
Algorithms for the Automatic Extension of an Instruction-Set

Carlo Galuzzi, Dimitris Theodoropoulos, Roel Meeuws and Koen Bertels

Computer Engineering, Delft University of Technology, The Netherlands

{C.Galuzzi, D.Theodoropoulos, K.Bertels, R.Meeuws}@tudelft.nl

Abstract—In this paper, two general algorithms for the automatic gen-

eration of instruction-set extensions are presented. The basic instruction

set of a reconfigurable architecture is specialized with new application-
specific instructions. The paper proposes two methods for the generation

of convex multiple input multiple output instructions, under hardware

resource constraints, based on a two-step clustering process. Initially,

the application is partitioned in single-output instructions of variable
size and then, selected clusters are combined in convex multiple output

clusters following different policies. Our results on well-known kernels

show that the extended Instructions-Set allows to execute applications
more efficiently and needing fewer cycles. Our results show that a

significant overall application speed-up is achieved even for large kernels

(for ADPCM decoder the speed-up is up to x2.2 and for TWOFISH

encoder the speedup is up to x5.5).

I. INTRODUCTION

In the past decade, we have witnessed a general shifting from

the use of general-purpose computing architecture to architecture

able to perform only a limited number of tasks but more effi-

ciently. Although general-purpose architecture can execute a broad

range of applications making them extremely flexible, the power

consumption is relatively high. A good trade-off between flexibility

and power consumption is introduced by reconfigurable systems. A

simple reconfigurable architecture can be realized, for instance, by

coupling a General Purpose Processor (GPP) and a reconfigurable

hardware like an FPGA. When an application is executed on a general

purpose architecture, a certain number of instructions are executed in

hardware, namely the ones that belong to the Instruction-Set, whereas

the rest of the instructions are executed in software. If the same

application is executed on a reconfigurable architecture, we can use

the reconfigurable hardware to implement and execute additional,

more complex, application-specific instructions, so as to extend the

Instruction-Set and speed-up the execution of the application on the

system. The identification of those instructions suitable for hardware

implementation represents the so-called Instruction-Set Extension

(ISE) problem.

Taking into account the data-flow or control-flow graph of an

application, it is easy to understand that the parts of the application

suitable for hardware implementations correspond to subgraphs of

the graph representing the application. The subgraph enumeration

problem is a well-known problem which is computationally complex

and requires exponential time to provide an exhaustive enumeration

of all the subgraphs. Since not all subgraphs are suitable for a hard-

ware implementation, the problem becomes the design of efficient

algorithms for the identification of those instructions suitable for a

hardware implementation.

In this context, we present two general algorithms for the automatic

identification of convex1 Multiple Input Multiple Output (MIMO)

instruction-set extensions. The new instructions are generated via a

two-step process which, initially, partitions the application in single-

output subgraphs of variable size. After that, selected subgraphs

are combined in convex multiple output clusters following different

1The convexity of a graph, property described in Section III, guarantees a proper and

feasible scheduling of the instruction generated which respects the dependencies.

policies. Our results show that the extended Instruction-set allows to

execute applications more efficiently and needing fewer cycles (see

Section V). More specifically, the main contributions of this paper

are the following:

• the construction of convex MIMO instructions through the

combination of single-output clusters of instructions of variable

size. In contrast with existing approaches, the convexity of the

final cluster is guaranteed by construction and does not require

additional checks of the clusters reducing, in this way, the overall

computational complexity.

• an overall linear complexity of the proposed solutions. The

generation of instruction-set extensions is comparable to the

subgraph enumeration problem that is a well known computa-

tionally complex problem. Our algorithms heuristically generate

instruction-set extensions in two steps of linear complexity.

• the proposed approach can be directly applied to large kernels

as suggested by the experiments carried out on the MOLEN

polymorphic processor prototype [21], [1].

The paper unfolds as follows. In Section II, background information

and related works are provided. In Section III and IV, the context

is further formalized and the theoretical contribution is presented.

Section V presents the experimental results. Concluding remarks and

an outline of the research conducted are given in Section VI.

II. BACKGROUND AND RELATED WORK

There are two types of clusters that can be identified within a graph,

based on the number of output values: Multiple Input Single Output

(MISO) and Multiple Input Multiple Output (MIMO). Accordingly

there are two types of algorithms for achieving Instruction-Set

extension.

