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Abstract 
We will explore how processing power of LEON3 processor 

can be enhanced by connecting small commercially available 

embedded FPGA (eFPGA) IP with the processor. We will analyze 

integration of eFPGA with LEON3 in two ways, inside the 

processor pipeline and as a co-processor. The enhanced 

processing power helps to reduce dynamic power consumption by 

Dynamic Frequency Scaling. More computational power at lower 

frequency helps fabrication of chip in LP (Low Power) process 

compared to GP (General Purpose) which helps to significantly 

reduce Static Power which has become a very crucial issue at and 

beyond 90nm technologies. 

 Use of reconfigurable accelerator raises the question of its 

programming complexity, HW/SW partitioning and silicon 

overhead. We will present that silicon overhead of eFPGA is small 

compared to the benefits which can be obtained with it. We will 

present a profiling tool which we created for our experiments. To 

analyze the issue of programming complexity we have explored 

state of the art Catapult™ ESL tool of Mentor Graphics®. 

 

1. Introduction 
The explosion in the demand of portable devices which are 

rich in multimedia and internet applications has brought 

several new challenges to semiconductor industry in recent 

years. In addition to the usual ever increasing processing 

power demands industry now also has to face the challenge of 

power consumption for increasing the battery life. As 

technologies have moved beyond 90nm the static power has 

become as much significant as the dynamic power. To reduce 

the static power Fabs have come up with Low power (LP) 

process technologies to reduce leakage of transistors. Starting 

from 45nm intel® has even moved to high-k transistors with 

metal gate (Hafnium) to reduce leakage. But reduction in 

static power comes with the trade off in speed [1] which is of 

fundamental importance to cope with ever increasing 

processing power demands. 

Microprocessors are at the heart of the semiconductor 

designs. In this paper our target is to explore how we can 

improve the processing power and reduce power consumption 

using reconfigurable computing. The concept of using 

accelerators is not new and is widely used in industry. We got 

the inspiration from state of the art solutions of ARC® [2] and 

Tensilica® [3] which are widely used in consumer electronics 

products. They profile the application and create new 

instructions by custom hardware for critical computational 

intensive portions of the program and by doing so 

significantly improve computational power and hence reduce 

the power consumption. 

Such solutions are very efficient for specific known 

applications. But in case of current mobile applications 

scenario for instance, the application processor is running 

several applications like PC and is running OS for mobiles 

like Symbian®, Windows CE®, Linux, Mac® etc. It is 

difficult to know even for the vendors each and every kind of 

acceleration hardware which they may need as now users also 

create several applications for their devices (iPhone™ is a 

very prominent example). To give advantage of acceleration 

and energy reduction for portable devices it will be helpful to 

have small reconfigurable accelerators in addition to standard 

ones, which can be reconfigured for the specific needs. 

This research is done in close research collaboration 

between startup Menta® (www.efpga.com) and LIRMM 

(research center of University of Montpellier 2 and CNRS). In 

the research collaboration we are investigating new paradigms 

in which commercially available embedded FPGA IP of 

Menta® can help provide advantages of reconfigurable 

computing to industry. The main targets are the key problems 

of industry like product differentiation, future up gradation, 

fast time to market, enhancement of computational power and 

issue of power consumption which is most dominant 

challenge of the time and this paper is dedicated to this issue. 

We are exploring how to improve eFPGA architecture to 

achieve further benefits for wide range of applications. 

As this research is industrial oriented we also analyzed 

several similar approaches of the past in this area both from 

academia and industry. It is widely known that although 

scientifically they had strong potential, but almost all of them 

commercially failed or found very limited acceptance in very 

specific segment of industry. A prominent example is XiRisc 

[4], several others e.g. GARPH [5], PipeRench [6] etc. can be 

analyzed on internet. In our opinion all of those approaches 

had a good scientific & theoretical potential but they all failed 

mainly because of commercial reasons. These approaches 

were quite restrictive for adoption in wider range. The 

programming of these solutions required additional efforts 

than standard languages (like ANSI C, VHDL, Verilog etc.) 
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and needed use of specialized compilers to program the 

reconfigurable portion. For instance XiRisc, the solution has a 

good potential but from commercial point of view its 

reconfigurable portion (PiCoGA) is unavailable and virtually 

useless for industry which for instance is highly ARM® & 

MIPS® dominant. We have considered all these issues of 

great importance in our research and want to remove the 

barriers and provide a programmable IP to the industry which 

is general, easy to program and usable for everyone for wide 

range of applications.  

