
FSAF: File System Aware Flash Translation Layer for
NAND Flash Memories

Abstract

NAND Flash Memories require Garbage Collection (GC)

and Wear Leveling (WL) operations to be carried out by

Flash Translation Layers (FTLs) that oversee flash

management. Owing to expensive erasures and data

copying, these two operations essentially determine

application response times. Since file systems do not share

any file deletion information with FTL, dead data is treated

as valid by FTL, resulting in significant WL and GC

overheads. In this work, we propose a novel method to

dynamically interpret and treat dead data at the FTL level

so as to reduce above overheads and improve application

response times, without necessitating any changes to

existing file systems. We demonstrate that our resource-

efficient approach can improve application response times

and memory write access times by 22% and reduce

erasures by 21.6% on average.

1. Introduction

Flash memory is a non-volatile semiconductor memory that

is becoming ubiquitous with attractive features like low

power consumption, compactness and ruggedness. USB

memory sticks, SD cards, Solid State Disks, MP3 players,

Cell phones etc. are some of the well-known applications of

the flash memory technology. NAND flash markets have

seen substantial growth in recent years and analysts predict

that the trend will continue [3].

However, flash comes with challenges to be addressed. One

of the most important of them is “Erase-before-Rewrite”

property: once a flash cell is programmed, a whole block of

cells needs to be erased before it can be reprogrammed, and

the erase operation is an extremely time consuming process.

To hide this latency from the application, another block is

used as a temporary write buffer to absorb rewrites. A

rewrite to a full buffer triggers a fold operation as to

consolidate valid data in both blocks into a new block,

freeing up the two old blocks. Also, as invalid data

accumulates and the free space in the whole device falls

below a critical limit after continued writes, a cleanup

operation called Garbage Collection (GC) needs to be

performed to regenerate free space by reclaiming invalid

data by performing a series of forced fold operations.

Another challenge of flash is limited life time: NAND flash

can survive only a specific number of program/erase cycles,

typically 100,000. Wear Leveling (WL) needs to be

performed so as to make sure that all the flash blocks are

evenly erased and the device can make use of all available

program/erase cycles. This process involves frequent data

shuffling between highly erased and least erased blocks.

Thus, both GC and WL operations involve expensive

erasures and data copying, and so are very time and energy

intensive. Thus, flash device delays, and hence application

response times are heavily influenced by the efficiency of

the above two algorithms.

To understand the impact of above two operations on

application response times, we ran a digital camera

workload on a 64MB Lexar flash drive formatted as FAT32

[13] and fed resulting traces to Toshiba NAND flash [17]

simulator to measure WL and GC overheads. During the

scenario a few media files of sizes varying between 2KB

and 32MB were created and deleted. Application response

times at various instances are plotted in Fig.1. The peak

delays at the right extreme of the figure correspond to

instances where a GC is being carried out on dead data. As

media files were not updated, only invalid data was because

of deleted files. Since file systems only mark deleted files at

the time of deletion, but not actually erase corresponding

dead data in flash, FTL treats dead data as valid until

specifically overwritten by new file data. When free space

is below a critical level, this might result in a costly GC

operation as above. Thus, various file systems are shown to

be lengthy in response times in the presence of dead data

[5]. Table 1 lists overheads associated with wear leveling

alone on dead data, in terms of percentage increase in

device delay, erasures, average memory write access time

and folds. It has to be noted that, unlike GC overhead that

occurs only at higher flash utilizations, WL overhead is

always present. Thus, dead data contributes significantly to

flash delays by affecting GC and WL operations.

Since the file system data structure residing on flash is

known only to the file system, FTL can only interpret reads

and writes to flash, but not file operations like file creation

 Fig.1: NAND Flash device delays
*This work was partially funded through grants from Consortium for Embedded Systems,

Arizona State University.

