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Abstract

In this paper, a novel design space exploration approach
is proposed that enables a concurrent optimization of the
topology, the process binding, and the communication rout-
ing of a system. Given an application model written in
SystemC TLM 2.0, the proposed approach performs a fully
automatic optimization by a simultaneous resource alloca-
tion, task binding, data mapping, and transaction routing
for MPSoC platforms. To cope with the huge complexity of
the design space, a transformation of the transaction level
model to a graph-based model and symbolic representation
that allows multi-objective optimization is presented. Re-
sults from optimizing a Motion-JPEG decoder illustrate the
effectiveness of the proposed approach.

1. Introduction and Related Work

The increasing computational demands of modern ap-
plications often require their implementation on heteroge-
neous multiprocessor platforms. As a consequence, select-
ing the optimal platform and optimal mapping of the appli-
cation to this platform is a challenging task. As these deci-
sions are taken in early design phases, they have a huge im-
pact on the quality of the resulting implementation. To sub-
stantiate these decisions, design space exploration is used
to identify promising implementation options.

Many different approaches to ESL (Electronic System-
Level) design space exploration have been published in re-
cent years. They are either (1) platform-based, where re-
sources are allocated from an architecture template and,
subsequently, an application model is mapped to the result-
ing architecture obeying additional mapping constraints, or
(2) multi-phased, assuming task partitioning is done before
communication architecture exploration. Both approaches
are shown in Fig. 1.

Platform-based design space exploration as, e.g., pre-
sented in [4, 5, 17, 18], performs the task of system syn-
thesis, i.e., resource allocation and task binding. Nearly
all automatic approaches follow the Y-chart approach [8]

where the implementation platform is selected from an ar-
chitecture template by allocating computational as well as
communication resources. Data mapping is often not per-
formed during design space exploration but postponed to
the code generation phase. This, however, might result in an
ad hoc and suboptimal communication synthesis step. As a
consequence, an overestimated number of communication
resources (buses, point-to-point connections, etc.) or over-
sized memories might be allocated deteriorating the overall
chip area or performance (see Fig. 1(a)).

On the other hand, multi-phased approaches assume the
task binding and (computational) resource allocation to be
performed before running a second optimization, i.e., the
communication architecture exploration. These approaches
as, e.g., presented in [1, 3, 11, 13, 14], start with a so
called Virtual Architectural Model [7]. During exploration,
the topology is selected, i.e., communication resources and
their interconnection to computational resources are deter-
mined. Simultaneously, the data mapping is performed.
That way, the resulting communication architecture is ad-
justed to the task binding and data mapping (see Fig. 1(b)).

Most of the proposed approaches to communication ar-
chitecture exploration use TLMs (Transaction Level Mod-
els) [2] with different degrees of time accuracy to do the
necessary refinements. TLMs have shown to be particu-
larly useful in virtual prototyping for performance estima-
tion [6, 15]. However, separating system synthesis, i.e.,
resource allocation and task binding, from communication
architecture exploration, might lead to suboptimal designs
in multi-phase approaches. To overcome these drawbacks,
a new platform-based ESL design space exploration for
MPSoCs (Multiprocessor System-on-Chip) is proposed by
combining system synthesis and communication architec-
ture exploration. An overview of the proposed approach is
shown in Figure 2.

For this purpose, the application model is located at the
transaction level with threads communicating using trans-
actions. The application model is mapped to an architecture
template by simultaneously (1) allocating computational
and communication resources, (2) binding tasks to compu-
tational resources, (3) mapping channels to memories, and
(4) routing transaction in the resulting communication ar-
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Figure 1. Two different approaches in ESL de-
sign space exploration can be distinguished:
(a) The platform-based approach basically
performs resource allocation and task bind-
ing. (b) The multi-phased approach basically
performs bus selection and data mapping.

