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Abstract 
 

NAND Flash Memories require Garbage Collection (GC) 

and Wear Leveling (WL) operations to be carried out by 

Flash Translation Layers (FTLs) that oversee flash 

management. Owing to expensive erasures and data 

copying, these two operations essentially determine 

application response times. Since file systems do not share 

any file deletion information with FTL, dead data is treated 

as valid by FTL, resulting in significant WL and GC 

overheads. In this work, we propose a novel method to 

dynamically interpret and treat dead data at the FTL level 

so as to reduce above overheads and improve application 

response times, without necessitating any changes to 

existing file systems. We demonstrate that our resource-

efficient approach can improve application response times 

and memory write access times by 22% and reduce 

erasures by 21.6% on average.  

1. Introduction 

Flash memory is a non-volatile semiconductor memory that 

is becoming ubiquitous with attractive features like low 

power consumption, compactness and ruggedness. USB 

memory sticks, SD cards, Solid State Disks, MP3 players, 

Cell phones etc. are some of the well-known applications of 

the flash memory technology. NAND flash markets have 

seen substantial growth in recent years and analysts predict 

that the trend will continue [3].  

However, flash comes with challenges to be addressed. One 

of the most important of them is “Erase-before-Rewrite” 

property: once a flash cell is programmed, a whole block of 

cells needs to be erased before it can be reprogrammed, and 

the erase operation is an extremely time consuming process. 

To hide this latency from the application, another block is 

used as a temporary write buffer to absorb rewrites. A 

rewrite to a full buffer triggers a fold operation as to 

consolidate valid data in both blocks into a new block, 

freeing up the two old blocks. Also, as invalid data 

accumulates and the free space in the whole device falls 

below a critical limit after continued writes, a cleanup 

operation called Garbage Collection (GC) needs to be 

performed to regenerate free space by reclaiming invalid 

data by performing a series of forced fold operations. 

Another challenge of flash is limited life time: NAND flash 

can survive only a specific number of program/erase cycles, 

typically 100,000. Wear Leveling (WL) needs to be 

performed so as to make sure that all the flash blocks are 

evenly erased and the device can make use of all available 

program/erase cycles. This process involves frequent data 

shuffling between highly erased and least erased blocks. 

Thus, both GC and WL operations involve expensive 

erasures and data copying, and so are very time and energy 

intensive. Thus, flash device delays, and hence application 

response times are heavily influenced by the efficiency of 

the above two algorithms. 

To understand the impact of above two operations on 

application response times, we ran a digital camera 

workload on a 64MB Lexar flash drive formatted as FAT32 

[13] and fed resulting traces to Toshiba NAND flash [17] 

simulator to measure WL and GC overheads. During the 

scenario a few media files of sizes varying between 2KB 

and 32MB were created and deleted. Application response 

times at various instances are plotted in Fig.1. The peak 

delays at the right extreme of the figure correspond to 

instances where a GC is being carried out on dead data. As 

media files were not updated, only invalid data was because 

of deleted files. Since file systems only mark deleted files at 

the time of deletion, but not actually erase corresponding 

dead data in flash, FTL treats dead data as valid until 

specifically overwritten by new file data. When free space 

is below a critical level, this might result in a costly GC 

operation as above. Thus, various file systems are shown to 

be lengthy in response times in the presence of dead data 

[5]. Table 1 lists overheads associated with wear leveling 

alone on dead data, in terms of percentage increase in 

device delay, erasures, average memory write access time 

and folds. It has to be noted that, unlike GC overhead that 

occurs only at higher flash utilizations, WL overhead is 

always present. Thus, dead data contributes significantly to 

flash delays by affecting GC and WL operations. 

Since the file system data structure residing on flash is 

known only to the file system, FTL can only interpret reads 

and writes to flash, but not file operations like file creation 

           

              Fig.1: NAND Flash device delays 
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Table 1: Effect of dead data on various 
performance metrics 

and deletion, and hence unaware of dead data 

corresponding to deleted files. On the other hand, sharing 

file system data with FTL is not possible without changing 

existing file system implementations. Thus, previous efforts 

[1][2] [8] [9] [12] [18] [19] have only focused on improving 

GC and WL efficiency, but have not attempted to take dead 

data into consideration or necessitated [5] a change in 

existing system architecture. In this paper, we propose a 

comprehensive approach, FSAF: File System Aware FTL 

that enables FTL to recognize file deletion dynamically and 

resource-efficiently, without necessitating any changes to 

existing file systems. File deletions are interpreted by FSAF 

by observing changes to the file system data structure in 

flash. We also propose a mechanism to proactively handle 

dead data to significantly reduce GC and WL overheads. 