Therefore it is important to mention that, although we are 

following the same theoretical path of previous approaches 

but our target is much different and broader. The eFPGA IP is 

not only for reconfigurable accelerator but it is one of the 

prominent applications. We think that this will be a good 

contribution to industry and help them solve several of their 

biggest challenges like time to market, product differentiation 

and power consumption etc. eFPGA IP will bring advantages 

of FPGAs directly inside the SoC. 

For the processor we chose LEON3 [7] because it is close 

in standard and quality like basic commercial processors of 

ARM® and MIPS®. We analyzed the integration of eFPGA 

in two ways, inside the processor pipeline and as a co-

processor. Our results with LEON3 have showed that co-

processor implementation has a small impact on performance 

compared to direct pipeline implementation. But the overall 

benefits of co-processor approach (most prominently no 

change in processor integrity) exceeds the small performance 

loss compared to pipeline integration due to additional cycles 

spent in co-processor interface. 

Reconfigurable accelerators bring two major questions, 

first how much will be the silicon overhead and second how 

we will program them. We have considered both issues in our 

work. We will present that the overhead of Area and Power of 

eFPGAs is small compared to benefits which it brings. For 

programming eFPGA we have made investigations of 

automatically generating the VHDL or Verilog for eFPGA 

from ANSI C/C++ source using Mentor Graphics® 

Catapult™ (www.mentor.com). We have found that 

programming at ESL level is much faster and easier compared 

to manual HDL programming. Design space exploration with 

ESL is much faster and with the advances in ESL the gap 

between hand coded and ESL generated HDL is decreasing. 

The rest of the paper is organized as follows. In section 2 

we will describe our experimentation methodology. We will 

briefly explain our eFPGA architecture, the modifications 

which we made to LEON3 and a profiling tool which we have 

created to analyze applications for HW/SW partitioning. In 

section 3 we will present results of AES and DES 

cryptographic algorithms to illustrate the concept and 

compare the results for pipeline and co-processor 

implementation of LEON3+eFPGA. In section 4 we will 

analyze the trade offs in Area, Power & Speed by the use of 

eFPGA with LEON3 on 65nm Low power (LP) process 

technology. Finally in section 5 we will conclude our work 

and explain future ideas and plans. 

2. Introduction to the hardware and experiment 

methodology 
    In this section we will briefly discuss the building elements 

of our hardware, the tools and experiments methodology. We 

will use these concepts and hardware to demonstrate practical 

examples in section 3 and in section 4 we will present their 

actual silicon implementations on 65nm to analyze area, 

power and speed statistics of our experiments. 

 

2.1 The eFPGA 
    At the heart of our experiments in this work is the eFPGA 

which we have designed. The abstract view of the eFPGA is 

shown in fig. 1. We have completely designed it as a soft IP. 

It is completely written in VHDL so is technology 

independent. As it is soft IP there are no SRAM cells, Pass 

transistor or tri state buffer switches. The configuration 

element is a Flip Flop and switching element is a Multiplexer. 

The core is highly configurable. We can select all the 

fundamental parameters of the eFPGA like LUT size, Cluster 

size (number of LUT in a eCB), Routing channel size and 

array size (number of eCBs) etc. This highlights the 

advantage of its high flexibility. It is very easy to generate the 

IP of the user requirements. The details of eFPGA 

architecture are beyond the scope of this paper. We have 

discussed more details about it in [1]. In this paper we only 

use it as a reconfigurable accelerating element and generate 

the IP of our requirements. 
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Fig. 1 : Abstract view of eFPGA 

 

2.2 LEON3 processor modifications 
     The LEON3 [7] is a configurable processor written in 

VHDL. The advantage of the availability of its source helps to 

make modifications and explore new concepts. The LEON3 

processor itself needs no introduction; we will only discuss 

our modifications which we made in LEON3. Figure 2 shows 

an abstract block diagram of our modifications. To explore 

the concept of reconfigurable acceleration we integrated our 

eFPGA soft IP in two ways with the processor. 