chitecture. In this novel one-phased approach, given map-
ping constraints imposed by, e.g., maximal computational
load, maximal bus load, or maximal memory size, etc. are
respected inherently. Former approaches rely on straight-
forward heuristic optimization algorithms, i.e., Evolution-
ary Algorithms and Simulated Annealing, and do in general
not perform well for such hard constrained problems. In or-
der to solve this problem appropriately, the design space is
encoded symbolically by linear constraints with binary vari-
ables, and a state-of-the-art hybrid optimization approach
[9, 10] is used to enable an adequate optimization of com-
plex systems.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the graph-based exploration model and its
symbolic encoding. A transformation scheme from Sys-
temC TLM 2.0 to the proposed exploration model is given
in Section 3. In Section 4, a case study is presented that per-
forms the proposed design space exploration for a Motion-
JPEG decoder application on a multimedia architecture be-
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Figure 2. Proposed design space exploration:
The application model is mapped to an archi-
tecture template by simultaneously allocating
resources, binding tasks, mapping channels,
and routing transactions.

fore the paper is concluded in Section 5.

2. Exploration

From a system synthesis point of view, the problem of
mapping a dataflow model specified at transaction level
to an MPSoC implementation is defined by the following
steps:

1. Select the resources to set up the implementation plat-
form, i.e., allocate processors, hardware accelerators,
buses, memories, etc.

2. Bind each SystemC module (task) with its process to
exactly one computational resource (processor or hard-
ware accelerator) of the selected platform.

3. Bind each channel to exactly one memory of the se-
lected platform.1

4. Route all transactions according to the computed bind-
ing and the topology of the selected platform.

In order to perform these steps automatically, we follow the
commonly accepted Y-chart approach [8] and use a sym-
bolic decoding strategy to efficiently derive implementa-
tions from the resulting design space.

In the following, the graph-based exploration model is
presented. A symbolic encoding as linear constraints is in-
troduced such that each solution equals a feasible imple-
mentation. This symbolic representation in combination
with state-of-the-art optimization approach allows an opti-
mization of multiple conflicting and even non-linear objec-
tives.

1It is possible to map the communication to computational resources if
the resource can establish the communication internally.



2.1. Exploration Model

The exploration model is defined by a specification that
consists of an application and an architecture. From this
specification, various implementations can be derived by
defining the allocation of the architecture and the mapping
of the application.

The specification consists of an architecture graph GR

and an application graph GT :
• The architecture is given by a directed graph

GR(R,ER). The vertices R represent resources such
as processors, memories, or buses. The directed edges
ER indicate available communication connections be-
tween two resources.
• The application is given by a bipartite directed graph

GT (T, ET ) with T = P ∪C. The vertices T are either
process tasks p ∈ P or communication tasks c ∈ C.
Each edge e ∈ ET connects a vertex in P to one in
C, or vice versa. Each process task can have multiple
incoming edges that indicate the data-dependencies to
communication information of the predecessor com-
munication tasks. On the other hand, each communi-
cation task has exactly one predecessor process task as
the sender, but a process task can of course have mul-
tiple successor communication tasks. To allow multi-
casts, each communication task can have multiple suc-
cessor process tasks.

Each process task p ∈ P can be implemented on a
resource from Rp with Rp ⊆ R. Each communication
task c ∈ C can be routed on a subset of resources from
Rc with Rc ⊆ R.

One implementation consists of the allocation graph GA

that is deduced from the architecture graph and a function i
that maps the application onto the allocation graph.
• The allocation is a directed graph GA(A, EA) that is

an induced subgraph of the architecture graph GR. The
allocation contains all resources that are available in
the current implementation and the edges are induced
from the graph GR such that GA is aware of the com-
munication connections.
• Each process task p ∈ P is bound to exactly one allo-

cated resource i(p) such that i(p) ∈ (A ∩ Rp). Each
communication task in c ∈ C is routed on a tree that is
a subgraph of the allocation such that i(c) ⊆ GA with
all vertices in Rc. These bindings and routings have to
be performed such that all data-dependencies given by
the following two conditions are satisfied:

1. For each communication task c ∈ C, the root of
the routing has to equal the binding of the predecessor
sender process task p ∈ P . It holds:

∀(p, c) ∈ ET : root(i(c)) = i(p)

2. For each process task p ∈ P the routings of the
predecessor communication tasks c ∈ C have to be

routed on the same resource as the binding of process
p. It holds:

∀(c, p) ∈ ET : i(p) ∈ i(c)

An implementation is feasible if all requirements regard-
ing the process and communication mapping as well as the
data-dependencies are fulfilled.