Concerning the first category, representative examples are pre-

sented in [2], [8], [9]. The exponential number of MISOs within

a graph turns into an exponential complexity of the algorithm used

for their enumeration. [2] reduces the complexity of the analysis gen-

erating only MISO instructions of maximal size, called MAXMISO

(MM). The algorithm exhaustively enumerates all MMs with linear

complexity in the number of processed elements. [8] reduces the

complexity with the use of a heuristic and additional area constraints.

A different approach is presented in [9] where, with an iterative

application of the MM clustering presented in [2], MISO instructions

called SUBMAXMISOs (SMMs) are generated with linear complex-

ity in the number of processed elements.

The algorithms included in the second category are more general

and provide more significant performance improvement. However

they also have exponential complexity in the general case. The

approaches presented in [13], [4], [6] generate and select optimal

convex MIMO instructions but the computational complexity is

exponential. In [24], [25], the authors address the enumeration of

all connected and disconnected patterns based on the number of

inputs, outputs, area and convexity. In [18], the authors present a

complete, generic processor customization flow which uses a novel

identification algorithm. It generates custom instructions through a

978-3-9810801-5-5/DATE09 © 2009 EDAA

technique which makes use of local registers to overcame the I/O

constraints on the new custom instructions.

In [3] and [13] the authors address the generation of convex clusters

of operations with an ILP-based methodology. Other works impose

limitations on the number of operands [5], [7] and use heuristics

to generate sets of custom instructions which therefore can not be

globally optimal. Still, other works [15], [20], [22] cluster operations

considering the frequency of execution or the occurrence of specific

nodes.

In this paper, we combine concepts of both categories: initially,

the application is partitioned in single-output clusters of instructions

of variable size. After that, selected clusters are combined for the

generation of convex MIMO instructions, following different policies

in clustering.

III. THEORETICAL BACKGROUND

We assume that the input dataflow graph is a Directed Acyclic

Graph (DAG) G = (V, E), where V is the set of nodes and E
is the set of edges. The nodes represent primitive operations, more

specifically assembler-like operations, and the edges represent the

data dependencies. The nodes can have two inputs at most and their

single output can be input to multiple nodes.

Basically, there are two types of subgraphs that can be identified

in a graph: MISOs and MIMOs.

Definition III.1 Let G∗ ⊆ G be a subgraph of G with V ∗ ⊆ V set

of nodes and E∗ ⊆ E set of edges. G∗ is a MISO of root r ∈ V ∗

provided that ∀ vi ∈ V ∗ there exists a path2 [vi → r], and every

path [vi → r] is entirely contained in G∗.

By Definition III.1, A MISO is a connected graph. A MIMO,

defined as the union of m ≥ 1 MISOs can be either connected or

disconnected.

Definition III.2 A subgraph G∗ (G is convex if there exists no

path between two nodes of G∗ which involves a node of G\G∗3.

Convexity guarantees a proper and feasible scheduling of the new

instructions which respects the dependencies. Definitions III.1 and

III.2 imply that every MISO is a connected and convex graph.

MIMOs can be convex or not. An exhaustive enumeration of the

MISOs contained in G gives all the necessary building blocks to

generate all possible convex MIMOs. This deals with the exponential

number of MISOs, and therefore MIMOs, contained in G whose

enumeration requires a solution of exponential complexity in the

number of processed elements. A reduction of the number of the

building blocks reduces the total number of convex MIMOs which it

is possible to generate. Anyhow, it reduces the overall complexity of

the generation process as well. A trade-off between complexity and

quality of the solution can be achieved considering MISO graphs of

maximal size, the MAXMISOs (MMs).

Definition III.3 A MISO G∗(V ∗, E∗) ⊂ G(V, E) is a MM if ∀vi ∈
V \V ∗, G+(V ∗ ∪ {vi}, E

+) is not a MISO.

[2] observed two properties related to MMs: first, every MISO is

either a MM or there exists a MM containing it. Second, if A, B are

two MMs then A ∩ B = ∅. The empty intersection of MMs implies

that the MMs of a graph can be enumerated with linear complexity in

the number of its nodes and the set of all MMs represents a minimal

cover.

2A path is a sequence of nodes and edges, where the vertices are all distinct.
3G∗ has to be a proper subgraph of G. A graph itself is always convex.

