
Response-Time Analysis of Arbitrarily Activated
Tasks in Multiprocessor Systems

with Shared Resources

Mircea Negrean, Simon Schliecker, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig

D-38106 Braunschweig / Germany

{negrean|schliecker|ernst}@ida.ing.tu-bs.de

Abstract—As multiprocessor systems are increasingly used in
real-time environments, scheduling and synchronization analysis
of these platforms receive growing attention. However, most
known schedulability tests lack a general applicability. Common
constraints are a periodic or sporadic task activation pattern,
with deadlines no larger than the period, or no support for shared
resource arbitration, which is frequently required for embedded
systems. In this paper, we address these constraints and present a
general analysis which allows the calculation of response times for
fixed priority task sets with arbitrary activations and deadlines
in a partitioned multiprocessor system with shared resources.
Furthermore, we derive an improved bound on the blocking
time in this setup for the case where the shared resources
are protected according to the Multiprocessor Priority Ceiling
Protocol (MPCP).

I. INTRODUCTION

The design and development of multiprocessor systems has

become a hot topic for most major semiconductor compa-

nies in recent years. Driven by the increasing performance

requirements and power limitation of single processor systems,

different multiprocessor and multi-core solutions have been

already provided not only for general-purpose processors but

also for embedded devices [1], [2]. As such components are

often used in real-time applications, formal verification of the

timing properties is essential.

Timing is however not trivial in multiprocessor systems.

Even in setups with static task-to-processor mapping, the

execution of the tasks is usually not independent. The use

of the same physical hardware, such as memories, coproces-

sors, or network components, makes inter-core interference

unavoidable and may introduce hard-to-find timing problems

including missed deadlines that can finally make the entire

system fail. Thus, the analysis of tasks on multiprocessor

systems becomes more complicated under synchronization

mechanisms. Effective solutions to handle resource sharing

have been suggested for uniprocessor systems, e.g. [3] and

based on this solution different extensions and variations for

multiprocessor systems were proposed, e.g. [3], [4].

To provide the necessary timing guarantees for such sys-

tems, various formal scheduling analysis techniques have been

proposed that cover partitioned and non-partitioned multi-

processor scheduling with varying degrees of generality. For

long, however, real-time analysis has focused on constrained

task models — i.e. periodic activation and deadlines not

larger than the periods. Moreover, synchronization of shared

resources, essential elements of every real-time system, are

often neglected. While both issues have individually been

addressed in isolation, no method is currently available that

allows the verification of real-time systems that exhibit both

of these properties.

The contribution of this paper is the response time analysis

for multiprocessor partitioned real-time systems composed of

a set of tasks with arbitrary activations and shared resources.

With this, we overcome the restriction of previous work which

assumes that task deadlines are less than or equal to the

activation period or does not consider synchronization issues.

The partitioning problem is not our concern in this paper, but

the improved schedulability test can be used to allow more

efficient partitioning.

The remainder of this paper is organized as follows. First,

we provide an overview of related work in Section II. The

system model we use is introduced in Section III. The new

response time analysis is presented in Section IV. Section V

provides an example, underlining the applicability of the

proposed approach. We draw conclusions in Section VI.

II. RELATED WORK

Multiprocessor scheduling algorithms are an intensively

investigated topic in the real-time community. Two major

categories of multiprocessor scheduling can be identified: the

partitioned and the global / non-partitioned approach. Feasi-

bility tests are available for a variety of partitioned and global

scheduling policies such as static priority preemptive [5], [6] or

global EDF [7]. Arbitrary sporadic task systems on preemptive

multiprocessor systems under the partitioned paradigm were

investigated in [8]. In [9] the authors propose a schedulability

test for multiprocessor systems based on response time analy-

sis. They extend the previously known response time analysis

technique from the uniprocessor scheduling theory to globally

scheduled periodic and constrained sporadic tasks.

978-3-9810801-5-5/DATE09 © 2009 EDAA

Under partitioned scheduling, each task is statically mapped

to a processor, e.g. according to bin-packing heuristics, and

then schedulability tests are used to verify whether all tasks

meet their deadlines. Since the partitioning of tasks among

processors separates the multiprocessor scheduling problem

into multiple uniprocessor scheduling problems, well devel-

oped uniprocessor scheduling techniques can be directly ap-

plied. Many of these analyses are based on a variation of

the busy window technique proposed by Lehoczky [10] and

extended by Tindell et. al [11].