With the definition of a feasible implementation, the task
of the design space exploration can be formulated as the
following multi-objective optimization problem:

Definition 1 (Design Space Exploration)

optimize f(x)
subject to:

x is a feasible implementation

In real-world problems, the objective function f consists of
multiple functions including also non-linear calculations. In
single-objective optimization, the feasible set of networks
is totally ordered, whereas in multi–objective optimization
problems, the feasible set is only partially ordered and, thus,
there is generally not only one global optimum, but a set
of Pareto solutions. A Pareto-optimal solution is better in
at least one objective when compared to any other feasible
solution.

2.2. Encoding

In the following, a binary search problem is defined such
that a solution x corresponds to a feasible implementation
x. The symbolic encoding consists of the following binary
variables:

• r - one variable for each resource r ∈ R indicating
whether this resource is in the allocation (1) or not (0).

• pr - a set of variables for each process task p ∈ P and
the available resources r ∈ Rp indicating whether the
process task is bound on the resource (1) or not (0).

• cr - a set of variables for each communication task
c ∈ C and the available resources r ∈ Rc indicat-
ing whether the communication task is routed over the
resource (1) or not (0).

• cr,n - additional variables for each communication and
resource pair indicating on which communication step
n ∈ N (communication tasks are propagated in steps)
a communication is routed over the resource.

The linear constraints are formulated as follows:
∀p ∈ P : ∑

r∈Rp
pr = 1 (1a)

∀c ∈ C : ∑
r∈Rc

cr,0 = 1 (1b)



∀c ∈ C, p ∈ {p̃|(p̃, c) ∈ ET }, r ∈ Rp ∩Rc :

pr − cr,0 = 0 (1c)

∀p ∈ P, c ∈ {c̃|(c̃, p) ∈ ET }, r ∈ Rp ∩Rc :

cr − pr ≥ 0 (1d)

∀c ∈ C, r ∈ Rc :

cr,1 + cr,2 + ... + cr,n ≤ 1 (1e)
cr,1 + cr,2 + ... + cr,n − cr ≥ 0 (1f)

∀c ∈ C, r ∈ Rc, i = {1, ..., n} :

cr − cr,i ≥ 0 (1g)

∀c ∈ C, r ∈ Rc, i = {1, .., n− 1} :

−cr,i+1 +
∑

r̃∈Rc∧e=(r̃,r)∈ER
cr̃,i ≥ 0 (1h)

∀p ∈ P, r ∈ Rp :

r− pr ≥ 0 (1i)

∀c ∈ C, r ∈ Rc :

r− cr ≥ 0 (1j)

∀r ∈ R :

−r +
∑

c∈C∧r∈Rc
cr +

∑
p∈P∧r∈Rp

pr ≥ 0 (1k)

Equation (1a) ensures that each process task is bound ex-
actly once. The Equations (1b) and (1c) imply that each
communication task has exactly one root that equals the
used resource of the predecessor process task. Analogously,
for each process task the predecessor communication tasks
have to be routed on the corresponding resources as stated
in Equation (1d). Equation (1e) ensures that a communica-
tion task can pass a resource at most once such that no loops
occur. A communication task has to be existent in one com-
munication step on a resource in order to be correctly routed
on this resource as implied by the Equations (1f) and (1g).
Equation (1h) states that a communication is only possible
between adjacent resources. The Equations (1i) and (1j)
imply that a process or communication task, respectively,
is bound or routed on an allocated resource only. On the
other hand, Equation (1k) states that a resource is only al-
located if at least one process is bound or a communication
is routed on this resource. Moreover, this representation al-
lows additional linear or linearizable constraints like, e.g.,
on maximal computational load, maximal bus load, or max-
imal memory size for each resource.