Let v ∈ V be a node of G and let LEV : V → N be the integer

function which associates a level to each node, defined as follows:

• LEV(v) = 0, if v is an input node of G;

• LEV(v) = α > 0, if there are α nodes on the longest path from

v and the level 0 of the input nodes.

Clearly LEV(·) ∈ [0, +∞) and the maximum level d ∈ N of its

nodes is called the depth of the graph.

Definition III.4 The level of a MM MMi ∈ G is defined as follows:

LEV(MMi) = LEV(f(MMi)). (1)

where f : G → Ĝ is the collapsing function, the function which

collapses the MMs of G in nodes of the graph Ĝ 4.

Let us consider a MM MMi. Each node vj ∈ MMi belongs

to level LEV(vj). Let v ∈ MMi, with 0 ≤ LEV(v) ≤ d. If we

apply the MM algorithm to MMi \ {v}, each MM identified in

the graph is called a SUBMAXMISO (SMM) of MMi \ {v} (or,

shortly, of MMi). The set of the SMMs tightly depends on the choice

of v. For example v can be either an exit node, or an inner node

randomly chosen, or a node with specific properties like area or power

consumption below or above a certain threshold previously defined.

The definition of level of a SMM is the obvious extension to

SMM of the definition of level of a MM. The target of this paper

is the generation of MIMO instruction-set extensions to implement

in hardware. Since MIMO instructions are combinations of MISO

instructions and the combination of convex instructions is not always

convex, we have to provide a way to combine convex instructions

guaranteeing the convexity property of the final MIMO instruction

generated. In [13], [11] we presented the following results (Theorem

III.5 and Corollary III.6):

Theorem III.5 Let G be a DAG and A,B ⊂ G two MMs. Let

LEV(A) ≥ LEV(B) be the levels of A and B respectively. Let C =
A ∪ B. If LEV(A) − LEV(B) ∈ {0, 1}, then C is a convex MIMO.

Moreover C is disconnected if the difference is 0.

Corollary III.6 Any combination of MAXMISOs at the same level

or at two consecutive levels is a convex MIMO.

This result can be generalized to SMMs and can be used to

design clustering algorithms for the identification of convex MIMO

instruction-set extensions to implement in hardware.

In [11], [10], we have proposed two clustering algorithms (based

on the previous Theorem III.5) which generate convex MIMO

instruction-set extensions. In this paper, we take these two algorithms

as starting point to design efficient clustering algorithms. More

specifically, the main idea is to modify the generation process of the

convex MIMOs for the generation of cluster of bigger size which,

in turn, can provide higher speed-up when implemented in hardware

since the speed-up is usually proportional to the cluster size. The

MOLEN architecture is used to carry out the experiments. Although

this architecture does not impose limitations on the total number of

inputs and outputs of the generated instructions, in this paper, we

introduce also constraints on the total number of operands in the

generation process. The scope of introducing these constraints is to

assess the quality of the presented algorithms on architecture other

than MOLEN.

IV. THE CLUSTERING ALGORITHMS

The clustering method presented in this paper, is based on the

notion of Archimedean Spiral. A spiral is generated when a point P

4In general, f collapses a cluster of nodes of G in a node of Ĝ.

moves with constant speed v on a line which, in turn, rotates around

one of his points O with constant angular velocity ω. The point O is

called center of the spiral. The distance Td between two consecutive

turns is called turn distance. For additional information see [12]

Let LEV1, ...LEVd be the levels of the nodes of a graph G and let

O be a node of G with LEV(O) = i.

Definition IV.1 If O is a seed node, a node selected as initial node

in the generation of a cluster, a spiral search is a clustering search

which looks for nodes to cluster starting from the level of the seed and

following a spiral path S with center the seed, every time the spiral

intersects a level, the nodes of that level (some or all) are analyzed

and the ones which satisfy a predefined property P are included in

the cluster.

Figure 1 depicts a spiral search, with turn distance equals to one level,

in which the levels are analyzed following the order of intersection

between the spiral and the levels.

LEVEL i

LEVEL i-1

LEVEL i+2

LEVEL i+1

LEVEL i-2

...

...

