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Abstract

In the next years, new hash function candidates will re-
place the old MD5 and SHA-1 standards and the current
SHA-2 family. The hash algorithms RadioGatún and ir-
RUPT are potential successors based on a stream structure,
which allows the achievement of high throughputs (particu-
larly with long input messages) with minimal area occupa-
tion. In this paper, several hardware architectures of the two
above mentioned hash algorithms have been investigated.
The implementation on ASIC of RadioGatún with a word
length of 64 bits shows a complexity of 46 k gate equiva-
lents (GE) and reaches 5.7 Gbps throughput with a 3 · 64-
bit input message. The same design approaches 120 Gbps
on ASIC with long input messages (63.4 Gbps on a Virtex-
4 FPGA with 2.9 kSlices). On the other hand, the irRUPT
core turns out to be the most compact circuit (only 5.8 kGE
on ASIC, and 370 Slices on FPGA) achieving 2.4 Gbps (with
long input messages) on ASIC, and 1.1 Gbps on FPGA.

1 Introduction

Hash functions are cryptographic primitives that take an
input message and generate an output referred to as hash
value or digest. Since a message of arbitrary bit-length pro-
duces a fixed-length output, different messages might be
hashed into the same digest. The fundamental character-
istic of hash functions is, therefore, the ability to keep the
probability of such a collision low. Moreover, for a given
output it should be computationally infeasible to recover
any of the generator inputs. These properties are referred to
as collision resistance and preimage resistance [7]. Digital
signature, message authentication, and data integrity make
an extensive usage of hash functions.

Recently, the old hash primitives MD5 and SHA-1 have
been broken (collisions found) [5, 16]. Hence, the National
Institute of Standards and Technologies (NIST) have stan-
dardized the SHA-2 family [8]. Since these algorithms rely
on similar computational structure and a successful colli-
sion attack on SHA-2 could have catastrophic effects for to-

days digital signature schemes, NIST introduced in 2007 a
public call for new cryptographic hash algorithms [9]. The
intent of the competition is to identify modern secure hash
functions and to define the new SHA-3 family.

Although the security provided by an algorithm is the
most important evaluation criterion, in a second phase of
the competition the hardware profile of the candidates will
be evaluated. In particular, NIST will emphasize the com-
putational efficiency and the implementation costs of every
algorithm. Therefore, candidate algorithms should be suit-
able for hardware implementations (ASIC or FPGA) in var-
ious embedded systems, where high-speed, low-power, or
limited memory requirements may play a cardinal role.

The hash function RadioGatún [2] has been presented
as a competitive alternative algorithm in terms of perfor-
mances, while the cryptographic algorithm irRUPT is a spe-
cific hash function based on the symmetric cryptographic
primitive EnRUPT [10]. Since RadioGatún and irRUPT
have an intrinsic simplicity in computing the hash value,
their hardware implementations are expected to be very
compact, while reaching very high throughput. This work
presents the first complete VLSI characterization of the Ra-
dioGatún and irRUPT hash functions, through the investi-
gation of six hardware architectures. Their suitability for
hardware implementation is eventually confirmed by the
achieved results and the comparison with other hash algo-
rithms.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the computational processes of Radio-
Gatún and irRUPT and the required parameters. Section 3
describes the methodologies used in the implementation of
the hardware architectures. The achieved experimental re-
sults are presented in section 4 with a comparison between
the analyzed algorithms and other hash functions. Eventu-
ally, section 5 draws the conclusions.

2 Algorithm Specification

Hash functions generally work over an iterative model,
which computes the fixed-size hash value by processing
successive fixed-size input blocks. A message of arbitrary
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length is divided into l-bit blocks (with a padding process on
the last block), that are sequentially injected into an internal
collision-resistant compression function. The compression
function generates an n-bit intermediate digest using the in-
put block and the previous intermediate result. The last in-
termediate digest is defined as the final n-bit hash value, af-
ter all input blocks are processed. This model is also called
the Merkle-Damgård (MD) construction [7]. The security
level of MD-based hash algorithms is defined by the col-
lision resistance of the compression function. The SHA-1
and SHA-2 families are hash functions based on this itera-
tive structure, as well as MD5 [13] and the NESSIE candi-
date Whirlpool [12].