Given a single solution x of this linear search problem,
the corresponding implementation x is deduced by con-
structing the allocation from the r variables, the binding for
each process task from the pr variables, and the routing of
the communication task from the cr and cr,n variables.
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Figure 3. Example of a transformation from
a (a) dataflow graph to the correspond-
ing (b) TLM and (c) exploration model with
pt1 , pt2 , pFIFO ∈ P and c1, c2, c3, c4 ∈ C.

2.3. Optimization

Common optimization approaches that are based on In-
teger Linear Programs or Evolutionary Algorithm only are
either restricted to a single linear objective function or do
not perform well on optimization problems with many con-
straints and few feasible solutions. With the binary encod-
ing and linear constraint from the previous section, the de-
sign space exploration problem as stated in Def. 1 can be
carried out efficiently by using the heuristic SAT decod-
ing optimization approach [9]. This hybrid optimization
approach based on an Evolutionary Algorithm and a PB
(pseudo boolean) solver allows the optimization of multi-
ple conflicting and non-linear objectives under linear con-
straints in a binary search space. The optimization approach
iteratively improves found implementations such that with
a higher runtime and more evaluated implementations, re-
spectively, the quality of the results increases.

3. Transformation

In order to apply the design space exploration automat-
ically, the specification has to be given. While the archi-
tecture graph and mapping constraints provided by a sys-
tem engineer can be directly embedded in the specification,
most multimedia applications are represented by dataflow
models and have to be transformed into an application
graph. Dataflow models are typically already represented as
directed graphs, where vertices represent actors and edges
represent queues with FIFO semantics.



In order to support an efficient simulation, an intermedi-
ate representation of these dataflow models at the transac-
tion level, i.e., SystemC TLM 2.0 is aspired. For that pur-
pose, automatic approaches exist [3]. Otherwise, a straight-
forward reimplementation following the scheme shown in
Figure 3 is possible as well: Each actor of the dataflow
model corresponds to a single thread encapsulated in a sin-
gle SystemC module. Each communication queue is mod-
eled by a SystemC channel. The sending and receiving
threads are connected to the channel via socket bindings.
Moreover, the sending and receiving threads are directly
connected to each other in order to allow the exchange of
synchronization information, e.g., availability of new data
on the channel.

To transform the transaction level model into an applica-
tion graph, the following steps are mandatory: Each thread
and each channel is represented by exactly one process task.
Using the mapping constraints, threads are restricted to be
mapped to computational resources, e.g., processors and
hardware accelerators, while channels are commonly re-
stricted to be mapped to memory resources like, e.g, on-
chip or off-chip RAM. Each socket binding is represented
by exactly one communication task connecting the process
task representing the sending thread and the process task
respresenting the receiving thread. This transformation can
be performed automatically, cf. Figure 3.

4. Case Study

In this case study, the proposed design space exploration
is applied to a multimedia system. In particular, a Motion-
JPEG decoder application is mapped onto a multimedia ar-
chitecture template. The objectives of the optimization are
throughput in terms of frames per second (fps), latency in
terms of milliseconds, and chip area in terms of the number
of gates. The performance evaluation of each candidate im-
plementation is carried out by a fast high-level simulation
that dynamically annotates the performance characteristics
from a selected allocation to the application [16]. The chip
area is approximated by a linear cost function. The task
execution times are derived from another case study inves-
tigating the Codesign of a Motion-JPEG decoder on Xilinx
FPGA platforms including a MicroBlaze soft-core proces-
sor [5]. The task execution times in software are taken from
the MicroBlaze processor software implementation and are
scaled using the typical MIPS values for the ARM9 and
ARM11 processors (e.g. 35MIPS@50MHz for a MicroB-
laze processor and 220MIPS@200MHz for an ARM9 pro-
cessor). Additionally, artificial area values are annotated to
the architecture template reflecting the relative ratio of the
resources in terms of chip area. These area values are in-
spired by typical chip size values obtained from processor
specifications and gate count values for the hardware mod-
ules from the mentioned case study. Although these per-
formance and area values are not accurate enough to make

area (gates) throughput (fps) avg. latency (ms)
1 33,090 29.5 34.5
2 25,285 15.1 68.7
3 17,063 10.3 100.4