O

1

2

3

4

5

6

7

8

10

9 11

S

12

13

14

15

S_1

S_2

Fig. 1. The spiral search. If O ∈ Li is a seed node, the levels are
analyzed following the order of intersection between the spiral and the levels:
1, 2, 3,

Let G be the DAG of the application and let Ĝ be the reduced

graph. Each cluster is identified starting with a node taken as a seed

and, analyzing a certain number of levels, we grow a cluster which

includes nodes satisfying specific properties. Let aι be a node of

Ĝ = (V̂ , Ê) with LEV(aι) = α ∈ [0, d] and let C = {aι}.

The following steps A, ..., D1 are in brief the main steps for the

generation of convex MIMO clusters. Let us define the following

sets:

PRED
′(aι) =







{m ∈ V̂ | LEV(m) = α − 1 ∧

∃ (m, aι) ∈ Ê}
∅

if α ≥ 1
if α = 0

SUCC
′(aι) =







{m ∈ V̂ | LEV(m) = α + 1 ∧

∃ (aι, m) ∈ Ê}
∅

if α ≤ d − 1
if α = d

(2)

STEP A. The set:
C

I = C ∪ PRED
′(aι) (3)

is a convex cluster. This holds for α ≥ 1 as a consequence of

Theorem III.5 and for α = 0 since a node is trivially a convex

graph.

STEP B. The set:

C
II

= C
I
∪ SUCC

′

(PRED
′

(aι)) (4)

is a convex cluster. This holds as a consequence of Theorem III.5.

STEP C1. The set:

C
III = C

II ∪ {m ∈ V̂ | LEV(m) = i + 1 ∧ NIn(m) = NIn
CII

(m)} (5)

is a convex cluster, where NIn(m) is the number of inputs of the

node m and NInC (m) is the number of inputs coming from a set C
of the node m. The proof is a particular case of the proof in [11].

The algorithm analyzes the nodes of the graph following a spiral

search through the levels of the graphs. As described before and

depicted in Figure 1, the levels are analyzed following the order of

intersection which depends on the turn distance. Since Td = 1, the

next intersections to analyze would be 4 and then 5, i.e. level i and

level i − 1, to look for nodes to expand the cluster. We have the

following:

Theorem IV.2 ([12, Theorem IV.1]) Intersections 4 and 5 do not

provide any node p 6∈ C′′′ such that CIII ∪ {p} is convex and

NIn(p) = NIn
CIII

(p).

Following similar arguments, it is possible to show, see Figure 1,

that all the intersections in the region bounded by the two half-lines

s1 and s2 do not contain nodes suitable for an inclusion in the convex

cluster.

Let A be a set of nodes with h ≤ LEV(n) ≤ k for every node

n ∈ A. We can define the following set:

PRED
′(A) =







{m ∈ V \VA | LEV(m) = h − 1 ∧
∃ (m, n) ∈ E with LEV(n) = h}

∅
if h ≥ 1
if h = 0

(6)

STEP D1. By Theorem IV.2 and by the properties of the spiral search,

the next level to analyze is level i− 2. Let us consider the following

sets:
C

IV = C
III ∪ PRED

′(CIII) (7)

CV = CIV ∪ {m ∈ V̂ | LEV(m) = i − 1 ∧
∃(m, aj) ∈ Ê or (aj , m) ∈ Ê with aj ∈ CIV }

(8)

...

CZ = CZ−1 ∪ {m ∈ V̂ | LEV(m) = i + 3 ∧

∃(m, aj) ∈ Ê or (aj , m) ∈ Ê with aj ∈ CZ−1}
(9)

The cluster CZ is a convex MIMO cluster (see [10]). In general we

have the following:

Remark IV.3 If the level analyzed in STEP D1 is i + β and the

center of the spiral is on level i, the next level to analyze is the level

symmetric respect to the center of the spiral decreased by one:

LEVEL = i − [(i + β) − i] − 1 = i − β − 1. (10)

If this level does not exist, we consider the lower level analyzed so

far.

The algorithm repeats STEP D1 till the final connected convex MIMO

cluster is generated. After removing the nodes analyzed from the

nodes to further analyze for the generation of other convex MIMO

clusters, it restarts from STEP A. This type of analysis implies that

the Spiral-clustering requires linear complexity in the number of

processed elements.