    On the left hand side of figure 2 the integration of eFPGA 

inside the processor pipeline is shown. We integrated it like 

the Multiply/Divide unit. We created a new custom 



instruction for eFPGA which allows executing data in 

reconfigurable instruction which is created depending on 

running application inside the eFPGA. 

    On the right hand side of figure 2 eFPGA integration as a 

coprocessor is shown. In LEON3 the co-processor interface is 

only partially implemented. We created the entire interface 

based on the SPARC V8 manual [8] based on which LEON 

processor is designed. According to SPARC manual the co-

processor interface is similar to FPU (Floating Point Unit) but 

is flexible and custom dependent, so we only created subset of 

interface which was needed by us. This also avoids 

unnecessary silicon overhead and requires very few clock 

cycles to send and receive data. We only implemented 8 

registers in the register bank and only used basic Load, Store 

and CPOP instructions of SPARC V8 Manual.  

    This setup provides us the flexibility to analyze the pros & 

cons of eFPGA integration as pipeline vs co-processor from 

both theoretical and commercial point of view. The 

configuration portion of eFPGAs is not discussed in this paper 

for simplicity reasons. There is a small configuration 

hardware attached with the eFPGA which loads the 

configuration bitstreams of eFPGA from the main memory 

through the AMBA bus. The configuration hardware can be 

controlled by the software so is very flexible and easy to use. 
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Fig. 2 : Integration of eFPGA in LEON3 processor as 

pipeline and as a co-processor 

 

2.3 The profiling tool and experiment flow 
Our experimentation flow is shown in fig. 3. It starts from 

the application written in C/C++. We profile the application 

with our profiling tool which we have created with the help of 

SimpleScalar modeling tool which analyzes the application on 

a MIPS like model [9]. We created several tools to analyze 

the outputs of SimpleScalar and display them in a user 

friendly HTML GUI. With this whole tools set (SimpleScalar 

+ our custom tools) we can analyze applications in detail and 

extract information about each and every function, every 

single line of the code, execution trees and much more. The 

operation and results of our profiling tool will be further 

illustrated in next section when we will analyze applications 

with the complete flow of fig. 3. 

With profiling we can make HW/SW partitioning 

(currently done manually). At this step comes the importance 

of programming complexity issue of reconfigurable 

accelerator (eFPGA in our case). For this issue we created the 

VHDL source for programming eFPGA both with hand coded 

optimal VHDL and also using Catapult™ for obtaining 

VHDL/Verilog directly from the ANSI C source [10]. We 

will demonstrate these results in next section. The HDL for 

eFPGA is given as a source to proprietary eFPGA CAD tool 

Niagara™ of Menta® to perform synthesis (using Synopsys® 

Design Compiler™), mapping and place & route to obtain the 

programming file and simulation models of eFPGA. 
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Fig. 3 : Application flow for LEON3+eFPGA 

implementation 

 

3. Experiment Results 
To illustrate the flow and explore the advantages in terms 

of overall performance and power consumption we present 

the results by the analysis of two cryptographic algorithms. 

We took them as an example application because they are 

practical and big enough to analyze with profiling for 

HW/SW partitioning. They are mostly composed of bit level 

operations so are suitable to analyze the benefits of bit level 

random logic implementation capabilities of eFPGA. We will 

present AES in detail with profiling illustrations to 

demonstrate complete flow and for DES we will directly show 

our achieved results. 

3.1 AES  
The results of profiling of AES are shown in Table 1 and 

Table 2. Table 1 shows statistics of all the functions in the 

application. For every function we can explore information 

like how many times it is called, how many cycles it takes on 

average, on total and finally how much it contributes in 

percentage of execution to the total application. Table 2 

describes the similar statistics for the four top most 

computationally expensive lines. With the help of table 1 and 

table 2 it is very easy to analyze the whole application and see 

where are the computationally expensive critical areas in the 

application. From table 2 it is observed that line 356 of the 

application is consuming 23.68% of the computation time of 

whole application. We analyzed this line and found that it is 

in MixColumns function which according to table 1 is almost 

half (54.6%) of the total execution of AES algorithm, so by 

implementation of this function in eFPGA we can 

approximately double the computational power.  