1Department of Computer Science and Engineering, Arizona State University, United States; 2Center for Embedded Computer

Systems, University of California, Irvine, United States

Sai.Mylavarapu@asu.edu

Sai Krishna Mylavarapu
1
, Siddharth Choudhuri

2
, Aviral Shrivastava

1
, Jongeun Lee

1
, Tony Givargis

2

FSAF: File System Aware Flash Translation Layer for
NAND Flash Memories*

978-3-9810801-5-5/DATE09 © 2009 EDAA

Table 1: Effect of dead data on various
performance metrics

and deletion, and hence unaware of dead data

corresponding to deleted files. On the other hand, sharing

file system data with FTL is not possible without changing

existing file system implementations. Thus, previous efforts

[1][2] [8] [9] [12] [18] [19] have only focused on improving

GC and WL efficiency, but have not attempted to take dead

data into consideration or necessitated [5] a change in

existing system architecture. In this paper, we propose a

comprehensive approach, FSAF: File System Aware FTL

that enables FTL to recognize file deletion dynamically and

resource-efficiently, without necessitating any changes to

existing file systems. File deletions are interpreted by FSAF

by observing changes to the file system data structure in

flash. We also propose a mechanism to proactively handle

dead data to significantly reduce GC and WL overheads.

Experimental results demonstrate that FSAF can improve

application response times and average write access times

by 22% on an average, besides reducing erasures by 21.6%

and significantly reducing the number of folds and GCs.

2. Background

Flash is organized into blocks and pages. A block is a

collection of 32 pages each of 512 bytes. Each page has a

16 byte out-of-band (OOB) area used for storing metadata.

In addition to read and write, flash also has erasure

operation. Owing to the “Erase-before-rewrite”

characteristic, a re-write to a page is possible only after the

erasure of the complete block it belongs to. Available

blocks in Flash are organized as Primary and Replacement

blocks [5]. When a page rewrite request arrives, a primary

block is assigned a replacement block. When the

replacement block itself is full, and another rewrite is

issued, a fold or merge operation needs to be performed:

valid data in old two blocks is consolidated and written to a

new primary block and the former are freed subsequently.

Also, after a series of rewrites, free space in the device falls

below a critical limit and needs to be regenerated by

garbage collecting the invalid data. At the end of this GC

process, valid data is consolidated into primary blocks.

Thus, a GC is a series of forced fold operations. GC is a

very time consuming operation, involving lengthy erasures

and valid data copying, and may take as long as 40sec [10].

Another limitation of flash is endurance: it can only

withstand finite number of erasures, typically 100,000. In

other words, to address the endurance of flash, WL makes

sure that all the blocks are erased uniformly, and avoiding

localized wear. This operation involves identifying most

worn out and least worn out blocks, and swap data between

these on a periodic basis. Thus, WL also is a time

consuming process, affecting application response times

considerably. In order to unburden applications from

overseeing various aspects of flash management as

described above, a dedicated Flash Translation Layer (FTL)

[7] may be employed, that enables existing file systems to

use NAND flash without any modifications by hiding flash

characteristics.

Fig. 2 depicts the file deletion operation in FAT32 file

system. When a secondary storage like flash is formatted,

FAT32 allocates first few sectors to FAT32 table to serve as

pointers to actual data sectors. When a file is created or

modified, the table is updated to keep track of allocated

/freed sectors of the file. However, when a file is deleted or

shrunk, the actual data is not erased. In over-writable media

like hard disks, this poses no problem, as the new file data

is simply overwritten over dead data. However, because

flash doesn’t allow in-place updates, dead data resides

inside flash until a costly GC or fold operation is triggered

to regain free space. Also, WL operation is carried out by

FTL regularly on dead data blocks. Thus, dead data results

in significant GC and WL overhead, affecting application

response times.

3. Related Work

Several works to improve application response times have

been proposed so far, by attempting to improve the

efficiency of GC and WL operations. The greedy GC

approach was investigated by Wu et al. [18]. Kawaguchi et

al. [9] came up with the cost-benefit policy, by considering

both utilization and age of blocks. Cost Age Time (CAT)

policy [12] was considered by Chiang et al. that also

focuses on reducing the wear on the device (increase

endurance) apart from addressing segregation. Kim et al.