This algorithm can be modified for the generation of bigger clusters

which, in turn, can provide higher speed-up since, in general, the

speed-up is proportional to the size of the cluster. In this context,

we propose a modified version of algorithm described above, which

reiterates STEP A and STEP B. More specifically, after the generation

of CI and CII with STEP A and STEP B respectively, before STEP

C1 and D1 we have:

STEP B1. The set:

C
III = C

II ∪ {PRED
′(aj) | aj ∈ C

II ∧ LEV(aj) = i} (11)

is a convex cluster. This holds as a consequence of Theorem III.5.

STEP B2. The set:

C
IV = C

III ∪ {SUCC
′(aj) | aj ∈ C

III ∧ LEV(aj) = i − 1} (12)

is a convex cluster. This holds as a consequence of Theorem III.5.

1 2

3 4 5

6 7

8

9

10

a)

1 2

3 4 5

6 7

8

9

10

b)

1 2

3 4 5

6 7

8

9

10

c)

1 2

3 4 5

6 7

8

9

10

d)

1 2

3 4 5

6 7

8

9

10

e)

1 2

3 4 5

6 7

8

9

10

f)

Fig. 2. Clustering without reiteration of STEP A and STEP B: example
of an application considering only 3 levels. a) C = {4}, b) CI

= {4} ∪
{1, 2}, c) CII

= {1, 2, 4} ∪ {3, 5}, d) CF IN
= {1, 2, 3, 4, 5} ∪ {6, 7} =

{1, 2, 3, 4, 5, 6, 7}, e) and f) do not expand the cluster.

1 2

3 4 5

6 7

8

9

10

a)

1 2

3 4 5

6 7

8

9

10

b)

1 2

3 4 5

6 7

8

9

10

c)

1 2

3 4 5

6 7

8

9

10

d)

1 2

3 4 5

6 7

8

9

10

e)

1 2

3 4 5

6 7

8

9

10

f)

Fig. 3. Clustering with reiteration of STEP A and STEP B: example of
an application considering only 3 levels. a) C = {4}, b) CI = {4} ∪
{1, 2}, c) CII

= {1, 2, 4} ∪ {3, 5}, d) CIII
= {1, 2, 3, 4, 5} ∪ {8}, e)

CIV
= {1, 2, 3, 4, 5, 8}∪{9}, CF IN

= {1, 2, 3, 4, 5, 8, 9}∪{6, 7, 10} =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

After that, the algorithm continues with STEP C1 and STEP D1

(CIII in STEP C1 becomes now CIV and so on).

Figure 2 and 3 depict an easy example which shows the reiteration

and non-reiteration of STEP A and B.

Additionally, if in place of STEP D1, we reiterate STEP C1

increasing one level at each iteration (i → i + 1) until there are

nodes that can be included in the cluster, the algorithm generates

convex MIMO clusters as in [11] with or without reiteration of the

initial steps (i.e. with or without STEP B1 and B2).

Concerning the computational complexity, the algorithms take as

an input a node of V̂ , generate the cluster CF IN and remove the

nodes belonging to the cluster from the node to further analyze for

identifying other convex MIMO clusters. In this way each node is

analyzed only once keeping the overall computational complexity of

the algorithms linear with the number of processed elements.

In summary, the steps required to generate the set of convex

MIMOs are the following:

a) Selection of an application;

b) MM partitioning: the application is analyzed and partitioned

in MMs using an algorithm similar to the one presented in

[2];

c) SMM partitioning: the application partitioned in MM is

sub-partitioned in SMMs using an algorithm similar to the

one presented in [9] and considering different options for

the selection of the the node removed from the MMs (see

Section V);

d) Convex MIMO Clustering: the application partitioned in

SMMs is analyzed and convex MIMO clusters are built

following step A, B, (B1, B2) C1, D1 or A, B, (B1, B2)

C1, C1, ...

As mentioned before, in this paper, we introduce limitations on the

total number on inputs and outputs of the convex clusters generated

by the algorithms. Since the clusters are generated in multiple steps

*.c

C-to-DFG

MM Generation

SW Cost
VHDL

Generation

Synthesis

HW Cost

Reduced Graph

SMM Generation

MIMO clusters

MIMO Clustering

Opt.