Experimental results demonstrate that FSAF can improve 

application response times and average write access times 

by 22% on an average, besides reducing erasures by 21.6% 

and significantly reducing the number of folds and GCs. 

2. Background 

Flash is organized into blocks and pages. A block is a 

collection of 32 pages each of 512 bytes. Each page has a 

16 byte out-of-band (OOB) area used for storing metadata. 

In addition to read and write, flash also has erasure 

operation. Owing to the “Erase-before-rewrite” 

characteristic, a re-write to a page is possible only after the 

erasure of the complete block it belongs to. Available 

blocks in Flash are organized as Primary and Replacement 

blocks [5]. When a page rewrite request arrives, a primary 

block is assigned a replacement block. When the 

replacement block itself is full, and another rewrite is 

issued, a fold or merge operation needs to be performed: 

valid data in old two blocks is consolidated and written to a 

new primary block and the former are freed subsequently. 

Also, after a series of rewrites, free space in the device falls 

below a critical limit and needs to be regenerated by 

garbage collecting the invalid data. At the end of this GC 

process, valid data is consolidated into primary blocks. 

Thus, a GC is a series of forced fold operations. GC is a 

very time consuming operation, involving lengthy erasures 

and valid data copying, and may take as long as 40sec [10].  

Another limitation of flash is endurance: it can only 

withstand finite number of erasures, typically 100,000. In 

other words, to address the endurance of flash, WL makes 

sure that all the blocks are erased uniformly, and avoiding 

localized wear. This operation involves identifying most 

worn out and least worn out blocks, and swap data between 

these on a periodic basis. Thus, WL also is a time 

consuming process, affecting application response times 

considerably. In order to unburden applications from 

overseeing various aspects of flash management as 

described above, a dedicated Flash Translation Layer (FTL) 

[7] may be employed, that enables existing file systems to 

use NAND flash without any modifications by hiding flash 

characteristics.  

Fig. 2 depicts the file deletion operation in FAT32 file 

system. When a secondary storage like flash is formatted, 

FAT32 allocates first few sectors to FAT32 table to serve as 

pointers to actual data sectors. When a file is created or 

modified, the table is updated to keep track of allocated 

/freed sectors of the file. However, when a file is deleted or 

shrunk, the actual data is not erased. In over-writable media 

like hard disks, this poses no problem, as the new file data 

is simply overwritten over dead data. However, because 

flash doesn’t allow in-place updates, dead data resides 

inside flash until a costly GC or fold operation is triggered 

to regain free space. Also, WL operation is carried out by 

FTL regularly on dead data blocks. Thus, dead data results 

in significant GC and WL overhead, affecting application 

response times.  

3. Related Work 

Several works to improve application response times have 

been proposed so far, by attempting to improve the 

efficiency of GC and WL operations. The greedy GC 

approach was investigated by Wu et al. [18]. Kawaguchi et 

al. [9] came up with the cost-benefit policy, by considering 

both utilization and age of blocks.  Cost Age Time (CAT) 

policy [12] was considered by Chiang et al. that also 

focuses on reducing the wear on the device (increase 

endurance) apart from addressing segregation. Kim et al. 

[8] proposed a cleaning cost policy, which focuses on 

lowering costs and evenly utilizing flash blocks.  A swap-

aware GC policy [14] was introduced by Kwon et al. In 

order to minimize the GC time and extend the lifetime of 

the flash based swap system, they implemented a new 

Greedy-based policy by considering different swapped out 

time of the pages. Various approaches to improve WL 

efficiency have been proposed [2], where wear leveling is 

achieved by recycling blocks with small erase counts.                                                        

Static wear leveling approaches were also pursued [19] to 

treat level both non-cold and cold data blocks.  