The classical assumption for real-time tasks in scheduling

algorithms is that they are independent. In practice how-

ever, tasks interact via semaphores to synchronize the shared

resources between different processors. Rajkumar et al. [3]

propose a locking protocol for real-time multiprocessor sys-

tems known as the Multiprocessor Priority Ceiling Protocol

(MPCP). This protocol assumes that tasks are scheduled

according to the partitioned rate monotonic scheduling (RMS)

policy and allows to bound the time a task is delayed by

other local or remote tasks due to resource contention. They

propose a schedulability condition that needs to be checked for

each processor. In [4] Chen et al. propose a modified resource

control protocol that is similar to MPCP but can be used

together with partitioned EDF or partitioned RMS. Another

shared resource arbitration algorithm is the Multiprocessor

Stack Resource Protocol (MSRP) which is compared with

MPCP in [12], showing that neither outperforms the other

on the complete spectrum of system setups. In [13] Devi

et al. present a synchronization procedure specifically for

multiprocessor scheduling under global EDF.

In [14] an end-to-end approach to derive worst case response

time bounds for tasks mapped on multiprocessor systems and

sharing resources is presented.

All of the approaches considering synchronization aspects

on multiprocessor systems assume a periodic or a classical

sporadic task model. More general task activation patterns can

be expressed with event streams (see Fig. 1), which can be

described using the upper and lower event arrival functions

η+(Δt) and η−(Δt). These specify the maximum respectively

the minimum number of events that occur in the event stream

during any time interval of length Δt.

)(t)(t

)(t

t

)(n

)(n

)(n

n2 3 4 5 6

Fig. 1. Event Streams.

Correspondingly, an event stream can also be specified using

the functions δ−(n) and δ+(n) that represent the minimum

and respectively the maximum distance between any n (n ≥ 2)

events in the stream. Compact models have been suggested

to efficiently cover common event stream properties (such as

periodicity or event jitter) [15], [16], [17].

In event driven multiprocessor systems, task activations are

often the result of messages being sent from other tasks.

Here, the derivation of the task activating event model is

not straight-forward. As a solution, compositional scheduling

analysis approaches [16], [17] propose to propagate the event

stream information during the analysis. Iteration is used where

cyclic dependencies exist.

III. SYSTEM MODEL

For the scope of this paper, we assume a multiprocessor

real-time system composed of a set of m processors, each

having its own static priority preemptive scheduler, a set of

shared resources, and a static set of n arbitrarily activated

tasks τ = {τ1, . . . τn}. The tasks have been statically mapped

to the processors with some method, and it is our goal to

determine the schedulabilty of the given mapping. A common

priority space across all processors is assumed and each task

in the system has a unique, static priority. Each instance of a

task, called a job, is activated by events, which are modeled

as arbitrary event streams using solely the functions η+(Δt),
η−(Δt), δ+(n) and δ−(n). Each job of a task τi executes no

longer than a worst case execution time Ci, and must complete

before a given (relative) deadline Di, which may be smaller,

equal, or larger than the distance to the successive activation.

Thus, if a task has a worst case response time larger than

this distance, it is possible for that task to re-arrive before the

previous job has completed. We assume that new jobs may

not start to execute before the previous job is complete.

Resources are objects that require serialized access. We dis-

tinguish between local and global resources. Local resources

reside on each processor and can be accessed only by tasks

mapped on it. Global resources are assumed in a separate

shared resource module and can be accessed by tasks mapped

on different processors.

IV. SCHEDULABILITY ANALYSIS

As an example, consider a multiprocessor system consisting

of two cores as shown in Fig. 2. An independent static priority

preemptive operating system is executing on each core.

The worst case response time of a task mapped on any of

these processors is classically determined by the task’s worst

case execution time plus the maximum amount of time the

task can be kept from executing due to preemptions by higher

priority local tasks. Furthermore, when a task performs ac-

cesses to shared resources it is additionally delayed (blocked)

when waiting for the required resources. While in uniprocessor

systems this delay depends only on tasks mapped on the same

processor, in multiprocessor systems it also depends on the

amount of load imposed on the shared resources by tasks

mapped on other processors in the system. Thus, the local

analysis of one processor now depends on the shared resource

interference caused by other processors.