Fig. 4. Tool Chain for the identification of instruction-set extensions.

and at each step additional nodes are included in the cluster, the

number of inputs and outputs of the clusters can increase or decrease

at each step. Stop the clustering if the input/output constraints is

violated can produce extremely small clusters. At present, the algo-

rithms complete the cluster generation without introducing constraints

on inputs and/or output during the clustering. If limitation on inputs

and/or outputs are introduced, the algorithms return the last convex

cluster built during the generation process which satisfy input and

output constraints. In this way there are more chances to have a

bigger cluster.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experiments setting

To evaluate the qualities of the presented clustering algorithms,

a dedicated tool chain has been built and the algorithm has been

applied on a set of well-known kernels. The presented clustering

algorithms are part of a larger toolchain that aims at supporting the

hardware designer in the design process (see also [10], [23] for more

details). The tool chain for the experiments is presented in Figure

4 The input is C code in which the kernel functions are marked

with pragmas. The annotated functions are transformed into dataflow

graphs (DFGs). The generated graphs are analyzed for the MM and

SMM partitioning.

The software execution time for each SMM is computed as the

sum of the latencies of its operations. The hardware execution time

is estimated through behavioral synthesis of the MM and SMM’s

VHDL models using the Xilinx ISE 9.4i, and this delay is converted

into PowerPC cycles. We consider implementation of our approach on

the Molen prototype that is built on a Xilinx Virtex-II Pro XC2VP100

FPGA device. The software execution is assumed to be performed on

a PowerPC 405 operating at 300MHz. VHDL synthesis is performed

for the target board to estimate area and delay of the MM and

SMMs. Since the PowerPC processor does not provide floating-point

instructions, the floating-point operations in the benchmark kernels

are converted into the proper integer arithmetic. The kernels have

been unrolled by a factor of 8/16 in order to increase the selection

space of our algorithms. The tools in the toolchain do not require

any manual effort for adjusting to the target application.

The estimated software and hardware implementation costs are

used by the coarse-grain clustering algorithms for the generation of

convex MIMO instructions. The algorithms select a node in the graph

as a seed for the growth of the final cluster and iteratively group

nodes following a certain number of steps as previously described in

Section IV.

The clustering is limited by the size of the reconfigurable hardware.

This means that the algorithm stops the generation of convex MIMOs

if there exists no extra design space to explore for clustering or if

there is no more available area in the FPGA. In the second case, if the

total area of the generated clusters exceeds the available area on the

reconfigurable hardware, we use an established metric for evaluating

our optimizations and select the instructions to implement on the

reconfigurable hardware, which fit the available area. The Area-Delay

Product (ADP) and its variants (e.g. A2DP, AD2P) have been used

extensively [16], [14] and provide a well-known empirical measure

of performance. Delay is the primary concern in our working context;

thus AD2P has been used as our metric. In effect, the clusters are

ranked based on the following formula: AC/(LSW −LHW)2, where

AC is the area of the generated cluster, LSW and LHW are the

latency of the cluster in software and hardware respectively.

B. Analysis of the data

Given an application, it is initially partitioned in MMs. After

that, the SMM clustering selects a node in each MM and applies

the MM clustering to the MMs bereft of the selected nodes. This

makes the SMM clustering node-dependent. For this reason, seven

versions of the FIX SMM clustering algorithm have been designed

and implemented depending on the node removed in the MMs, as

described in the following:

• Option 1: an input node.

• Option 2: an output node.

• Option 3: a random node.

• Option 4: 1st node with 1 successor and 1 predecessor.

• Option 5: 1st node with 1 successor and 2 predecessors.

• Option 6: 2nd node with 1 successor and 1 predecessors.

• Option 7: 2nd node with 1 successor and 2 predecessors.

Since the DFG of the application is a DAG, the nodes of the graph

can be topologically ordered. Successors and predecessors of nodes

mentioned before are then identified by the topological order of the

nodes. The node to remove is chosen starting the analysis from the

output node of the MM. This means for example, that in option 3

the output node of each MM is removed and the MM partitioning

is applied to each MM bereft of its output. Concerning the selection

of the seed in the coarse-grain clustering, the node is selected as the

one with smallest latency in hardware. In case many nodes have the

same latency, the seed is randomly selected starting from the lowest

levels of the reduced graph.

In our experiments, we have used well known cryptographic

kernels from MCRYPT library (http://mcrypt.sourceforge.net/), the

Adaptive Differential Pulse-Code Modulation decoder (ADPCM, a

well-known audio format decoder) and the Sum of Absolute Differ-

ences (SAD).

In Figure 5, we depict the overall application speed-up for the

Virtex II PRO XC2VP100 FPGA device compared to the pure

software execution for the different kernels.