Table 1. Objective values for the implemen-
tations with highest throughput, lowest area
consumption as well as a balanced trade-off
implementation.

irrevocable decisions from the exploration results, these in-
puts are suitable to explore the complex design space and to
find possible high quality implementation alternatives.

The application model of the decoder is specified at
transaction-level using 21 SystemC single-threaded mod-
ules and 56 SystemC channels for data storage communi-
cation between modules. An architecture template incorpo-
rates 12 multi-purpose processing elements and communi-
cation resources, as well as 10 dedicated hardware accel-
erators connected via 36 point to point communication re-
sources including storage memory. Here, the set of multi-
purpose processing elements consists of two ARM9 and
two ARM11 processors-cores, one DSP, three memories,
two buses, and one gateway connecting these buses.

All application tasks can be mapped to any of the ARM
processors or the DSP. Additionally, some tasks known to
be critical like, e.g., the discrete cosine transformation,
Huffman decoding can be mapped to application-specific
hardware accelerators. The communication queues can be
mapped to memories or to hardware communication re-
sources.

A sequence of images in SQCIF-format (128×96 pixels)
is used as input stimuli for performance simulation. The
exploration was performed on a 2.66 GHz quad-core In-
tel Xeon Server with 8GB of RAM using the optimization
framework OPT4J [12] that includes the suggested SAT de-
coding optimization approach. In 17 hours total runtime2,
7600 candidate architectures were evaluated, resulting in
27 high quality implementations from which a designer
can choose the most suitable implementation. A projec-
tion of the area and throughput for these implementations
is shown in Fig. 4. Note that three implementations provide
a throughput of more than 24fps and, thus, fulfill current
real-time video requirements.

Exemplarily, all objective values for the implementations
with highest throughput, lowest area consumption as well as
a balanced trade-off implementation are given in Table 1.

Discussion

The case study shows that the proposed methodology is ap-
plicable to a typical multimedia multiprocessor system. Al-
though the application and the architecture template seem

2More than 99, 9% of the runtime is spent on the simulative evaluation
of the performance values.
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Figure 4. The two dimensional projection of
the best found implementations showing the
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manageable at first glance, the design space exploration re-
veals a quite large design space and, thus, a great poten-
tial for an optimization. Moreover, a huge diversity among
the delivered high quality implementations can be observed.
This allows the designer to make an accurate decision on
which implementation should be the base for further design
refinements.

Compared to the runtime of the simulative evaluation
of the implementations, the optimization algorithm requires
only 26 seconds in total. With the known scalability analy-
sis for the applied optimization approach [9], this shows that
the model and encoding for the design space exploration is
capable of handling even considerably larger applications
and architectures than provided in this case study.

5. Conclusion

In this paper, a novel ESL design space exploration on
the basis of the Y-chart approach is presented that combines
common system synthesis and communication architecture
exploration approaches. The model explicitly distinguishes
between process and communication tasks for the applica-
tion and, therefore, also multihop and multicast communi-
cation for the resulting implementations is enabled. The
presented binary encoding into linear constraints allows an
efficient multi-objective exploration with a novel optimiza-
tion approach. Moreover, a transformation from dataflow
models and TLMs to this exploration model is presented.
A case study of a Motion-JPEG decoder for an MPSoC
multimedia system shows the efficiency of the proposed ap-
proach by automatically delivering several high quality im-
plementations in a reasonable amount of time.
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