[8] proposed a cleaning cost policy, which focuses on

lowering costs and evenly utilizing flash blocks. A swap-

aware GC policy [14] was introduced by Kwon et al. In

order to minimize the GC time and extend the lifetime of

the flash based swap system, they implemented a new

Greedy-based policy by considering different swapped out

time of the pages. Various approaches to improve WL

efficiency have been proposed [2], where wear leveling is

achieved by recycling blocks with small erase counts.

Static wear leveling approaches were also pursued [19] to

treat level both non-cold and cold data blocks.

 Fig.2: File deletion in FAT32 file system

Metric % increase due to dead data

Device Delays 12

Erasures 11

W-AMAT 12

Folds 14

Kim et. Al [5] proposed a new file system, MNFS, to

address uniform write response times by carrying out block

erasures immediately after file deletions. This method

necessitates changes to existing system architectures.

We recognize that the key to improving application

response times without necessitating any changes to

existing file systems is to enable FTL to detect and treat

dead data dynamically. To this end, in this work, we

propose an FTL-based framework to efficiently recognize

and also handle dead data. We have chosen to demonstrate

our results on FAT32 file system, but the method is equally

applicable to all other file systems that perform implicit file

deletions.

4. FSAF: File System Aware FTL

FSAF monitors write requests to FAT32 table to interpret

any deleted data dynamically, subsequently optimizing GC

and WL algorithms accordingly. Also, depending upon the

size of dead content and the flash utilization, proactive dead

data reclamation is carried out.

4.1. Dead Data Detection

Dead data detection is carried out by FSAF dynamically as

files are deleted by the application. Since the file system

does not share any information with the FTL regarding file

management, the only way we can interpret file system

information at FTL is by understanding the formatting of

flash and keep track of changes to the file system data

structure residing on flash. The goal of dead data detection

is to carry out this process efficiently without affecting

performance.

The format of flash can be understood by reading the first

sector on flash, called Master Boot Record (MBR) and the

first sector in the file system called FAT32 Volume ID. The

���_����� field of the MBR reveals the location of the

FAT32 Volume ID sector. Subsequently, the location of the

FAT32 table can be determined as follows:

	�
32_�����_
����� � ���_����� � ���_����
�����

The size of the FAT32 table is given by the field

���_	�

�32. Both ���_����
����� and ���_	�

�32

are read from the FAT32 Volume ID sector.

Once the size and location of the FAT32 table are

determined, dead sectors can be recognized by monitoring

writes to the table. FAT32 stores the pointer to each data

sector allocated to a particular file in corresponding

locations in the FAT32 table. To delete a particular file, all

the pointers to data sectors are freed up by zeroing out their

content. In other words, dead sectors resulting from

shrinking or deleting a file can be found out by reading

corresponding pointers prior to their zeroing out. If all the

sectors in a block are dead, the whole block is marked as

dead.

Thus, FSAF needs to maintain a buffer for reading FAT32

table sector before it is zeroed out by the file system. Fig. 3

depicts the algorithm.

4.2. Avoidance of Dead Data Migration

Once dead sectors are recognized, GC and WL algorithms

are instructed to avoid copying their content during regular

operation of flash. Thus, dead data migration is avoided

during valid data copy occurring while carrying out GC and

WL operations.

4.3. Proactive Reclamation

When larger files or files occupying contiguous sectors are

deleted, dead data occupies complete blocks. Since these

blocks do not contain any valid data, they can be reclaimed

without any copying costs, unlike blocks that require valid

data copy during normal folding operation. Thus,

reclaiming such blocks is inherently a highly efficient

operation in comparison to a forced fold operation during a

GC. Thus, when the free space in flash falls below a critical

threshold, instead of proceeding with costly GC operation,

dead blocks can be reclaimed to delay or avoid GC by

regenerating free space dynamically.

However, application response times still might suffer when

all the dead data is reclaimed together, owing to costly

erasure operations. In order to avoid this, proactive

reclamation of dead blocks is taken up. FTL triggers GC

higher flash utilizations [9], i.e., when the free space in the

device is below a critical limit, and continues folding until

free space reaches another threshold. In other words, to

avoid delays due to GC, free space in the device should be

kept above the GC threshold. So, dead block reclamation

should be scheduled when flash utilization is reasonably

Fig.3: Dead data detection.