An obvious remark concerns Option 1 of the SMM clustering. As

Figure 5 depicts, in most of the cases, Option 1 does not perform well.

This is the result of removing an input node from a MM. It generates

only two SMMs: the node removed and the MM bereft of the selected

nodes. The limited number of SMMs available to combine compared

with the number of SMMs generated by the other version of the

SMM clustering affects the number of possible combinations. On

average, the best choices in the selection of the node to remove for

the generation of the SMMs are option 4–7 which remove an inner

node from the clusters to partition and generate bigger clusters which,

when implemented in hardware, provide higher speed-up. This, in

turn, leads to the generation of a big number of SMMs which allows

for a finer selection of the final cluster.

Concerning the overall computational complexity of the clustering

algorithms presented in this paper, it is the sum of the complexities of

the single-output partitioning and of the multiple-output clustering.

The MM (SMM) partitioning and the algorithms presented in this

paper, both require linear complexity in the number of processed

elements. As a consequence, the overall complexity of the clustering

algorithms is linear in the number of processed elements.

Concerning the area usage on the FPGA, ADPCM Decoder and

TWOFISH Encoder use between 20% and 30% of area and CAST

128 Encoder and SAD use between 10% and 20% of area. Hardware

reuse is not considered in our approach. This because the inclusion

of hardware reuse in the generation process turns into an analysis

of the generated clusters to identify isomorphic graphs and avoid

the implementation in hardware of the same instructions. Since we

want to keep an overall linear complexity and the isomorphism

problem is a well known computationally complex problem, hardware

reuse has not been considered up to now. This turns in additional

hardware usage. Future research will included also this problem in

the generation process.

Unfortunately, the benefit of the inclusion of our clustering al-

gorithm for automatic ISE can not be compared exhaustively with

the work presented in literature. This is mainly due to the lack in

literature of a basic set of benchmark applications and kernels used

to test the various methodologies. Comparing with the work presented

by [4], which provides an optimal solution, our overall speed-up for

the ADPCM decoder is x2.2 with an overall linear complexity in

contrast with the x3.4 and an exponential overall complexity of the

approach of [4]. Additionally, our algorithms do not have problems

of scalability. In [3], despite the different benchmarks, we both use

cryptographic benchmarks and the overall application speed-up has

the same order of magnitude (x5.5 with our approach and x7.5

with the approach presented in [3] but which still has high overall

computational complexity in contrast with the linear complexity of

our approach. Compared with the work presented in [11] (Figure 5),

the clustering algorithms presented in this paper perform better in

most of the cases.

VI. CONCLUSIONS

In this paper, we have introduced general algorithms for the

automatic identification of convex MIMO instruction-set extensions.

The proposed clustering algorithms combine clusters of single-output

instructions of variable size (SMMs) for execution as new application-

specific MIMO instructions on the reconfigurable hardware. The

proposed clusterings generate convex MIMO instructions with linear

complexity in the number of processed elements and do not impose

limitations either on the types and number or on the number of

inputs and outputs of the generated instructions. Our results show

that a significant overall application speed-up is achieved even for

large kernel (for ADPCM decoder the speed-up is up to x2.2 and for

TWOFISH encoder the speed-up is up to x5.5).

ACKNOWLEDGMENT

This work was supported by the European Union in the context

of the MORPHEUS project (IST-027342), the hArtes project (IST-

035143) and RCOSY project (DES-6392).

REFERENCES

[1] MOLEN Reconfigurable Processors – http://ce.et.tudelft.nl/MOLEN/.

[2] C. Alippi et al. A dag-based design approach for reconfigurable vliw
processors. In DATE ’99

[3] K. Atasu et al. An integer linear programming approach for identifying
instruction-set extensions. In CODES+ISSS ’05,

0,0

0,5

1,0

1,5

2,0

2,5

MM SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7

6--3 8--4 10--5 15--10 20--8 Inf--Inf

a) ADPCM Decoder 1UD(1)

0

0,5

1

1,5

2

2,5

3

MM SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7

6--3 8--4 10--5 15--10 20--8 Inf--Inf

b) CAST 128 Decoder 1UD(1)

2

2,1

2,2

2,3

2,4

2,5

2,6

MM SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7

6--3 8--4 10--5 15--10 20--8 Inf--Inf

c) SAD 1UD(1)