 
                Fig.2: File deletion in FAT32 file system 

Metric % increase due to dead data 

Device Delays 12 

Erasures 11 

W-AMAT 12 

Folds 14 



Kim et. Al [5] proposed a new file system, MNFS, to 

address uniform write response times by carrying out block 

erasures immediately after file deletions. This method 

necessitates changes to existing system architectures. 

We recognize that the key to improving application 

response times without necessitating any changes to 

existing file systems is to enable FTL to detect and treat 

dead data dynamically. To this end, in this work, we 

propose an FTL-based framework to efficiently recognize 

and also handle dead data. We have chosen to demonstrate 

our results on FAT32 file system, but the method is equally 

applicable to all other file systems that perform implicit file 

deletions. 

4. FSAF: File System Aware FTL 

FSAF monitors write requests to FAT32 table to interpret 

any deleted data dynamically, subsequently optimizing GC 

and WL algorithms accordingly. Also, depending upon the 

size of dead content and the flash utilization, proactive dead 

data reclamation is carried out.  

4.1. Dead Data Detection 

Dead data detection is carried out by FSAF dynamically as 

files are deleted by the application. Since the file system 

does not share any information with the FTL regarding file 

management, the only way we can interpret file system 

information at FTL is by understanding the formatting of 

flash and keep track of changes to the file system data 

structure residing on flash. The goal of dead data detection 

is to carry out this process efficiently without affecting 

performance.  

The format of flash can be understood by reading the first 

sector on flash, called Master Boot Record (MBR) and the 

first sector in the file system called FAT32 Volume ID. The 

���_����� field of the MBR reveals the location of the 

FAT32 Volume ID sector. Subsequently, the location of the 

FAT32 table can be determined as follows: 

	�
32_�����_
����� �  ���_����� �  ���_����
����� 

The size of the FAT32 table is given by the field 

���_	�

�32. Both ���_����
����� and ���_	�

�32 

are read from the FAT32 Volume ID sector. 

Once the size and location of the FAT32 table are 

determined, dead sectors can be recognized by monitoring 

writes to the table. FAT32 stores the pointer to each data 

sector allocated to a particular file in corresponding 

locations in the FAT32 table. To delete a particular file, all 

the pointers to data sectors are freed up by zeroing out their 

content. In other words, dead sectors resulting from 

shrinking or deleting a file can be found out by reading 

corresponding pointers prior to their zeroing out. If all the 

sectors in a block are dead, the whole block is marked as 

dead.  

Thus, FSAF needs to maintain a buffer for reading FAT32 

table sector before it is zeroed out by the file system. Fig. 3 

depicts the algorithm. 

4.2. Avoidance of Dead Data Migration 

Once dead sectors are recognized, GC and WL algorithms 

are instructed to avoid copying their content during regular 

operation of flash. Thus, dead data migration is avoided 

during valid data copy occurring while carrying out GC and 

WL operations. 

4.3. Proactive Reclamation 

When larger files or files occupying contiguous sectors are 

deleted, dead data occupies complete blocks. Since these 

blocks do not contain any valid data, they can be reclaimed 

without any copying costs, unlike blocks that require valid 

data copy during normal folding operation. Thus, 

reclaiming such blocks is inherently a highly efficient 

operation in comparison to a forced fold operation during a 

GC. Thus, when the free space in flash falls below a critical 

threshold, instead of proceeding with costly GC operation, 

dead blocks can be reclaimed to delay or avoid GC by 

regenerating free space dynamically.  

However, application response times still might suffer when 

all the dead data is reclaimed together, owing to costly 

erasure operations. In order to avoid this, proactive 

reclamation of dead blocks is taken up. FTL triggers GC 

higher flash utilizations [9], i.e., when the free space in the 

device is below a critical limit, and continues folding until 

free space reaches another threshold. In other words, to 

avoid delays due to GC, free space in the device should be 

kept above the GC threshold. So, dead block reclamation 

should be scheduled when flash utilization is reasonably  

 

 

 

 

 

 

   
 

Fig.3: Dead data detection. 