Fig.4: Proactive reclamation.

dead_data_detection():

1. Calculate size and location of FAT32 Table by

reading MBR and FAT32 Volume ID sectors

2. Monitor writes to FAT32 Table

3. If a sector pointer is being zeroed out, mark

corresponding sector as dead

4. Mark a block as dead if all the sectors in the

block are dead

high, but not high enough to trigger a GC operation. On the

other hand, number of dead blocks proactively reclaimed

must be as small as possible, as expensive erasure

operations can impact application response times. Yet

another important factor to be taken into consideration is

the amount of dead data in flash - this decides whether or

not proactive reclamations need to be run.

The proactive reclamation algorithm is as presented in Fig.

4. We first check whether the dead content is greater than a

threshold δ. If not, GC and WL are informed to avoid

useless dead data migration by marking dead sectors. If

dead content is greater than δ, we check whether system

utilization is higher than µ, i.e. whether at least µ

percentage of blocks is already used. In such a case, we

proceed to reclaim dead blocks proactively apart from

avoiding dead data migration. Thus, dead block reclamation

proceeds until number of dead blocks reach another

threshold ∆.

Even though proactive reclamation improves application

response times by avoiding or delaying costly GC

operation, it should be scheduled in such a way that doing

so itself does not penalize application a lot. Since proactive

reclamation is a series of erase operations, it can be time

consuming. In other words, parameters δ, µ and ∆ should be

carefully configured such that reclamation is highly

efficient. Large values for δ and µ avoid frequent

reclamation, but might impose a lot of reclamation activity.

Small values for ∆ mean smaller reclamation activity, but

frequent triggers for reclamation. To arrive at reasonable

values for these parameters, we explored the effect of

varying these parameters on various performance metrics,

as presented in the next section. The results confirm our

intuition at best performance is achieved at high values of δ

and µ low values of ∆.

5. Results and Discussion

5.1. Experimental Setup

We used trace-driven approach for the experimentation. A

64MB flash memory stick was formatted as FAT32 and

three benchmarks representing various file system deletion

activities were run on the same. In order to extract detailed

traces of benchmarks, the USB stick was accessed through

our FAT32 implementation. A trace of flash accesses, along

with timing, access type and sector information along with

the actual data being written was generated for each of the

following benchmark:

s1: Huge sized file creation and deletion

s2: Medium sized file creation and deletion

s3: Small sized file creation and deletion

These benchmarks represent most frequently encountered

scenarios on removable flash storage media such as SD

cards in applications like digital cameras, mp3 players,

digital camcorders and memory sticks. The collected traces

were fed to a simulated Toshiba NAND Flash [17]. We

realized log-based NFTL [8] on top of it and realized

greedy [18] approach. FSAF was finally integrated with the

setup.

In order to simulate real-world scenarios, we brought flash

to 80% utilization and the size of flash for each benchmark

was set to 64 MB. FTL was configured to start GC when

the number of free blocks falls below 10% of total number

of blocks and stop GC as soon as percent free blocks

reaches 20% of total number of blocks. WL is triggered

whenever the difference between maximum and minimum

erase counts of blocks exceeds 15. The size of files used in

various scenarios was varied between 32MB to 2KB.

5.2. Configuring FSAF Parameters

The parameters δ, µ and ∆ need to be configured to run

FSAF. We ran proactive reclamation algorithm with various

values of δ and µ for all the benchmarks, and results

supported our intuition that higher values for these

parameters result in higher performance. By setting these to

high as possible, proactive reclamation is triggered only

when the system is low in free space, but runs frequently

enough to generate sufficient free space. Thus, δ was set to

0.2 and µ to 0.85, i.e. when the dead data size exceeds 20%

of the total space and system utilization is 85%, proactive

reclamation is triggered.

To determine the best value for ∆, we observed variation in

the total application response times, number of erasures,

and GCs against various sizes of reclaimed dead data,

represented by δ` (= (δ – ∆)). Owing to lack of space,

related results were omitted. We observed that when δ` was

increased from 0 to 0.18, flash delays and erasures decrease

initially and increase afterwards, as the reclamation activity

increases. However, number of GCs remains the same.

