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Abstract—In this paper we propose a UML/MDA approach,
called MoPCoM methodology, to design high quality real-time
embedded systems. We have defined a set of rules to build
UML models for embedded systems, from which VHDL code
is automatically generated by means of MDA techniques. We use
the MARTE profile as an UML extension to describe real-time
properties and perform platform modeling.

The MoPCoM methodology defines three abstraction levels:
abstract, execution and detailed modeling levels (AML, EML
and DML, respectively). We detail the lowest MoPCoM level,
DML, design rules in order to perform automatically VHDL
code generation. A viterbi coder has been used as a first case
study.

I. INTRODUCTION

UML [1] has been used for application modeling since its

first definition. The wide range of supporting tools, the exten-

sions mechanism and improvements from its later versions –

notably 2.0 – has stimulated its use in hardware and hybrid

system modeling.

A set of UML properties was identified concerning embed-

ded systems modeling [2]. These properties have encouraged

UML adoption in embedded systems design, but there were

some lacks, such as a platform modeling. To address these

issues, MARTE profile [3] was defined and is in adoption by

OMG.

The MoPCoM co-design methodology [4] defines three

levels of abstractions in real-time embedded systems models:

Abstract Modeling Level (AML), Execution Modeling Level

(EML) and Detailed Modeling Level (DML). A complete

system (application and platform) is defined within each MoP-

CoM level. In this paper, we show how to design embedded

systems with MARTE and UML. Our approach is focused on

performing automatically code generation from the model.

The rest of this paper is organized as follows: section II

recalls related works. Section III introduces MoPCoM method-

ology and section IV presents the most detailed MoPCoM

level, DML. In section V, we show the global rules concerning

code generation. Section VI shows a modeling example .

Finally, in section VII, the conclusions until now are proposed.

II. RELATED WORK

The use of model based approaches for co-design has been

discussed in [5], which points out some advantages: cost

decrease, silicon complexity handling, productivity increase,

etc. UML/MDA has been adopted in co-design methods [6],

[7], [8], [9] in the last years with success. The extensions

mechanisms introduced in UML since its version 1.3 has

stimulated its use in embedded systems modeling, as such kind

of systems need specific models.

In [6], the authors define an UML profile to model SystemC

elements. SystemC skeleton code is generated from an UML

model. Also, in [10], a SystemC profile is defined and behav-

iors can be specified by means of UML state machines, where

a TLM (Transaction-Level Modeling) SystemC [11] code is

generated.

In [7] an extension is done defining a new profile, the

TUT profile, to embedded systems designs. It defines a set

of stereotypes to model application tasks and platform. The

platform uses a library to allow performance analysis. The

design flow only allows software code generation in C. It has

an architecture space exploration tool that back annotates the

UML model. A complete example is done in [12].

In [8], the authors define a UP-based (Unified Process)

process that uses a SystemC profile to model embedded

systems and generate SystemC code.

In [9], the authors use UML to VHDL code generation.

They use the same model to generate HW and SW parts.

Partition is done manually, separately from the model.

All design methodologies shown in literature prove UML to

be well suited to embedded systems design. As UML meta-

model lacks platform design and real-time characteristics,

extensions had to be made in order to capture these properties.

Each methodology has made its own extensions to adapt UML

to their needs. Extensions used by these methodologies usually

limit code generation to SystemC.

Compared to existing efforts, our approach uses standard-

ized UML and extensions, which allows the use of generic

UML tools and model portability. Moreover, our model defines

behavior and platform separately, which allows evolving parti-

tion with the model. Moreover, as it is not directly connected

to any implementation language, we are able to target any

language (SystemC, VHDL, etc).
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III. MOPCOM METHODOLOGY

Defined in [4], the MoPCoM approach is a co-design

methodology based on OMG standards. MDA [13] techniques

are used to perform code generation. The highest system

model level is done with an Harmony process [14] from Tele-

logic. It is based on the SysML [15] profile and is enhanced

with some MARTE elements. MoPCoM methodology defines

three design levels:

AML Abstract Modeling Level is the first design level,

where the goal is to model system behavior.