However, several attacks on MD-based hash functions
have recently been demonstrated, turning the MD construc-
tion into an insecure model. Alternative designs rely on
modern stream ciphers [15]. This is the case of RadioGatún
and irRUPT. Although the former relies on the alternating-
input IMF (iterative mangling function) [2] and the latter on
a stream mode of the cryptographic primitive EnRUPT [10],
the resulting stream cipher-based hashing schemes present
similarities. The peculiarity resides in the computational
schedule of the algorithms. Instead of running a compres-
sion process for every l-bit input block, the whole message
is first entirely inserted into the hash function and, then, it
is elaborated to obtain the related hash value. The phase
schedule of this structure (see Fig. 1) consists of a message
input phase, where the message blocks are sequentially in-
serted, a blank round phase, i.e., a series of blank rounds,
and the digest output phase, where every iteration generates
the elements of the final hash value.

RadioGatún and irRUPT are defined over a simple round
function, which updates the internal state variables at every

Message Input Phase 

Blank Round Phase 

Digest Output Phase 

Round
Function

Round
Function

Round
Function

Message
Block

Hash
Value

Figure 1. Phase schedule of the hash func-
tions RadioGatún and irRUPT.

Algorithm 1 Alternating-input construction
Z ← RadioGatúnw(M)
(A,B) = (0, 0)
for i = 0, 1, . . . , nm − 1 do

(A′, B′) = Fi(A, B, M)
(A, B) = R(A′, B′)

end for{Injection}
for i = 0, 1, . . . , nb − 1 do

(A, B) = R(A,B)
end for{Mangling}
for i = 0, 1, . . . , nz − 1 do

(A, B) = R(A,B)
(z2i, z2i+1) = (a1, a2)

end for{Extraction}

round. In the input phase, the iterations of the round func-
tion are alternated with the insertion of the input blocks.
The output phase executes the round function over the state
and outputs some elements of the state variables as the hash
value.

2.1 The RadioGatún Hash Function

RadioGatún is based on the alternating-input construc-
tion of IMF. As described in Alg. 1, the phases of Fig. 1 are
injection, mangling, and extraction. The l-bit input block
M = (mi, mi+1, mi+2), where every element is a w-bit
word (l = 3w), is mapped into the state variables A (mill)
and B (belt) by the function Fi(). After nm iterations a
message of 3wnm bits is taken. Then, nb = 16 blank
rounds are repeated over the state A and B, followed by
nz iterations of the round function and the extraction of two
words from A. The central component is the round function
R(). Its belt-and-mill structure (see Alg. 2) consists of the
Mill() and the Belt() functions with the Mill to Belt and the
Belt to Mill operations. The mill A consists of 19 words ai,
while the belt B has 13 stages bi of three words bi,j .

The Mill() function consists of four invertible transfor-
mation (see Alg. 3). Among these, the first is the only one
introducing non-linearity in the hashing process. The input

Algorithm 2 Round function
(A′, B′)←R(A, B)
for i = 0, 1, . . . , 12 do

b′(i) = b(i− 1 mod 13)
end for{Belt function}
for i = 0, 1, . . . , 11 do

b′(i + 1, i mod 3) = b′(i + 1, i mod 3)⊕ a(i + 1)
end for{Mill to Belt}
A′ = Mill(A)
for i = 0, 1, 2 do

a′(i + 13) = a′(i + 13)⊕ b(12, i)
end for{Belt to Mill}
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Algorithm 3 Mill function (indices are modulo 19)
A′ ← Mill(A)
for i = 0, 1, . . . , 18 do

a′(i) = a(i)⊕ [a(i + 1) ∨ a(i + 2)]
end for
for i = 0, 1, . . . , 18 do

a(i) = a′(7i) ≫ i(i + 1)/2
end for
for i = 0, 1, . . . , 18 do

a′(i) = a(i)⊕ a(i + 1)⊕ a(i + 4)
end for
a′(0) = a′(0)⊕ 1

mapping function Fi() is defined as

(A′, B′) =















a′

i+16 = ai+16 ⊕mi i = 0, 1, 2
a′

i = ai else
b′0,i = b0,i ⊕mi i = 0, 1, 2
b′i = bi else

(1)

The length of the final hash value is given by n = 2wnz .