Thus, δ` needs to be set to a small positive value. This

concurs with our hypothesis that small values for δ` are

better than large values. So, ∆ was set to 0.18.

In essence, FSAF is configured to proactively reclaim dead

data as soon as dead content becomes more than 20% of the

total flash size when flash utilization is greater than 85%,

and reclaims 2% of dead blocks at each invocation.

5.3 Improvement in Application Response Times

Fig.5 depicts total application response times for each of the

benchmark for both greedy and FSAF approaches. We

observe that the FSAF approach improves response times

by 22% on the average, and 32% for the scenario s2

compared to the greedy approach. to greedy

implementation. From Fig. 5, we can observe that there is a

variation in the total response times for different scenarios,

owing to the content and distribution We observe that

maximum gains can be obtained when dead data occupies

contiguous rather than randomly distributed sectors, as in

the scenario s2. However, we see that FSAF achieves 22%

improvement on the average.

It has to be noted that the total device delay includes delays

incurred due to reads, writes issued by the application as

well as those issued during carrying out GC and WL

activity. When file system issues reads and writes and

folding and wear leveling are triggered, additional writes

and reads to pages and OOBs are issued by th

the process of valid data copying. In other words, total

writes carried out are more than application

Since FSAF always avoids dead data migration and directly

reclaims dead blocks, device delays

contributing to the reduction of flash access times and

hence application response times.

Fig. 6 depicts average memory write access times (W

AMAT) for different scenarios for both greedy and FSAF

approaches. We can observe that improvements in W

AMAT after employing FSAF are similar to improvements

in response times. This is because of the fact that read

access times of flash are much lower than write access

times, and also because reads are normally cached.

variation in the average write access time across

benchmarks is owing to dead data content.

It has to be noted that the response times suffer majorly at

higher flash utilizations when GC operations are

out to regenerate free space. So, if enough free space can be

generated at higher utilizations, we can delay or even avoid

costly GCs. FSAF achieves the same by dead data

reclamation at higher utilizations. On the other hand, WL

Fig.5: Total application response times for various
benchmarks

Fig.6: Average memory write-access times
various benchmarks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Greedy FSAF Greedy FSAF Greedy

s1 s2

T
o

ta
l
A

p
p

li
c
a

ti
o

n
 R

e
sp

o
n

se
 T

im
e

s,

se

c

Benchmarks

0

500

1000

1500

2000

2500

Greedy FSAF Greedy FSAF Greedy

s1 s2W
ri

te
-

A
v

e
ra

g
e

 M
e

m
o

ry
 A

c
ce

ss
 T

im
e

s,

u
se

c

Benchmarks

to reads, writes issued by the application as

carrying out GC and WL

When file system issues reads and writes and

folding and wear leveling are triggered, additional writes

and reads to pages and OOBs are issued by the FTL during

the process of valid data copying. In other words, total

writes carried out are more than application-issued writes.

migration and directly

delays are reduced,

flash access times and

depicts average memory write access times (W-

AMAT) for different scenarios for both greedy and FSAF

approaches. We can observe that improvements in W-

AMAT after employing FSAF are similar to improvements

in response times. This is because of the fact that read

access times of flash are much lower than write access

times, and also because reads are normally cached. The

ss time across

t has to be noted that the response times suffer majorly at

higher flash utilizations when GC operations are triggered

out to regenerate free space. So, if enough free space can be

n delay or even avoid

. FSAF achieves the same by dead data

reclamation at higher utilizations. On the other hand, WL

: Total application response times for various

access times for

overhead because of dead data, which

utilizations is avoided by FSAF by avoiding dead data

migration.

5.4 Improvement in GCs and Erasures

Table 2 provides improvements with respect to the number

of GCs, erasures and folds for each benchmark

greedy and FSAF methods. The most

from this table is that, on an average,

of erasures by 21.6%, by avoiding erasures associated with

wear leveling dead data. Since er

expectancy of flash, endurance is proportionally improved.

Reduced number of erasures also means significant energy

reduction, as an erasure is the costliest of all flash memory

operations.