EML Execution Modeling Level is the intermediate level,

where performance analysis can be done, due to a

final topology model of the system.

DML Detailed Modeling Level is the last modeling level,

which allow code generation to be done. Other

levels allows code generation to simulate the system,

whereas DML allows implementation code to be

automaticaly generated.

MoPCoM methodlogy defines three models to be specified

at each level: application, platform and allocated models,

where:

Application Contains the functional specification of the

system where connected objects communicate

through messages and signals. The MARTE

NFP sub profile is used to express real-time

constraints.

Platform Is composed of a set of components, without

behavior, connected together. It models the

system topology.

Allocation Connects behavior (application) with plat-

form. It consists of a set of UML dependen-

cies with MARTE ≪allocate≫ stereotype.

IV. EMBEDDED SYSTEM MODELING

In this section, we detail DML, the lowest MoPCoM level.

First, in section IV-A, a DML overview is proposed, then in

section IV-B, we detail the application model at this level, and,

in section IV-C, we show how to model a DML platform. Last,

in section IV-D, the allocation model is presented.

A. DML overview

The DML defines the platform at a clock cycle tick accurate

definition, where the final target RTL model can be generated.

At that level, hardware specification is finished. Thus, hard-

ware components can be generated or existing ones can be

used (IP blocks). Figure 1 shows the main elements at that

level and the code generation possibilities.

All elements are constrained by UML 2.1 metamodel and

we have three defined models: Functional, Platform and Allo-

cation.

First, the functional architecture model is an UML model

consisting of a set of interfaces, classes and objects. Each class

owns a behavior, which is defined by means of a state machine

and/or an action language.

The platform model consists of a set of components con-

nected through ports. Each one is stereotyped with MARTE
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Fig. 1. Detailed Modeling Level

HRM profile elements in order to detail its characteristics.

They can be connected directly or using an hardware bus,

where a bus is also a stereotyped component. UML ports are

stereotyped as ≪HwEndPoint≫.

The allocation involves defining where functional objects

(behavior) exist in platform ones. In our methodology only

objects (classes intances) are possible to be allocated.

It also important to remark that the functional model con-

tains the system behavior, which will be realized by a hardware

or software part. The concrete implementation element of

some behavior is done by the allocation, where functional

objects allocated to hardware elements – PLD or ASIC – are

the hardware parts of the system and the functional objects

allocated to processor are the software elements. The SW/HW

partition is defined in allocation in DML.

B. Application model

Application defines behavior and functional architecture.

The model used to define the application is built from the

following modeling elements: interfaces, classes, ports and

instances for structural modeling; state machine and action

language for behavioral modeling. Figure 2 shows the dia-

grams used. Application modeling concerns defining system

services and their behavior.

1) Class diagram: This diagram is used to defined inter-

faces, classes and associations. Interfaces represent a set of

public operations –services–. Classes may realize and use

interfaces. The first one defines how such operations are

implemented and the second calls the operations. Moreover

classes can define private operations and attributes – variables

– to implement the service. Within classes we can define the

behavior unit of the application specified with state machines

and action language. Public attributes are forbidden and all

public operations must be defined in the interfaces.

2) Composite structure diagram: Composite structure di-

agrams are used to define classes internal structures and

communication ports, where a port offers/requires a service.

This diagram allows us to improve our design element - class -

with ports, used as a communication point with other elements,

and design its internal structure. The service offered/required
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Fig. 2. Application modeling diagrams

by a port is specified attaching an interface to the port. All

communication must be done by ports, which means that

only operations defined in interfaces are visible externally. An

explicit communication point must be done in order to allow

clear code generation for hardware components, as there is a

wide range of protocol types.

3) Object diagram: object diagrams define application in-

stances and their connections. The behavior defined within

classes are performed by instances, which are used to model

the execution scenario. We also define here the object connec-

tions, which is a class association instance.

4) State machine: A state machine can be used to express

a class behavior (every state machine is attached to a class),

and each state behavior is defined using the action language.

State transitions may be triggered by events and/or guarded by

Boolean expressions. State machines are used to model high

level behavior.