2.2 The irRUPT Stream Hashing Mode

irRUPT has been defined as a stream hash function. It is
based on the symmetric cryptographic primitive EnRUPT.
As stated by the author, EnRUPT can be used to construct
fast and secure hash functions. Its simple structure uses only
exclusive-ORs (XORs), word-wise rotations, and modulo
2w additions. Multiplication by nine is turned into the addi-
tion of the word with its ’� 3’ part.

The basic computation is carried out in the ir1(p) small
round function (application of EnRUPT), defined as

f = [(2xr−1 ⊕ xr+1 ⊕ d⊕ r) ≫ w/4] · 9,
xr = xr ⊕ f,
d = d⊕ f ⊕ p⊕ xh/2+r,
r = r + 1,

(2)

where X is the h = 2n
w -word state variable, d a w-bit

feedback variable, r the round count, and p the input word.
The global round function ir2s(p) executes eight sequen-
tial calls of ir1(p). Therefore, the security/performance
trade-off of irRUPT is defined, by setting s = 4, as advised
in [10].

The computations of the irRUPT hashing scheme are re-
sumed in Alg. 4. The generation of the hash value starts
with a process phase, where ir2s(mi) combines the input
words of the message M with the state X (l = w). Then in
the finalize phase, h rounds of ir2s() are computed without
inserting any input. At the end, the words of the final hash
value are extracted from d after additional h/2 blank rounds
of ir2s().

Algorithm 4 stream hashing (indices of x are modulo h)
Z ←irRUPTw(M)
X = 0, d = 0, r = 1
for i = 0, 1, . . . , nm − 1 do

ir2s(mi)
end for{Process}
for i = 0, 1, . . . , h− 1 do

ir2s(0)
end for{Finalize}
for i = 0, 1, . . . , h/2− 1 do

ir2s(0)
zi = d

end for{Output}

3 Hardware Implementations

The core of the implementation of the presented hash al-
gorithms is the single round function (R() or ir2s()) and the
memory unit to store the intermediate state variables. Since
RadioGatún and irRUPT do not use substitution boxes, no
additional memories are required. A further irRUPT archi-
tecture with a reduced round function has been investigated
to achieve different performance trade-offs. Every design is
controlled by a dedicated control unit, which computes the
round count and routes the signal inside the cores.

3.1 RadioGatún Architecture

RadioGatún enables different specifications of word
size. The w parameter, besides defining the capacity of the
security level, constitutes the smallest computational unit,
on which the arithmetic of the function is defined. The
SHA-2 family includes the SHA-256 algorithm, working
with w = 32 and SHA-512 with w = 64 bits. Hence,
the choice to implement RadioGatún32 and RadioGatún64
allows a more direct comparison between the algorithms.
Furthermore, the extraction count nz has been fixed to four,
in order to generate a 256-bit output in RadioGatún32 and
a 512-bit output in RadioGatún64.

The high-level architecture of the RadioGatún cores is
depicted in Fig. 2. The single round block is connected
with the register-based memory to store the state variables
A and B every clock cycle. Two multiplexers select the in-
puts of the round function, depending on the current hash-
ing phase. The round unit is based on the four operations,
defined in Alg. 2. The functions Mill() and Belt() are com-
puted in parallel, as well as the Mill to Belt and the Belt to
Mill transformations. The Belt() function is a simple rota-
tion of the words inside the belt variable B, while the two
last transformations are carried out by XORs. The most
complicated and area-expensive module is the Mill() func-
tion, which limits the maximum working frequency of the
round block. The ’≪ k’ operator is a k-bit rotation towards
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Figure 2. Block diagram of the implemented
RadioGatún architecture.

less significant bits; in hardware, it is translated into a direct
re-routing of the bits inside the word.