               
Fig.4: Proactive reclamation. 

dead_data_detection(): 

1. Calculate size and location of FAT32 Table by 

reading MBR and FAT32 Volume ID sectors 

2. Monitor writes to FAT32 Table 

3. If a sector pointer is being zeroed out, mark 

corresponding sector as dead 

4. Mark a block as dead if all the sectors in the 

block are dead 



high, but not high enough to trigger a GC operation. On the 

other hand, number of dead blocks proactively reclaimed 

must be as small as possible, as expensive erasure 

operations can impact application response times. Yet 

another important factor to be taken into consideration is 

the amount of dead data in flash - this decides whether or 

not proactive reclamations need to be run. 

The proactive reclamation algorithm is as presented in Fig. 

4. We first check whether the dead content is greater than a 

threshold δ. If not, GC and WL are informed to avoid 

useless dead data migration by marking dead sectors. If 

dead content is greater than δ, we check whether system 

utilization is higher than µ, i.e. whether at least µ 

percentage of blocks is already used. In such a case, we 

proceed to reclaim dead blocks proactively apart from 

avoiding dead data migration. Thus, dead block reclamation 

proceeds until number of dead blocks reach another 

threshold ∆.  

Even though proactive reclamation improves application 

response times by avoiding or delaying costly GC 

operation, it should be scheduled in such a way that doing 

so itself does not penalize application a lot. Since proactive 

reclamation is a series of erase operations, it can be time 

consuming. In other words, parameters δ, µ and ∆ should be 

carefully configured such that reclamation is highly 

efficient. Large values for δ and µ avoid frequent 

reclamation, but might impose a lot of reclamation activity. 

Small values for ∆ mean smaller reclamation activity, but 

frequent triggers for reclamation. To arrive at reasonable 

values for these parameters, we explored the effect of 

varying these parameters on various performance metrics, 

as presented in the next section. The results confirm our 

intuition at best performance is achieved at high values of δ 

and µ low values of ∆. 

5. Results and Discussion 

5.1. Experimental Setup 

We used trace-driven approach for the experimentation. A 

64MB flash memory stick was formatted as FAT32 and 

three benchmarks representing various file system deletion 

activities were run on the same. In order to extract detailed 

traces of benchmarks, the USB stick was accessed through 

our FAT32 implementation. A trace of flash accesses, along 

with timing, access type and sector information along with 

the actual data being written was generated for each of the 

following benchmark: 

s1: Huge sized file creation and deletion 

s2: Medium sized file creation and deletion 

s3: Small sized file creation and deletion  

These benchmarks represent most frequently encountered 

scenarios on removable flash storage media such as SD 

cards in applications like digital cameras, mp3 players, 

digital camcorders and memory sticks. The collected traces 

were fed to a simulated Toshiba NAND Flash [17]. We 

realized log-based NFTL [8] on top of it and realized 

greedy [18] approach. FSAF was finally integrated with the 

setup.  

In order to simulate real-world scenarios, we brought flash 

to 80% utilization and the size of flash for each benchmark 

was set to 64 MB. FTL was configured to start GC when 

the number of free blocks falls below 10% of total number 

of blocks and stop GC as soon as percent free blocks 

reaches 20% of total number of blocks. WL is triggered 

whenever the difference between maximum and minimum 

erase counts of blocks exceeds 15. The size of files used in 

various scenarios was varied between 32MB to 2KB. 

5.2. Configuring FSAF Parameters 

The parameters δ, µ and ∆ need to be configured to run 

FSAF. We ran proactive reclamation algorithm with various 

values of δ and µ for all the benchmarks, and results 

supported our intuition that higher values for these 

parameters result in higher performance. By setting these to 

high as possible, proactive reclamation is triggered only 

when the system is low in free space, but runs frequently 

enough to generate sufficient free space. Thus, δ was set to 

0.2 and µ to 0.85, i.e. when the dead data size exceeds 20% 

of the total space and system utilization is 85%, proactive 

reclamation is triggered. 

To determine the best value for ∆, we observed variation in 

the total application response times, number of erasures, 

and GCs against various sizes of reclaimed dead data, 

represented by δ` ( = (δ – ∆)). Owing to lack of space, 

related results were omitted. We observed that when δ` was 

increased from 0 to 0.18, flash delays and erasures decrease 

initially and increase afterwards, as the reclamation activity 

increases. However, number of GCs remains the same. 