5) Action language: The used action language is a subset

of C++ which allows synthesizable VHDL generation and can

be extended to support syntax constructs offered by HLS –

High Level Synthesis – tools, like GAUT [16] or CatapulC,

from Mentor Graphics [17].

The action language subset is defined with usual restrictions

according RTL ode generation. Only combinational code is

allowed: assigments, if and switch statements, bounded loop

structures. A variable cannot be assigned twice neither can be

used after an assigment. Pointers are not allowed, so attributes

<<component>> <<component>>
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<<component>>
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Fig. 3. Platform model

must be accessed directly and all access to other objects must

be done by ports.

A parser is used to generate VHDL, where a low-level C++-

to-VHDL translation is done. The action language is used

to define operations in classes and state behaviors in state

machines.

C. Platform model

The platform defines the structural hardware components.

A component diagram is used to model it. MARTE HRM –

Hardware Resource Modeling – sub-profile is used to define

which kind of elements each object represents, such as ASIC,

PLD, Clock, etc. MARTE SRM -Software Resource Model-

ing– sub-profile is used to model operating system properties,

like task and virtual memory. MARTE SRM elements are not

addressed here.

A platform is defined as a set of components connected

through ports. For each port a stereotype, which defines a

communication protocol, is attached. A library is associated

to each protocol stereotype, which is used in code generation.

Figure 3 shows the elements in a platform model.

A component with a ≪HwClock≫ must be present in the

platform. A clock is used to allow performance analysis and

synchronous component code generation.

1) Component diagram: The component diagram con-

tains the platform resources. At least two stereotypes

must be present for each component: ≪HwLogical≫ and

≪HwPhysical≫1. Both must be present to characterize DML,

although ≪HwPhysical≫ is not used for code generation.

Components are used to model the platform as they are

reusable unit that offer services, which abstrat their behavior.

Each component can also be identified by an IP number, which

allows IP reuse.

Components are connected together by UML ports, where

the ports contain the stereotype ≪HwEndPoint≫. An end-

point is an interaction point to communicate with the compo-

nent.

2) Protocol definition: Inter component communication is

done by some communication protocols. To facilitate speci-

fication, a protocol stereotype, ≪protocol≫, is defined. The

concepts used to model a protocol are the same as in OCP/IP

[18]. There must exist a protocol definition for each port,

and two communicating ports must use the same protocol

definition.

1Actually, HwLogical and HwPhysical are abstract types and we must use
some of their subtypes. See MARTE specification [3]
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OCP-IP protocol specification was chosen because it is pa-

rameterizable, allowing wrappers to be made for most existing

protocols. Each paramesizable attribute defined by OCP/IP is

a tag within the protocol stereotype.

D. Allocation model

The allocation model is built from the application and plat-

form models, linking each functionality with a platform com-

ponent. To allocate functionality to platform components, we

use the MARTE alloc sub-profile. The allocation is done using

UML dependencies with MARTE ≪allocate≫ stereotype,

where classes instances are allocated to platform components,

as shown in Figure 4. Application objects are virtual instances

with a behavior. Such behavior will be executed in a platform

component. ≪allocate≫ stereotype maps each instance to a

component. MARTE allocation is simple and flexible, thus it

is well adapted for co-design modeling issues.

It is important to remark that an object whose behavior is

defined with a state machine must be allocated to a component

connected to a clock.

E. Modeling issues

Our methodology proposes a complete model from which

code can be generated automaticaly. Such requirements limit

UML elements, diagrams, MARTE and action language as

described in this section. Next section explains our approach

to automaticaly generate VHDL code.

V. CODE GENERATION

Code generation is made from the allocated model, which

holds the application, the platform and the allocation. In the

paper, we address VHDL code generation for hardware parts

of the system, and we do not consider IPs integration neither

IP reuse. The goal is to produce synthesizable VHDL code for

each new IP. For now, the real-time properties – MARTE Non-

Functional Properties sub-profile – are not taken into account

for the code generation algorithm. Moreover, such properties

can ben used as constraints by an HLS tool. To achieve our

goal, we decompose the code generation in 3 steps: structure,

behavior and communication code generation.