During the extraction phase, the circuit outputs two
words of the final hash value every cycle.

3.2 irRUPT Architectures

The cryptographic primitive EnRUPT has been specified
for a word length w of 32 or 64 bits. Both irRUPT32 and
irRUPT64 have been implemented. They use a fixed h =
16, which means a generation of a 256-bit hash value by the
former and a 512-bit hash value by the latter.

The flow dependencies between the eight calls of ir1()
inside the global round function ir2s() inhibit every par-
allelization effort. In fact, a single ir1() updates the word
xr, which is then used by the following ir1() to update the
next word. Two architectures were, therefore, devised. The
first is the basic 8 × ir1() design, isomorphic to the algo-
rithm specification (see Fig. 3 (A)). Every cycle, a complete
ir2s() round is computed. Afterwards, the new X state
and the intermediate digest d are stored inside the memory.
In the output phase, d constitutes a word of the final hash
value.

The second architecture is based on an iteratively decom-
posed ir2s() function (see Fig. 3 (B)). It consists of the
same memory for X and d with the addition of only one
ir1() module. Eight iterations (clock cycles) are, therefore,
needed to execute the complete ir2s() round. The input
message words mi keep constant for eight cycles at the in-
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Figure 3. Block diagram of the implemented
8-irRUPT (A), and 1-irRUPT architecture (B).

put of the circuit. The final digest word zi is generated only
every eight cycles, during the output phase.

The design strategy used in the implementation of the
ir1() function is based on a progressive word-shift of the
state (see Fig. 4). Instead of using time-expensive multi-
plexers and demultiplexers to route the elements of X , the
ir1() module takes the words xo and x2 as inputs, while
updating the word x1. The new intermediate digest d is

>>> w/4

<< 3

<< 1

d

p r

d

f

x0 x1 x2 x3 xh/2 xh-2 xh-1

x0 x1 x2 xh/2-1 xh-3 xh-2 xh-1

Figure 4. Word-shift design of the ir1() func-
tion. All connections are w bits wide.
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Table 1. ASIC post-synthesis implementation results.
Ref. Function Area Frequency Cycles Throughput HW-eff. Tech.

[kGE] [MHz] [Gbps] [Kbps/GE] [ µm]
Single Large Single Large

Ours RadioGatún32 21.42 667 21 3.048 64.000 142.3 2,987.9 0.18
Ours RadioGatún64 45.94 625 21 5.714 120.000 124.4 2,612.1 0.18
Ours 8-irRUPT32 15.63 105 40 1.342 3.354 85.8 260.8 0.18
Ours 8-irRUPT64 33.30 90 40 2.315 5.787 69.5 208.2 0.18
Ours 1-irRUPT32 5.83 592 320 0.947 2.367 162.3 406.0 0.18
Ours 1-irRUPT64 11.70 485 320 1.553 3.883 132.8 331.9 0.18
[6] SHA-256 22.03 794 68 5.975 271.3 0.13
[14] SHA-256 15.10 190 72 1.349 87.6 0.18
[6] SHA-512 43.33 746 84 9.096 209.9 0.13
[14] SHA-512 30.75 170 88 1.969 64.0 0.18
[14] Whirlpool 167.37 187 10 9.588 57.3 0.18
[14] Whirlpool 38.91 102 21 2.485 63.9 0.18
[14] Whirlpool 52.79 262 21 6.382 120.9 0.18

computed, by using the same word xh/2. To preserve the
functionality of the algorithm, every word is shifted down
by one r index after the computation of ir1(). More pre-
cisely, the ir1() function constantly uses the word pair {x0,
x2} and xh/2 respectively to compute f and to update d.
The final word shift operation is equivalent to the increment
of the index variable r by one.