0,0

0,5

1,0

1,5

2,0

2,5

MM SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7

6--3 8--4 10--5 15--10 20--8 Inf--Inf

d) ADPCM Decoder SPIR(1)

0

0,5

1

1,5

2

2,5

3

MM SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7

6--3 8--4 10--5 15--10 20--8 Inf--Inf

e) CAST 128 Decoder SPIR(1)

2

2,1

2,2

2,3

2,4

2,5

2,6

MM SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7

6--3 8--4 10--5 15--10 20--8 Inf--Inf

f) SAD SPIR(1)

0

1

2

3

4

5

6

MM SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7

6--3 8--4 10--5 15--10 20--8 Inf--Inf

g) TWOFISH Encoder 1UD(1)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

MM SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7

6--3 8--4 10--5 15--10 20--8 Inf--Inf

h) TWOFISH Encoder SPIR(1)

Fig. 5. Overall speed-up for different kernels and different clustering algorithms. Two algorithms
have been tested: 1UD(1), and SPIR(1) where SPIR(1) represent the clustering through the spiral
search with reiteration of the initial steps and 1UD(1) is the modified version of the clustering
algorithm presented in [11] with reiteration of the initial steps. For each algorithm different fine-
grain partitioning are considered: the MM partitioning and the SMM partitioning with different
selection in the node removed for the generation of the SMMs (Opt. 1–7). The algorithms are
tested including limitations on the total number of inputs and outputs. The speed-up estimation
is based on Amdahl’s law, using the profiling results and the computed speed-up for the kernels.

[4] K. Atasu et al. Automatic application-specific instruction-set extensions
under microarchitectural constraints. In DAC ’03

[5] M. Baleani et al. Hw/sw partitioning and code generation of embedded
control applications on a reconfigurable architecture platform. In CODES

’02

[6] P. Biswas et al. Isegen: Generation of high-quality instruction set
extensions by iterative improvement. In DATE ’05

[7] N. Clark et al. Processor acceleration through automated instruction set
customization. In MICRO 36

[8] J. Cong et al. Application-specific instruction generation for configurable
processor architectures. In FPGA ’04

[9] C. Galuzzi et al. A linear complexity algorithm for the generation of
multiple input single output instructions of variable size. SAMOS VII

[10] C. Galuzzi et al. Automatic Instruction-Set Extensions with the Linear
Complexity Spiral Search. ReConFig 2008

[11] C. Galuzzi et al. A linear complexity algorithm for the automatic
generation of convex multiple input multiple output instructions. In
ARC07

[12] C. Galuzzi et al. The Spiral Search: A Linear Complexity Algorithm for
the Generation of Convex MIMO Instruction-Set Extensions. In FPT07

[13] C. Galuzzi et al. Automatic selection of application-specific instruction-
set extensions. In CODES+ISSS ’06

[14] A. Gayasen et al. Switch box architectures for three-dimensional fpgas.
In FCCM ’06

[15] R. Kastner et al. Instruction generation for hybrid reconfigurable
systems. ACM TODAES, 7(4):605–627, 2002.

[16] I. Kuon and J. Rose. Area and delay trade-offs in the circuit and
architecture design of fpgas. In FPGA ’08

[17] C. Lee et al. Mediabench: a tool for evaluating and synthesizing
multimedia and communicatons systems. In MICRO 30

[18] R. Leupers et al. A design flow for configurable embedded processors
based on optimized instruction set extension synthesis. In DATE ’06

[19] L. Pozzi and P. Ienne. Exploiting pipelining to relax register-file port
constraints of instruction-set extensions. In CASES ’05

[20] F. Sun et al. Synthesis of custom processors based on extensible
platforms. In ICCAD ’02

[21] S. Vassiliadis et al. The molen polymorphic processor. IEEE ToC,
53(11):1363–1375, 2004.

[22] C. Wolinski and K. Kuchcinski. Automatic selection of application-
specific reconfigurable processor extensions. In DATE ’08

[23] Y. Yankova et al. DWARV: Delftworkbench automated reconfigurable
vhdl generator. In FPL’07

[24] P. Yu and T. Mitra. Scalable custom instructions identification for
instruction-set extensible processors. In CASES ’04

[25] P. Yu and T. Mitra. Disjoint pattern enumeration for custom instructions
identification. In FPL 2007

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