Table 1 : Profiling of AES application 

Function name Called 

Avg. 

Cycles 

Total 

Cycles 

% of 

execution 

main 1 179838 179838 100.0% 

AES 1 147224 147224 81.9% 

MixColumns 9 10904 98140 54.6% 

Product 576 53 30549 17.0% 

KeyExpansion 1 30396 30396 16.9% 

SubByte 10 1642 16422 9.1% 

ShiftRows 10 1633 16333 9.1% 

AddRoundKey 11 1453 15990 8.9% 

SubWord 10 396 3960 2.2% 

RotWord 10 146 1466 0.8% 

 

Table 2 : Profiling of all C instructions in AES Code 

Line CODE CYCLES % 
Executed 

times 

Avg. 

Cycles 

356 

C[i][j]=(Product

(T[k][j],Matrix[i][k]

))^ (C[i][j]); 42194 23.68% 576 73.25 

442 

SousKey[j][k][i]=S

ousKey[j][k1][i]^So

usKey[j][k][i-1]; 13352 7.49% 120 111.27 

247 

T[j][i]=sbox[(T[j][i]

/16)][(T[j][i]%16); 13007 7.30% 160 81.29 

388 

T[j][i]=(T[j][i])^

(K[j][i][Round]); 12190 6.84% 176 69.26 

 

STEP-1 STEP-2

STEP-3

STEP-4

 
Fig. 4 : Implementation of complete MixColumns function 

in hardware in gradual steps 

 

The C code of MixColumns function is shown in fig. 4. It 

can be seen that the most computational expensive line (356) 

is at the heart of the function and is repeatedly executed in 

several nested loops. We implemented this function in 

hardware in four gradual steps to see the overall gain in terms 

of area, power and speed. The four implementation steps are 

shown in fig. 4 and the implementation results are shown in 

table 3. These four steps are as follows. 

In step 1 we implemented only Product function in 

hardware. Table 3 shows  the results of this implementation 

for number of clock cycles if eFPGA in pipeline is used vs if 

eFPGA as a co-processor is used along with the eFPGA 

hardware resources needed (which are off course same for 

both cases). The AES algorithm takes 40358 clock cycles for 

purely software execution on LEON3 processor, by moving 

Product function to eFPGA, number of required clock cycles 

came down to 30430 for pipeline implementation and 30447 

for co-processor and gave a speedup of almost 1.3X. The 

eFPGA took only 41 LUT6 for hand coded VHDL and 44 

LUT6 for Catapult™ generated VHDL (the eFPGA which we 

used has LUT size of 6). In step 2 we implemented the “xor” 

in addition to Product function, in step 3 we implemented the 

inner most “for” loop and finally in step 4 we implemented 

the complete function. Results for all these implementations 

are shown in table 3 with the speedup which we achieved in 

all these steps and the hardware resources of eFPGA for both 

hand coded VHDL and Catapult™ generated VHDL. 

 

Table 3 : Different implementations of AES with 

LEON3+eFPGA processing, pure soft (40358 cycles) 

 

Pipeline 

eFPGA 

(Cycles) 

 

Gain X 

Times 

Co-Processor 

eFPGA 

(Cycles) 

Gain X 

Times 

STEP-1 30430 1.326 30447 1.325 

STEP-2 30722 1.313 30735 1.313 

STEP-3 23752 1.699 23767 1.698 

STEP-4 16244 2.484 16265 2.481 

 

  STEP-1 STEP-2 STEP-3 STEP-4 

VHDL: 

Hand 

41-LUT6, 

0FF 

39-LUT6, 

0FF 

67-LUT6, 

8FF 

506-LUT6, 

324FF 

VHDL: 