To calculate the task response times in the given setting,

we need to address three problems. First, the load imposed by

tasks on shared resources has to be determined. Second, this

1

3

CPU 1

1

SR1

Global Shared Resources

3

CPU 2

2

5

Local
Resources

2

5

Local
Resources

SR2

Dual-Core System

1
~

5
~ 2

~

4
4

Fig. 2. Dual-Core system with tasks accessing local and global resources.

information has to be used to derive the maximum blocking

time that a task may experience. Third, the obtained blocking

times need to be integrated in the worst case response time.

This step couples local scheduling analysis with the analysis

of the shared resource arbitration. These issues are addressed

in the following sections.

A. Derivation of shared resource load

A limitation of previous approaches to derive the blocking

time in multiprocessor system is the relatively simple model

of the task’s individual resource usage. For example, [3]

assumes a constant number of requests per task execution. In

single processor systems, the blocking time can be precisely

calculated without knowing the task’s exact request pattern.

This is due to the fact that only a single critical section can

block a higher priority task, making the exact request timings

insignificant. This is not true for multiprocessor systems. Here,

various sources of blocking from remote processors may occur,

and requests from different processors may be prioritized,

causing several “blockings” by the same task. It is therefore

advisable, to take a closer look at how the requests are timed.

Imagine a task τ1 that is trying to access a global shared

resource SR that is also used by another task τ2 on another

processor as depicted in Fig. 3. The resource arbitration is

such that τ2 receives a higher priority on the resource, thus

conflicts are resolved in its favor. Now, assume τ1 tries to

access the resource 4 times during its execution. The same

is true for τ2. The exact timing of τ2’s accesses now clearly

makes a difference. If all requests occur at the beginning of

its execution (Fig. 3a), this may cause τ1 to be blocked each

time. If however, τ2’s requests are further separated in time

(Fig. 3b), this means that during τ1’s execution, only one or

two conflicts may actually occur.

To capture such details for the analysis, we apply the event

model concept which has previously been used to model task

activations ([16], [17]) to also capture the resource traffic. For

this we define:

Definition 1. The Shared Resource Request Bound η̃+
i (Δt)

is the maximum number of requests that may be issued by a
task τi to a shared resource within a time window of size Δt.

)(~2 t

t

)(~2 t

SR
a)

b)

1 stalled

1 accessing SR 2 accessing SR
Task executing

SR

t

Request for SR

1

2

1

2

Fig. 3. Effect of Resource Load Variations.

This model provides the opportunity to cover several new

aspects in the analysis of shared resource timing. Firstly,

it allows to express the inter event timing between several

requests by one job of the task, which leads to more accurate

analysis results (as shown in Section V). Secondly, it can be

used to conveniently capture the timing of the joint traffic by

several different jobs, and even several different tasks. This

allows simplifying the analysis of shared resource timing as

shown in the next section.

The shared resource request bound of a task τi can be

straight-forwardly bounded: Let τi be activated by events

bounded by event model η+
i (Δt), have a worst case response

time Ri, and perform at most ni accesses to a shared resource

per activation. The request bound of a task is then given by

η̃+
i (Δt) = η+

i (Δt + Ri) · ni. (1)

Note that (1) features the η+
i -function shifted by the task’s

response time to account for the requests of jobs that are

unfinished at the beginning of the investigated time interval.

The joint shared resource request bound of multiple tasks

can then be calculated as the sum over the individual request

bounds of each task.

This simple model does not yet consider the distances

between events as in Fig. 3b. A more accurate shared resource

request bound can be derived by measurement, or, more

reliably, by analysis of the task’s internal control flow (i.e. its

linear execution sequences, jumps, and conditional statements)

and its external activation pattern. For example, a task that

makes an access to a shared resource within a loop, will

produce a request sequence that contains several accesses (one

per loop) separated by the loop execution time, and the overall

pattern repeating with each activation of the task.

Further details on deriving η̃(Δt) are beyond the scope

of this paper. The interested reader is referred to similar

approaches for deriving a bound on the number of memory

accesses [18], [19].

