more critical OR gates. As our

experimental results confirm, the circuits for generating global

carries and the error signal E enable a faster implementation

than ordinary adders, even when compared to highly optimized

library cores already available in synthesis tools. As a last

observation, notice that –although affected by a large fan-

out– the global carry is a purely internal signal. In a complete

design, it is thus less critical than the error signal E which, on

the other hand, will exit the adder and will be processed by

an external controller, possibly during the same clock cycle in

order to avoid stalls.

V. EXPERIMENTAL RESULTS AND COMPARISONS

As explained in the previous section, our speculative adder

scheme can correctly process in a single clock cycle any

propagate chain caused by signed operations, i.e. all white

bars in the charts of Figure 5, in addition to generic chains

with length less than k. In order to provide an experimental

evaluation, the speculative adder architecture was synthesized

for a CM0S 0.18µm standard cell library technology by

using Cadence Build Gates synthesis tool. The results were

compared with a similar scheme recently proposed [7] and

with optimized library adders already available to the synthesis

tool. For uniform comparisons, the three designs were syn-

thesized with the same environment, so our results for clock

periods are slightly different than those in [7]. Concerning

area complexity, our speculative adder requires slightly more

gates than the previous solution in [7]. In all cases, however,

this increment was not above 25% with respect to the pre-

vious speculative adder solution. For time performance, we

compared the minimum time spent for addition operations

alone, evaluated as T = TCLK · (N1 + 2 · N2), where TCLK

is the minimum clock period, N1 is the number of correct

speculative additions, which only require one clock cycle, and

N2 is the number of additions that require a further clock

cycle due to a speculation miss. For a standard adder, clearly,

N2 = 0. We consider 128, 256, 512, and 1024-bit adders, with

k = 12, 13, 14, 15, respectively, as done in [7]. Total addition

times are normalized to library adder times.

n = 128 n = 256

libr. [7] here libr. [7] here

TCLK (ns) 0.84 0.69 0.78 0.95 0.76 0.86

RSA 1.00 1.01 0.93 1.00 0.97 0.90

ECELGP 1.00 1.08 0.93 1.00 1.05 0.91

DH 1.00 1.01 0.93 1.00 0.98 0.91

ECDSP 1.00 1.08 0.93 1.00 1.05 0.91



n = 512 n = 1024

TCLK (ns) 1.07 0.84 0.95 1.19 0.91 1.04

RSA 1.00 0.95 0.89 1.00 0.93 0.87

ECELGP 1.00 1.03 0.89 1.00 1.00 0.88

DH 1.00 0.96 0.89 1.00 0.93 0.87

ECDSP 1.00 1.03 0.89 1.00 1.00 0.87

We found that our adder guesses the correct result in at least

99.46% of all additions (the worst case is the ECELGP

benchmark, n = 128). In other words, our scheme reduces N2

almost to 0, making the average time for an addition very close

to a single period TCLK . Due to the reduced delays enabled

by speculation, this allows a significant improvement in the

overall performance. We are also confident that a technology-

aware, optimized implementation may further decrease this

delay.

VI. CONCLUSIONS

Speculative adders, as they have been proposed so far, suffer

from some limitations that may make them disadvantageous

for real-world benchmarks. The new architecture proposed in

this paper removes the assumption of uniformly distributed

input bits and, based on an innovative technique for speculative

global carry evaluation, it solves the main drawback of existing

solutions, related to two’s complement arithmetic. Unlike most

previous works on speculative addition, our solution exhibits

very high speculation hit-rates evaluated on real workloads.
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