Catapult 

44-LUT6, 

0FF 

72-LUT6, 

33FF 

130LUT6, 

78FF 

819-LUT6, 

604FF 

 

From table 3 it can be observed how the gain in 

performance gradually increases by transferring more and 

more computation to eFPGA. However it is very important to 

note the relative increase in hardware resources. We can see 

that step 3 is giving a very good speedup with very small 

amount of eFPGA resources (only 67 LUT6 for hand coded 

VHDL). It can be seen that the state of the art Catapult™ is 

giving close results to hand coded VHDL. It is widely known 

that with ESL the final RTL depends a lot on the way source 

C/C++ is written. We have found the same issues, it can be 

seen that in some cases the differences between hand coded 

VHDL and ESL is larger than others (specially last 2 steps) 

because of the style of implementation. However we have 

found that programming through ESL is much faster and 

easier to verify. In case of Catapult™ we have built-in support 

for different levels of verification and integrated support of 



ModelSim™ which made it very easy for us to write the code 

and quickly verify compared to our hand coded VHDL. We 

can check several implementation options for target HDL at a 

higher level, like trade offs in area for decreasing latency and 

increasing throughput, pipelining etc. That is relatively 

difficult and time consuming to do at HDL level. 

Another very interesting observation in table 3 is that the 

speed up achieved with integrating eFPGA inside the 

processor pipeline and using it as a co-processor is almost 

same on overall application level analysis. Individually for 

execution there is off course a difference because with co-

processor interface we have to spend some additional cycles 

to load data into co-processor registers and there is some 

further delay which is caused by co-processor controller state 

machines. For our case the difference is much less also 

because as mentioned in section 2.2 we created a very 

compact and fast co-processor interface custom to our needs 

which requires very few clock cycles for performing the data 

transactions between processor and eFPGA. 

 But overall we see a great advantage with co-processor 

implementation from practical and commercial point of view. 

Firstly with this interface type we do not need to modify the 

integrity of the processor (which is very critical for 

commercial products due to reasons of testing mainly). Most 

of the commercial processors already have a co-processor 

interface and can easily take advantage of connecting a 

reconfigurable accelerator with that. Secondly with co-

processor interface it is more flexible and convenient to 

program and control the accelerator and also allows the 

possibility to execute things in parallel for large applications. 

3.2 DES  
     We conducted experiments on DES algorithm in similar 

fashion like AES and found incredible gain of almost 10X by 

implementing the critical function in eFPGA. This high value 

of gain was achieved by only spending 95 LUT6 (hand coded 

VHDL). The gain in DES is much higher than AES due to the 

nature of the algorithm. This also highlights how 

advantageous it can be to have small reconfigurable 

accelerators in our design for applications which require use 

of multiple kinds of algorithms. 

 

4. Power Consumption, Area & speed trade offs 
   In this section we will compare our results of section 3 of 

LEON3+eFPGA processing for area and power trade offs.   

Table 4 presents our synthesis results of LEON3 processor 

core (no FPU) on 65nm LPLVT (Low Power Low Voltage 

Threshold) process libraries of ST Microelectronics® 

provided by CMP [11]. For Cache memory we used 32K 

Instruction and 32K Data cache. We chose this value because 

this value of cache is usually found in processors of ARM® 

and MIPS®.  For SRAM memory blocks for Cache memory 

we used 65nm High Density low leakage memory blocks of 

STMicroelectronics® provided by CMP [11]. From the 

datasheet of memory blocks we found the Static power (at 

25
o
C) and Dynamic power (at 100MHz, with normal activity 

rate of 50%). 