B. Derivation of blocking times

In the following we will consider the multiprocessor priority
ceiling protocol (MPCP) [3] and using the load derivation on

the shared resources we will introduce an improved blocking

time analysis for task sets activated by the general event stream

model.

Since task deadlines can be larger than their periods, the

blocking time analysis has to consider the possible influence

of overlapping job execution. This influence can be captured

by analysing the tasks during their execution in a time interval

denoted here with wi(q) — q (q = 1, 2, . . . k) represents

the number of activations of a task τi within wi(q). Further

details about the computation of wi(q) will be introduced

in Section IV-C. Thus, the blocking time Bi of a task τi

when accessing local and global resources in a multiprocessor

system can be determined as a function of the size of a time

window wi(q) during which task τi executes.

MPCP is a deadlock free protocol which relies on the

following assumptions: a task τi can access local or global

resources; a critical section guarded by a semaphore and

protecting a global or a local resource is called global critical

section (gcs) or local critical section (lcs); priority ceilings

are assigned to critical sections; local critical sections are

assigned priority ceilings according to the uniprocessor PCP;

global critical sections are assigned priority ceilings that are

higher than the priority of any other task in the system; during

execution, tasks are suspended when they try to access a

locked gcs; when a higher priority task is blocked on a global

critical section local tasks can be executed and may even try a

lock on local or global critical sections; global critical sections

are not allowed to be nested in other critical sections (local

or global) and vice-versa; if tasks perform nested accesses to

global critical sections, an explicit partial ordering of global

resources has to be used to prevent deadlocks.

Rajkumar [3] identified that the blocking time of a task τi

due to resource contention in a multiprocessor system consists

of up to 5 types of blocking. In order to present the blocking

factors, the following definitions are introduced, which are

similar to the ones used in [3].

• The maximum number of global critical sections that each

job Ji of a task τi executes before its completion is nG
i .

• η̃+
j (wi(q)) represents the maximum number of requests

that any task τj can issue to a shared resource within the

investigated time interval wi(q).
• ωlocal

i and ωglobal
i represent the maximum duration of a

local and respectively of a global critical section when it

is accessed by jobs of a task τi.

• lp(i) is the set of tasks with lower priority than τi on its

processor.

• We denote the set of lower priority local tasks that require

global resources with lp(i)G.

• lpr(i) and hpr(i) are the sets of tasks which are mapped

on remote processors and have lower and respectively

higher priority than τi.

• GSi,j represents the set of global semaphores that will

be locked by jobs of both tasks τi and τj .

• The set of tasks which are elements of lpr(i) and access

elements of GSi,j is denoted with θi,j .

• Similar the set of tasks which are elements of hpr(i) and

access elements of GSi,j is denoted with Θi,j .

• Jobs of the tasks in θi,j and Θi,j are jobs which directly

block jobs of task τi. Consider the processors on which

tasks in θi,j and Θi,j are mapped. Each of these proces-

sors may contain other tasks that access global resources

with higher priority ceilings than the priority ceiling of

the resources accessed by tasks directly blocking τi. We

denote the set of these tasks with Ψi,j .

Based on these definitions, we now extend the 5 blocking

factors of the classical MPCP analysis to consider the influence

of multiple job activations and the load imposed on the shared

resources.

Local blocking time. According to the uniprocessor priority

ceiling protocol (PCP), each job Ji of a task τi may be blocked

once by a job Jj of a lower priority local task τj ∈ lp(i).
In the occurrence of overlapping activations of task τi, a

lower priority local job Jj will block only the first job of

the task τi (once Jj exits the critical section which blocks Ji

it cannot execute anymore before all jobs of τi are finished).

Additionally, in the multiprocessor protocol, each time a job

Ji tries to lock a global semaphore, it can potentially suspend,

letting lower priority jobs execute on the local processor. This

reproduces the situation presented above where jobs of lower

priority tasks can lock local resources each time Ji attempts to

enter a global critical section and suspends. These low priority

jobs can lock local semaphores and block Ji when it resumes

its execution. Therefore, the local blocking time of a job Ji

can be bounded by:

Bi1(wi(q)) = [1 + q · nG
i] · max

∀τj∈lp(i)
(ωlocal

j)

Direct blocking time. Each time a job Ji tries to access a

global critical section, it can find that this is currently held by a

lower priority job on a different processor. Thus, the blocking

time due to lower priority remote tasks which share the same

global resources with Ji (jobs of tasks in the set θi,j) is:

Bi2(wi(q)) = q · nG
i · max

∀τj∈θi,j

(ωglobal
j)

Similar, each job Ji can be blocked by higher priority

remote jobs that request the same global resource as Ji (jobs

of tasks in the set Θi,j). As opposed to lower priority remote

jobs, higher priority remote jobs may be served multiple times.