A. Structure code generation

Structures are derived from platform components and repre-

sent the system blocks. Each platform component is translated

into a VHDL entity. The entities own a set of VHDL ports.

A port definition in a platform defines the set of VHDL

ports to be implemented. For instance, a protocol definition

associated to a platform port is translated into a set of data

and control signals connected to the entity, and the VHDL

ports are derived from a protocol library. A reset is added

to any entity connected to a clock. Algorithm 1 shows how

VHDL entities are generated.

Algorithm 1: GenerateStructure

Input: System model s

Output: VHDL model v

platformModel ← s.getPlatformModel();

foreach Component c ∈ platformModel do
entity = CreateEntity(c.name());

foreach Port p ∈ c do
entity.createVHDLPorts(p);

end

v.addEntity(entity);
end

B. Component behavior generation

Behavior is defined in the application model and is trans-

lated as VHDL processes or VHDL function. Three main ele-

ments are used to build VHDL behavior code: state machines,

methods and attributes. A component behavior does not use

entities ports. It just handles internal variables and signals,

which are defined by object attributes and method parameters.

Algorithm 2 describes behavioral code generation. The overall

rules for the elements are:

1) State machine: State machines are translated into VHDL

processes. The generated entity must be connected to a clock,

and the state transition is done by clock ticks. For each

state, the VHDL code is translated from action language code

specified in the state machine.

2) Methods: Methods are translated into VHDL functions

in a package, available for all instances of the class owning

the method. If a method needs to access attributes, each one

is coded like inout function parameter. Local variable is coded

as VHDL process variable.

3) Attributes: As we do not accept public attributes in the

object model, each attribute will be a shared signal (register)

into a VHDL module. Such signals can be used as function

parameters and/or accessed from a state machine derived

process.

C. Communication

Communication is addressed separately from structure and

behavior, as ports are part of static domain (components),

but may also derive from the behavioral domain (function

parameters for instance) depending on the communication

channels. Communication structure is a key point addressed

in DML. In order to perform RTL code generation, we

use a set of protocol concepts and generate the signals and

protocol state machine from the platform model. The protocol

behavior is translated onto a VHDL process that links the



Algorithm 2: GenerateBehavior

Input: System model s

Input: VHDL model v

Output: VHDL model v

objs = s.getObjects();

foreach Object o ∈ objs do
comp = o.allocatedTo();

e = v.getEntity(comp.name);

arch = createArchitecture(e);

foreach Attribute a ∈ o.getAttributes do
arch.createVariable(a);

end

foreach operation op ∈ o.getOperations() do
v.createFunction(op);

end

if o.hasStateMachine() then
stm = CreateStateMachine(o.getStateMachine());

arch.addProcess(stm);
end

v.addArchitecture(arch);
end

entity ports with the behavior processes. The protocol process

controls the behavior process by means of shared variable

and signals. Point-to-point communications signals are derived

from methods/events parameters. Algorithm 3 performs VHDL

code generation from a given model.

Algorithm 3: GenerateCommunication

Input: System model s

Input: VHDL model v

Output: VHDL model v

foreach Entity e ∈ v do
objects = s.getAllocatedObjectsIn(e.name)
foreach Object o ∈ objects do

ports = o.allocatedTo().getPorts();

comm = CreateCommProcess(o,e,ports);

e.getArch().addProcess(comm);
end

end

D. Tooling

The selected UML modeller is Rhapsody [19], which is

one of the most convenient software tools for code generation

dedicated to embedded and electronic applications, although

affected by some limitations regarding compliance with UML

2.1 standard. The choice was defined by MoPCoM project,

due to its high integration with MDworkbench [20], the code

generation tool used by MoPCoM project. MDworkbench is a

transformation tool widely used in the industry, developed by

Sodius, a MoPCoM partner.