Also, GCs are also reduced by

compared to greedy method. This

enough free space in the device by performing proactive

reclamation. In other words, this

undesirable peaks in the device response times depicted in

Fig.1. Similarly, folds are reduced by employing FSAF. By

reclaiming dead blocks proactively, FSAF eliminates the

need for creating replacement blocks for dead blocks, and

thus, unnecessary fold operations are eliminated.

It has to be noted that FSAF approach

algorithmic overhead. An FTL triggers

count reaching certain critical threshold. At such an

instance, blocks are sorted by a metric decided by the

policy, and are subsequently reclaimed in the sorted order

until enough free blocks are generated.

Greedy approach, blocks are sorted by thei

count. FSAF, on the other hand directly erases dead blocks

i.e., blocks only with maximum benefits

costly sorting operation. The benefits

themselves in the reduction of the number of erasures, and

improved GC efficiency by reducing number of writes and

reads during folding.

It has to be noted that FSAF gains are heavily dependent

upon the dead data content and distribution

FSAF naturally switches to regular WL and GC operations

when there is no dead data, its performance is at least as

good as the normal case.

5.5 Overheads

The overhead associated with FSAF comes from dead data

detection and proactive reclamation. To detect dead data,

FSAF needs to monitor writes to only three sections of

flash: the MBR, Volume ID and the FAT32 table itself. By

reading and storing MBR and Volume ID at every format

time, need for constructing formatting informa

flash plug-in is eliminated. To detect which sector is being

deleted, FSAF needs to maintain a buffer of size of

maximum one sector. Also, finding out which sector is

Greedy FSAF

s3
Benchmarks

Greedy FSAF

s3

Benchmarks

, which is incurred at all flash

ed by FSAF by avoiding dead data

Improvement in GCs and Erasures

provides improvements with respect to the number

for each benchmark, for both

The most important observation

from this table is that, on an average, FSAF reduces number

of erasures by 21.6%, by avoiding erasures associated with

wear leveling dead data. Since erasures determine the life

expectancy of flash, endurance is proportionally improved.

Reduced number of erasures also means significant energy

reduction, as an erasure is the costliest of all flash memory

by 43% on the average

This is achieved by generating

enough free space in the device by performing proactive

reclamation. In other words, this means the elimination of

undesirable peaks in the device response times depicted in

Similarly, folds are reduced by employing FSAF. By

reclaiming dead blocks proactively, FSAF eliminates the

need for creating replacement blocks for dead blocks, and

thus, unnecessary fold operations are eliminated.

approach also results in lesser

An FTL triggers GC upon free block

count reaching certain critical threshold. At such an

instance, blocks are sorted by a metric decided by the GC

policy, and are subsequently reclaimed in the sorted order

nough free blocks are generated. For example, in

reedy approach, blocks are sorted by their dead page

directly erases dead blocks,

only with maximum benefits, doing away with

The benefits associated manifest

themselves in the reduction of the number of erasures, and

efficiency by reducing number of writes and

gains are heavily dependent

nd distribution. However, since

FSAF naturally switches to regular WL and GC operations

when there is no dead data, its performance is at least as

The overhead associated with FSAF comes from dead data

proactive reclamation. To detect dead data,

FSAF needs to monitor writes to only three sections of

flash: the MBR, Volume ID and the FAT32 table itself. By

reading and storing MBR and Volume ID at every format

time, need for constructing formatting information at every

in is eliminated. To detect which sector is being

deleted, FSAF needs to maintain a buffer of size of

maximum one sector. Also, finding out which sector is

Table 2: Improvement in erasures, GCs and folds

Erasures GCs Folds

Benchmark Greedy FSAF %Decrease Greedy FSAF %Decrease Greedy FSAF %Decrease

s1 4907 4347 11.41 10 7 30.00 2294 1979 13.73

s2 2631 1760 33.11 11 5 54.55 1249 792 36.59

s3 5384 4293 20.26 25 14 44.00 2541 1976 22.24

being deleted is an ���� operation, where � is the number

of sector pointers stored in a single sector of the FAT32

table. Subsequent addition and deletion from the dead data

list are all ��1� operations. Thus, algorithmic overhead

introduced by FSAF is only ���� per write. Since typically

there are only 128 pointers per sector, this overhead is very

minimal. Proactive reclamation, on the other hand, reduces

the overall overhead on the system. Since proactive

reclamation executes at a higher efficiency than a normal

GC operation and also eliminates or delays regular GCs,

effectively system overhead is significantly reduced.