Bi3(wi(q)) =
∑

∀τj∈Θi,j

(η̃+
j (wi(q)) · ωglobal

j)

Indirect preemption delay. We now consider the processors

on which tasks that directly block jobs of task τi (tasks in

θi,j and Θi,j) are mapped. If tasks on these processors (tasks

in Ψi,j) access global resources with higher priority ceilings

than the priority ceilings of the resources accessed by tasks

directly blocking τi, each of them can preempt the global

critical sections of tasks directly blocking τi. Their influence

on the blocking time can be captured by:

Bi4(wi(q)) =
∑

∀τj∈Ψi,j

(η̃+
j (wi(q)) · ωglobal

j)

Local preemption delay. Each time a job Ji of task τi tries

to access a global resource, it can potentially suspend, letting

jobs of lower priority local tasks execute on its local processor.

If these jobs require access to global resources (jobs of tasks

τj ∈ lp(i)G), they can lock or queue up on the global resources

and can therefore preempt Ji when it executes non-critical

code. Within the investigated time interval wi(q) there are at

most q jobs of task τi and each of these jobs can issue maximal

nG
i requests to global resources. In addition, when Ji begins

its execution on its local processor, a lower priority job can

have an outstanding request for a global semaphore. Hence, in

the analyzed time interval, task τi can be blocked for at most

q ·nG
i +1 global critical sections of tasks in lp(i)G. But, lower

priority local tasks that require access to global resources can

issue at most η̃+
j (wi(q)) requests to global resources within

wi(q). As a result, only the minimum of these two bounds

may actually occur.

Bi5(wi(q)) =
∑

∀τj∈lp(i)G

min(q · nG
i + 1, η̃+

j (wi(q))) · ωglobal
j

The worst case blocking time that a job of a task τi can

encounter in a time window wi(q) is given by the sum of the

above 5 blocking factors (Bi1, . . . Bi5).

C. Multiprocessor response time analysis

In this section, we provide the schedulability condition

for tasks under the partitioned multiprocessor static priority

preemptive scheduling with shared resources and arbitrary task

activations. For this, we extend the classical busy window

approach for uniprocessors by Tindell et. al [11].

In a uniprocessor system under static priority preemptive

scheduling, the response time of a task τi is given by the

largest response time of any of the q (q = 1, 2, . . . k) task

activations that lie within the busy interval. The response time

of the q-th activation of task τi is given by the difference

between the window length wi(q) and the moment when this

activation was initiated relative to the beginning of the busy

interval. This is given by δ−i (q). Thus, Ri = max(wi(q) −
δ−i (q)).

Two important aspects need to be considered to extend

Tindell’s formula. Firstly, we can not rely on the critical

instance scenario anymore, because the use of globally shared

resources can lead to suspension of tasks, which possibly

defers the task execution times (see also [3]). The busy window

consists not only of the time interval during which task τi

or a higher priority task is executing, but more generally the

time interval during which at least one invocation of τi is

not finished. This leads to an increased interference for τi,

which includes also unfinished invocations of τj that have

started before the investigated busy window. This is covered

by shifting τj’s activation function η+
j (Δt) by its worst case

response time Rj . Secondly, the blocking time Bi(wi(q)) is

in our case a function of the window size during which the

requests are issued (a larger time window can draw increased

remote blocking, mainly from Bi3 and Bi4). Thus, the worst

case response times of tasks on partitioned multiprocessor

systems can be calculated with (2).

wi(q) = q ·Ci+
∑

∀τj∈hp(i)

η+
j (wi(q)+Rj)·Cj+Bi(wi(q)) (2)

where wi(q) is the maximum busy window of q activations of

task τi; Ci is the worst case execution time of τi; hp(i) is the

set of tasks with higher priority than τi; η+
j (wi(q)+Rj) is the

maximum amount of jobs of τj in a time window of size wi(q);
and Bi(wi(q)) is the maximum blocking time computed as

presented in the previous section.