Thus, δ` needs to be set to a small positive value. This 

concurs with our hypothesis that small values for δ` are 

better than large values. So, ∆ was set to 0.18. 

In essence, FSAF is configured to proactively reclaim dead 

data as soon as dead content becomes more than 20% of the 

total flash size when flash utilization is greater than 85%, 

and reclaims 2% of dead blocks at each invocation. 

5.3 Improvement in Application Response Times  

Fig.5 depicts total application response times for each of the 

benchmark for both greedy and FSAF approaches. We 

observe that the FSAF approach improves response times 

by 22% on the average, and 32% for the scenario s2 

compared to the greedy approach. to greedy 

implementation. From Fig. 5, we can observe that there is a 

variation in the total response times for different scenarios, 

owing to the content and distribution We observe that 

maximum gains can be obtained when dead data occupies 

contiguous rather than randomly distributed sectors, as in 

the scenario s2. However, we see that FSAF achieves 22% 

improvement on the average.  

It has to be noted that the total device delay includes delays 



incurred due to reads, writes issued by the application as 

well as those issued during carrying out GC and WL 

activity. When file system issues reads and writes and 

folding and wear leveling are triggered, additional writes 

and reads to pages and OOBs are issued by th

the process of valid data copying. In other words, total 

writes carried out are more than application

Since FSAF always avoids dead data migration and directly 

reclaims dead blocks, device delays 

contributing to the reduction of flash access times and 

hence application response times. 

Fig. 6 depicts average memory write access times (W

AMAT) for different scenarios for both greedy and FSAF 

approaches. We can observe that improvements in W

AMAT after employing FSAF are similar to improvements 

in response times. This is because of the fact that read 

access times of flash are much lower than write access 

times, and also because reads are normally cached. 

variation in the average write access time across 

benchmarks is owing to dead data content. 

It has to be noted that the response times suffer majorly at 

higher flash utilizations when GC operations are 

out to regenerate free space. So, if enough free space can be 

generated at higher utilizations, we can delay or even avoid

costly GCs. FSAF achieves the same by dead data 

reclamation at higher utilizations. On the other hand, WL

Fig.5: Total application response times for various 
benchmarks 

Fig.6: Average memory write-access times 
various benchmarks 
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to reads, writes issued by the application as 

carrying out GC and WL 

When file system issues reads and writes and 

folding and wear leveling are triggered, additional writes 

and reads to pages and OOBs are issued by the FTL during 

the process of valid data copying. In other words, total 

writes carried out are more than application-issued writes. 

migration and directly 

delays are reduced, 

flash access times and 

depicts average memory write access times (W-

AMAT) for different scenarios for both greedy and FSAF 

approaches. We can observe that improvements in W-

AMAT after employing FSAF are similar to improvements 

in response times. This is because of the fact that read 

access times of flash are much lower than write access 

times, and also because reads are normally cached. The 

ss time across 

t has to be noted that the response times suffer majorly at 
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: Total application response times for various 

access times for 

overhead because of dead data, which

utilizations is avoided by FSAF by avoiding dead data 

migration. 

5.4 Improvement in GCs and Erasures

Table 2 provides improvements with respect to the number 

of GCs, erasures and folds for each benchmark

greedy and FSAF methods. The most 

from this table is that, on an average, 

of erasures by 21.6%, by avoiding erasures associated with 

wear leveling dead data. Since er

expectancy of flash, endurance is proportionally improved. 

Reduced number of erasures also means significant energy 

reduction, as an erasure is the costliest of all flash memory 

operations.  

Also, GCs are also reduced by 

compared to greedy method. This 

enough free space in the device by performing proactive 

reclamation. In other words, this 

undesirable peaks in the device response times depicted in 

Fig.1. Similarly, folds are reduced by employing FSAF. By 

reclaiming dead blocks proactively, FSAF eliminates the 

need for creating replacement blocks for dead blocks, and 

thus, unnecessary fold operations are eliminated. 

It has to be noted that FSAF approach 

algorithmic overhead. An FTL triggers 

count reaching certain critical threshold. At such an 

instance, blocks are sorted by a metric decided by the 

policy, and are subsequently reclaimed in the sorted order

until enough free blocks are generated.