4 Results and Performance Comparison

The specific structure of the two presented hash func-
tions leads to performance results that strongly depend on
the input message size. This is due to the different number
of clock cycles that is needed in the input phase to acquire
the whole message. The throughput is given by:

T = f
S

(nm + nb+z)
= f

S

( S
kw + nb+z)

, (3)

where f is the circuit frequency and S the size of the
padded message. The parameter nb+z corresponds to the
number of cycles needed by the blank and the output phase,
while the constant k defines the number of words injected
per cycle into the hashing core:

• RadioGatún: nb+z = nb + nz = 20, k = 3;

• 8-irRUPT: nb+z = h + h
2

= 24, k = 1;

• 1-irRUPT: nb+z = 8(h + h
2
) = 192, k = 1

8
.

Fig. 5 shows the S-dependency of the circuit throughput
normalized over the frequency. Using long message sizes,
the speed converges to the f · kw value. Compared to
hash functions based on the Merkle-Damgård construction,

where the throughput remains constant regardless of the
message length, RadioGatún and irRUPT take large advan-
tage of the input dimension, in addition to the efficiency and
the speed of their round functions.

The hashing cores have been coded in functional VHDL
and synthesized with Synopsys Compiler, targeting a
0.18 µm CMOS technology. The hardware analysis is com-
pleted by the evaluation on a Xilinx Virtex-4 FPGA device.
Tab. 1 and Tab. 2 list the resource utilization, the maxi-
mal clock frequency, and the throughput of the six Radio-
Gatún and irRUPT architectures with additional designs of
Whirlpool and the SHA-2 family. For the ASIC cores, the
hardware-efficiency of the circuit has also been reported.
For the sake of completeness, the throughputs are computed
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Figure 5. Throughput/message size trade-off
of the implemented architectures.
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Table 2. FPGA performance comparison of the hash functions.
Ref. Function Area Frequency Throughput FPGA Type

[Slices-BRAM] [MHz] [Gbps]
Single Large

Ours RadioGatún32 1,501-0 361 1.649 34.620 XC4VLX100
Ours RadioGatún64 2,937-0 330 3.018 63.387 XC4VLX100
Ours 8-irRUPT32 948-0 49 0.632 1.581 XC4VLX100
Ours 8-irRUPT64 2,375-0 36 0.914 2.287 XC4VLX100
Ours 1-irRUPT32 370-0 286 0.457 1.149 XC4VLX100
Ours 1-irRUPT64 740-0 230 0.736 1.841 XC4VLX100
[4] RadioGatún[64] 3,031-0 327 2.854 XC4VLX25
[11] SHA-256 755-1 174 1.370 XC2PV
[11] SHA-512 1,667-1 141 1.780 XC2PV
[3] Whirlpool 2,118-32 220 5.380 XC4V
[1] Whirlpool 376-0 214 0.082 XC2VP40

using two different message lengths. In the ”single” case,
RadioGatún and irRUPT hash respectively a single 3w-bit
block and a 16w-bit message. The ”large” entry in the ta-
bles reports the throughput in case of long messages (when
the speed of RadioGatún and irRUPT approaches f · kw).

The results point out a decisive superiority of Radio-
Gatún in terms of speed. The stream structure and the high
frequency of the RadioGatún architectures are the main as-
set, with respect to the other algorithms. On the other hand,
the 1-irRUPT architecture represents the most compact cir-
cuit, suitable for resource constrained environments.

5 Conclusions

This paper presents the first complete VLSI characteri-
zation of the hash functions RadioGatún and irRUPT. The
stream hashing structure is not only a plausible alternative
to the Merkle-Damgård construction in terms of security,
but it also shows a remarkable flexibility for hardware in-
tegration. The proposed RadioGatún family exhibits by far
the highest throughput, compared with the SHA-2 family
and the Whirlpool function, particularly in case of long in-
put messages. Among the low-area designs, the 1-irRUPT
circuit is the most compact architecture.
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