A solution can be computed iteratively, because all compo-

nents grow monotonically with respect to the window size.

The response time has been found, when two successive

iterations provide identical results. Finally, the schedulability

test consists of checking whether the condition Ri ≤ Di holds

for every task τi in the system.

Note that the response times of tasks in a multiprocessor

system with voluntary suspension can not be calculated in

an arbitrary sequence, because (2) requires the knowledge

of the response time of higher priority tasks. To tackle this

dependency the response times can be calculated top-down,

starting with the highest-priority task. In addition, blocking

factors Bi3, Bi4, ands Bi5 may rely on the resource request

bound (and indirectly the response time) of lower priority

tasks, which leads to a cyclic dependency. In [3], this problem

is tackled with an extension of the resource arbitration protocol

by a so called period enforcer. Alternatively, instead of using

the request bound (1), our approach allows the use of bounds

that are independent of the task’s response time (e.g. based on

the fact that job executions of the same task may not overlap

or that the requests are separated by a minimum distance).

In contrast to previous work, such as [3], our approach does

not require time-triggered task activations, but is conceived to

be appropriate also for event-driven multiprocessor systems.

This is possible through the consistent use of generic event

models to describe task activations and shared resource re-

quests. A major issue here is, that a task’s activating event

model may not initially be known — in particular when it is

the effect of e.g. another task finishing or data arriving over

a bus. This problem is addressed by embedding the analysis

into a compositional analysis approach such as [17] and [20],

where task activating event models are provided and iteratively

refined during the analysis procedure. The analysis of the

shared resource bounds and the above response time analysis

then need to be repeated as well, until the definite event models

have been found.

V. EXPERIMENTS

To evaluate our analysis, we compare it with the analysis

presented in [3]. For this, we assume that the system depicted

in Fig. 2 is stimulated purely periodically with the parameters

given in Table I. In this setting both analyses compute τ5’s

response time with R5 = 94.

TABLE I
PARAMETERS FOR EXAMPLE SYSTEM

Task Period Core Execution Global Resource Local Resource

Name Ti (ms) Time Ci (ms) Accesses nG
i ∗ ωG

i Accesses nL
i ∗ ωL

i

τ1 1000 [50,300] 7 * 2 1 * 2
τ3 500 [30,30] - 1 * 5
τ2 200 [10,10] 1 * 2 1 * 2
τ4 50 [10,10] - -
τ5 250 [40,40] 3 * 2 1 * 2

Based on this, we conduct a series of experiments in

which we investigate the system performance with additional

knowledge of shared resource request timing. For modeling

purposes we assume that the shared resource request bound

of τ1 is given by the simple function η̃1(Δt) = �Δt/dsrr�,

thus all request by τ1, representing direct remote blocking,

are separated by a minimum distance of dsrr. As can be

seen in Fig. 4a, the larger this distance becomes, the lower

is the load on the shared resource. This directly allows τ5

to finish faster, and indirectly, the faster execution draws less

local interference, causing an over-proportional benefit for τ5’s

response times (as seen at dsrr = 27). With increasing request

distances, also the benefit of using our approach increases,

being about 20% more accurate for dsrr = 40.

a) b)

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30 35 40
Distance between shared resource

requests (dsrr) of a task T1

W
C

R
T

(T
5)

WCRT1

WCRT2

60

70

80

90

100

110

120

130

0 500 1000 1500 2000 2500

Jitter of T1

W
C

R
T

(T
5)

Fig. 4. Influence of Different Parameters. (WCRT1: response times calculated
with the analysis approach for MPCP in [3]; WCRT2: response times
calculated with the improved analysis approach for MPCP).

In the final experiment, we deviate from the periodic as-

sumptions. For this, we increase the jitter of the event stream

model for τ1, which captures transient overload situations. The

effect of the resulting increased interference can be seen in

Fig. 4b, where the worst case response time of task τ5 on the

other processor is negatively affected. Depending on the given

deadline, the system may even become unschedulable.