Greedy approach, blocks are sorted by thei

count. FSAF, on the other hand directly erases dead blocks

i.e., blocks only with maximum benefits

costly sorting operation. The benefits 

themselves in the reduction of the number of erasures, and 

improved GC efficiency by reducing number of writes and 

reads during folding.  

It has to be noted that FSAF gains are heavily dependent 

upon the dead data content and distribution

FSAF naturally switches to regular WL and GC operations 

when there is no dead data, its performance is at least as 

good as the normal case.  

5.5 Overheads 

The overhead associated with FSAF comes from dead data 

detection and proactive reclamation. To detect dead data, 

FSAF needs to monitor writes to only three sections of 

flash: the MBR, Volume ID and the FAT32 table itself. By 

reading and storing MBR and Volume ID at every format 

time, need for constructing formatting informa

flash plug-in is eliminated. To detect which sector is being 

deleted, FSAF needs to maintain a buffer of size of

maximum one sector. Also, finding out which sector is
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This is achieved by generating 

enough free space in the device by performing proactive 

reclamation. In other words, this means the elimination of 

undesirable peaks in the device response times depicted in 

Similarly, folds are reduced by employing FSAF. By 

reclaiming dead blocks proactively, FSAF eliminates the 

need for creating replacement blocks for dead blocks, and 

thus, unnecessary fold operations are eliminated.  

approach also results in lesser 

An FTL triggers GC upon free block 

count reaching certain critical threshold. At such an 

instance, blocks are sorted by a metric decided by the GC 

policy, and are subsequently reclaimed in the sorted order 

nough free blocks are generated. For example, in 

reedy approach, blocks are sorted by their dead page 

directly erases dead blocks, 

only with maximum benefits, doing away with 

The benefits associated manifest 

themselves in the reduction of the number of erasures, and 

efficiency by reducing number of writes and 

gains are heavily dependent 

nd distribution. However, since 

FSAF naturally switches to regular WL and GC operations 

when there is no dead data, its performance is at least as 

The overhead associated with FSAF comes from dead data 

proactive reclamation. To detect dead data, 

FSAF needs to monitor writes to only three sections of 

flash: the MBR, Volume ID and the FAT32 table itself. By 

reading and storing MBR and Volume ID at every format 

time, need for constructing formatting information at every 

in is eliminated. To detect which sector is being 

deleted, FSAF needs to maintain a buffer of size of 

maximum one sector. Also, finding out which sector is 



Table 2: Improvement in erasures, GCs and folds 

Erasures GCs Folds 

Benchmark Greedy FSAF %Decrease Greedy FSAF %Decrease Greedy FSAF %Decrease 

s1 4907 4347 11.41 10 7 30.00 2294 1979 13.73 

s2 2631 1760 33.11 11 5 54.55 1249 792 36.59 

s3 5384 4293 20.26 25 14 44.00 2541 1976 22.24 

 

being deleted is an ���� operation, where � is the number 

of sector pointers stored in a single sector of the FAT32 

table. Subsequent addition and deletion from the dead data 

list are all ��1� operations. Thus, algorithmic overhead 

introduced by FSAF is only ���� per write. Since typically 

there are only 128 pointers per sector, this overhead is very 

minimal. Proactive reclamation, on the other hand, reduces 

the overall overhead on the system. Since proactive 

reclamation executes at a higher efficiency than a normal 

GC operation and also eliminates or delays regular GCs, 

effectively system overhead is significantly reduced.   

6. Conclusion 

In this paper, we proposed an FSAF: a file system aware 

FTL that can dynamically and efficiently detect dead 

content in flash. We showed that FSAF improves 

application response times significantly by treating dead 

data efficiently during GC and WL operations, and also 

performing proactive reclamation to delay or even avoid 

costly GC operations. The proposed approach results in 

significant overall improvement in flash management, by 

also decreasing number of erasures and write access times. 

The solution is realized without necessitating any file 

system changes and comes with a minimal resource 

overhead. Results obtained by running various benchmarks 

show that FSAF also improves longevity of flash by 

reducing the number of erasures significantly. As a further 

step, FSAF can be improved by scheduling proactive 

reclamation in the background when the application is idle.  
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