6. Conclusion

In this paper, we proposed an FSAF: a file system aware

FTL that can dynamically and efficiently detect dead

content in flash. We showed that FSAF improves

application response times significantly by treating dead

data efficiently during GC and WL operations, and also

performing proactive reclamation to delay or even avoid

costly GC operations. The proposed approach results in

significant overall improvement in flash management, by

also decreasing number of erasures and write access times.

The solution is realized without necessitating any file

system changes and comes with a minimal resource

overhead. Results obtained by running various benchmarks

show that FSAF also improves longevity of flash by

reducing the number of erasures significantly. As a further

step, FSAF can be improved by scheduling proactive

reclamation in the background when the application is idle.

7. References

[1] A. Ban. Flash file system. United States Patent,

no.5404485, April 1995.

[2] A. Ban. Wear leveling of static areas in flash memory.

US Patent 6,732,221. M-systems, May 2004.

[3] Elaine Potter, “NAND Flash End-Market Will More

Than triple From 2004 to 2009”,

http://www.instat.com/press.asp?ID=1292&sku=IN050

2461SI

[4] Richard Golding, Peter Bosch, John Wilkes, “Idleness

is not sloth”. USENIX Conf, Jan. 1995

[5] Hyojun Kim, Youjip Won , “MNFS: mobile

multimedia file system for NAND flash based storage

device”, Consumer Communications and Networking

Conference, 2006. CCNC 2006. 3rd IEEE

[6] Hanjoon Kim, Sanggoo Lee, S. G., “A new flash

memory management for flash storage system,”

COMPSAC 1999.

[7] Intel Corporation. “Understanding the flash translation

layer (ftl) specification”. http://developer.intel.com/.

[8] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. “A

space-efficient flash translation layer for compactflash

systems”. IEEE Transactions on Consumer Electronics,

May 2002.

[9] A. Kawaguchi, S. Nishioka, H. Motoda, “A Flash-

memory Based File System”, USENIX 1995.

[10] Li-Pin Chang, Tei-Wei Kuo, Shi-Wu Lo, “Real-Time

Garbage collection for Flash-Memory Storage Systems

of Real-Time Embedded Systems”, ACM Transactions

on Embedded Computing Systems, November 2004

[11] V. Malik, 2001a.” JFFS—A Practical Guide”,

http://www.embeddedlinuxworks.com/articles/jffs

guide.html.

[12] Mei-Ling Chiang, Paul C. H. Lee, Ruei-Chuan Chang,

“Cleaning policies in mobile computers using flash

memory,”

Journal of Systems and Software, Vol. 48, 1999.

[13] Microsoft, “Description of the FAT32 File System”,

http://support.microsoft.com/kb/154997

[14] Ohoon Kwon, Kern Koh, “Swap-Aware Garbage

collection for NAND Flash Memory Based Embedded

Systems”, Proceedings of the 7th IEEE CIT2007.

[15] M. Rosenblum, J.K. Ousterhout, “The Design and

Implementation of a Log-Structured FileSystem,”

ACM Transactions on Computer Systems, Vol. 10, No.

1, 1992.

[16] S.W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S.W.

Park, H.-J. Songe. “FAST: A log-buffer based ftl

scheme with fully associative sector translation”. The

UKC, August 2005.

[17] Toshiba 128 MBIT CMOS NAND EEPROM

TC58DVM72A1FT00, http://www.toshiba.com, 2006.

[18] M. Wu, W. Zwaenepoel, “eNVy: A Non-Volatile,

Main Memory Storage System”, ASPLOS 1994.

[19] Yuan-Hao Chang, Jen-Wei Hsieh, Tei-Wei Kuo,

“Endurance Enhancement of Flash-Memory Storage,

Systems: An Efficient Static Wear Leveling Design”,

DAC’07

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