VI. CONCLUSION

In this paper we have provided a response time analysis

for partitioned multiprocessor real-time systems composed of

a set of tasks with fixed priorities that are arbitrarily activated

and share secondary resources. This overcomes the restrictions

of the majority of previous work, which either assumes that

tasks’ deadlines are less than or equal to the activation period

or assumes tasks to be independent. We have provided tight

response time bounds that allow an efficient partitioning

of tasks in multiprocessor systems, increasing the effective

utilization. Not only did we extend the scope of allowed

system configurations, but we also improved the results of the

traditional analyses for MPCP by utilizing improved resource

usage models.

REFERENCES

[1] “The cell project at IBM research. http://www.research.ibm.com/cell/.”
[2] “Freescale customers case studies: Continental - high-performance MCU

optimized for EBS applications. http://www.freescale.com/.”
[3] R. Rajkumar, Synchronization in Real-Time Systems: A Priority Inher-

itance Approach. Kluwer Academic Publishers Norwell, MA, USA,
1991.

[4] C.-M. Chen and S. K. Tripathi, “Multiprocessor priority ceiling based
protocols,” University of Marylands, Tech. Rep., 1994.

[5] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling
on multiprocessors,” Proceedings of the 22nd IEEE Real-Time Systems
Symposium (RTSS), pp. 193–202, Dec. 2001.

[6] B. Andersson and J. Jonsson, “The utilization bounds of partitioned and
pfair static-priority scheduling on multiprocessors are 50%,” Proceed-
ings of the 15th Euromicro Conference on Real-Time Systems (ECRTS),
pp. 33–40, July 2003.

[7] S. Baruah and T. Baker, “Global EDF schedulability analysis of arbitrary
sporadic task systems,” Euromicro Conference on Real-Time Systems
(ECRTS), pp. 3–12, July 2008.

[8] S. K. Baruah and N. W. Fisher, “The partitioned dynamic-priority
scheduling of sporadic task systems,” Real-Time Systems, vol. 36, no. 3,
pp. 199–226, 2007.

[9] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” 28th IEEE Interna-
tional Real-Time Systems Symposium (RTSS), pp. 149–160, Dec. 2007.

[10] J. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines,” Proceedings 11th Real-Time Systems Symposium,
pp. 201–209, Dec 1990.

[11] K. W. Tindell, A. Burns, and A. J. Wellings, “An extendible approach
for analyzing fixed priority hard real-time tasks,” Real-Time Syst., vol. 6,
no. 2, pp. 133–151, 1994.

[12] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca,
“A comparison of MPCP and MSRP when sharing resources in the Janus
multiple-processor on a chip platform,” Proceedings of the 9th IEEE
Real-Time and Embedded Technology and Applications Symposium, pp.
189–198, May 2003.

[13] U. Devi, H. Leontyev, and J. Anderson, “Efficient synchronization under
global EDF scheduling on multiprocessors,” Proceedings of the 18th
Euromicro Conference on Real-Time Systems (ECRTS), pp. 75–84, 2006.

[14] J. Sun, R. Bettati, and J.-S. Liu, “An end-to-end approach to schedule
tasks with shared resources in multiprocessor systems,” Proceedings.,
11th IEEE Workshop on Real-Time Operating Systems and Software,
pp. 18 – 22, May 1994.

[15] K. Gresser, “An event model for deadline verification of hard real-
time systems,” in Proceedings 5th Euromicro Workshop on Real-Time
Systems, Oulu, Finland, 1993, pp. 118–123.

[16] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE), pp. 190–195, 2003.

[17] K. Richter, “Compositional scheduling analysis using standard event
models,” Ph.D. dissertation, Technical University of Braunschweig,
2004.

[18] S. Schliecker, M. Ivers, and R. Ernst, “Memory Access Patterns for
the Analysis of MPSoCs,” IEEE North-East Workshop on Circuits and
Systems, pp. 249–252, 2006.

[19] K. Albers, F. Bodmann, and F. Slomka, “Hierarchical Event Streams and
Event Dependency Graphs: A New Computational Model for Embedded
Real-Time Systems,” Proceedings of the 18th Euromicro Conference on
Real-Time Systems (ECRTS), pp. 97–106, 2006.

[20] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst,
“System level performance analysis for real-time automotive multi-
core and network architectures.” IEEE Transactions on Computer Aided
Design, 2009, (to appear).

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