ApplicationOffered

Required

interfaces

decoder
Required

cs

bm sp
+cs()

acs

bm

extract

sp
+cs()

+bm() +sp()

+acs() +extract()

<<allocate>>

<<allocate>>

Platform

cshw decoderhwbmhw

<<allocate>> <<allocate>>

<<allocate>>

cshw decoderhw

extracthwacshw sphw

•All components are stereotypes <<HwPLD>>
•Components links and interfaces are omitted
•Decoder allocation is omitted

Fig. 5. Viterbi application model

VI. A CASE STUDY EXAMPLE

To test our approach, we designed a Viterbi decoder to

validate the rules. An external component sends events with

an integer parameter(the value to be decoded). After decoding,

a new event, also with an integer parameter is sent from the

decoder to another external component.

As Rhapsody is not fully UML 2.1 compliant, some adapta-

tions had to be done. The Rhapsody Object Model Diagram

substitute four UML diagrams: class, object, composite struc-

ture and component diagrams, incorporating their characteris-

tics. Object modeling capability is increased with component

modeling properties, which allows Rhapsody objects to be

modeled as UML2.1 components.

Figure 5 shows the Viterbi model 2. The decoder interface

defines one operation, decode, and uses a set of helper

operations (acs, extract, bm, etc. . . ), each one defined in one

interface and realized by a class with its name. A state machine

defines the decoder behavior, and all other operations are

combinational ones and the action language is suficient to

define them.

The platform follows the same functional decomposition,

where it is decomposed also in six components. The appli-

cation objects are allocated to the components, an one-to-one

allocation in the example. The decoder component has a port

2Application specification is not shown due to space limitations



connected to a HwClock. All platform objects communication

is point-to-point and the system external connections are

specified with a protocol definition, which is translated to

OCP/IP code (not in the figure).

Code generation facility builds a VHDL entity for each

platform component with a≪HwLogical≫ stereotype. Action

language elements are translated into VHDL ones. As defined

in the algorithm, for each platform component a VHDL entity

is defined. The component with the state machine contains

an architecture with two processes: one for the state machine

and another to perform communication. All other components

contains just one process to perform communications and

the operations are implemented as VHDL functions. The

communication process calls the functions and sends the result

by the communiation channel.

viterbihw is the top level viterbi entity, with 185 lines

of VHDL code. It is composed of 6 entities: decoderhw

(789 lines), acshw (65 lines), bmhw (113 lines), extracthw

(44 lines), cshw (71 lines) and sphw (28 lines). Generated

code was synthesized with Synplify Pro [21] targeting a Xilinx

Virtex 2 Pro FGPA [22]. Total LUTs was 1, 106 (3% of a

XC2VP30, package FF896).

VII. CONCLUSIONS

A co-design methodology, as specified in [4], has shown

UML suitable for HW/SW modeling. A well-define design

methodology helps MDA adoption in co-design, allowing code

generation facility. Our experiment has shown a VHDL code

generation possible from RTL level UML system models.

Our approach defines three models: functional, platform

and allocation. In the functional model the designer specifies

the behavior of the systems by means of an object oriented

model. The platform is a set of hardware components where

behavior will resides. The allocation maps the behavior onto

the platform components, where the HW/SW partition is done.

The code generation tool extract the new hardware com-

ponents to be generated and writes VHDL code for each

one. In order to generate code we define three different parts

to be generated: structure, behavior and communication. The

behavior is quite simple and takes the state machine and

action language from the functional model. The structure is

built from the platform definition, where UML components

are translated onto VHDL entities. VHDL ports are defined

from protocol definition and methods parameters derivation.

The communication is a key point in code generation and

depends both from functional and platform models. The main

difficulties in this approach concerns communication issues

between components.

MARTE profile was used in order to allow platform ele-

ments to be present in our model. As UML and MARTE are

OMG standards, our methodology can be used in any UML2

compatible tool. Moreover, we build a complete embedded

system model – application and platform. As we use MARTE

alloc sub profile, SW/HW partition is done entirely within the

model by means of allocation. Our approach considers the

entire system to be modeled. Design rules are well defined

and we are able to generate behavioral VHDL code.

Our approach aims to generate input for usual HLS tools,

that can performs architecture optimization by means of be-

havioral synthesis. In such case our code generation tool create

wrappers that connect such output IP blocks with the system.
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