Table 4 : Area and Power consumption of LEON3  

Processor with Cache memory at 100MHz 

65nm LP 

Area 

(mm2) 

Static Power 

 25oC (uW) 

Dynamic Power 

100MHz (mW) 

Core 0.191 85.3 5.75 
32K/32K 

Cache 0.4 25.63 14.9 

Total 0.591 110.93 20.65 

 

Table 5 : Power statistics of 484 LUT-6 eFPGA at 25
o
C, 

100MHz, different toggle rates and static probabilities 

65nm LP process LVT SVT HVT 

Static Power (mW) 1.27 0.105 0.011 

DP(mW) @ (Tr-0.25,Stp-0.25) 23 22 25 

DP(mW) @ (Tr-0.50,Stp-0.5) 47.6 46.6 53.8 

DP(mW) @ (Tr-1.0,Stp-0.50) 95.36 93.36 107.8 

 

Table 6 : Area and Power consumption of eFPGA 

 

Speedup 

Gain X 

Area 

(mm2) 

Stat. Power 

 25oC (uW) 

Dyn. Power 

100MHz(mW) 

STEP-1 1.3 0.128 0.00861 1.804 

STEP-2 1.3 0.122 0.0082 1.716 

STEP-3 1.7 0.209 0.014 2.948 

STEP-4 2.48 1.578 0.106 22.264 

DES 10 0.296 0.0199 4.18 

 

    Table 6 shows the area overhead of eFPGA (for hand 

coded VHDL) and its power consumption figures for the four 

steps of our AES implementation in table 3 and DES based on 

results of table5. Static power for SVT (Standard Voltage 

Threshold) and Dynamic power is estimated at normal toggle 

rate and static probability (Tr-0.25, Stp-0.25). 

If we analyze as an example DES, we achieved almost 10X 

speed up by spending only 95 LUT6. From table 6 we see that 

we achieved it by just spending 0.296mm
2
 of additional 

silicon due to eFPGA which only consumes approx. 4.18mW 

of total power. So the LEON3 processor which we found has 

maximum frequency of almost 185MHz at 65nm LP, with 

eFPGA it can be possible to get 10 times more DMIPS for 

DES in same frequency. If we apply Dynamic frequency 

scaling while executing DES we can decrease the dynamic 

power of LEON3 almost 10 times by only spending around 

4mW of additional power overhead of eFPGA. 

     A very important point to consider here is that eFPGA at 

the moment has no power management and is completely soft 

core written in VHDL and is under continuous research to 

greatly enhance the architecture. Even at soft implementation 

level (which we are using for fast exploration and technology 

independence) and pessimistic power comparison, we can 

observe the promising advantages that can be achieved by 

adding a small eFPGA IP to the designs. Also we can observe 

in table 5 & 6 that our eFPGA has a very low static power. 



5. Conclusions & Future works 
We explored the advantages of having small embedded 

FPGAs (eFPGAs) as a reconfigurable accelerator in LEON3 

processor as an example to improve performance and 

reduction in power consumption. We presented a very brief 

overview of some of the prominent similar approaches from 

academics and industry done in the past in the introduction 

section. We provided our viewpoint to these approaches, their 

potentials and possible reasons of not finding wide acceptance 

in the industry on the bases of our industrial experiences and 

study. We proposed our differentiation from those approaches 

which led to the motivation of this work. 

 Use of reconfigurable accelerators raises major questions 

like silicon overheads and programming complexity. We 

considered both of these issues in our work. We presented 

with our experiments that overhead of eFPGA is small 

because we only use it for accelerating small portions of code 

which can give us overall benefits in terms of performance 

enhancement and power consumption compared to silicon 

overhead. We used state of the art Catapult® to explore the 

use of ESL for programming the eFPGA directly in ANSI 

C/C++ compared to hand coded HDL and discovered the 

advantages of ESL which allow us to develop and verify our 

task much faster than HDL. We found that ESL tools are 

improving fast and their results are getting closer to hand 

coded HDL. 

To keep the practical scenarios completely in consideration 

we analyzed the use of eFPGA as an accelerator in LEON3 in 

two ways, inside the processor pipeline and as a co-processor. 

We found that in overall co-processor interface provides 

greater benefits because of its flexibility and removing the 

need of any change in processor design and the compiler. 

Most of the commercial processors already have a co-

processor interface and they can easily take advantage of 

connecting an eFPGA IP to their design without any 

modification to their main architecture which is in many cases 

very expensive and unfeasible mainly because of the 

fabrication and verification issues. Such issues also have been 

a reason of commercial failures of many reconfigurable 

solutions in the past. 

We presented the complete idea with the help of a practical 

example of AES algorithm. We analyzed the application for 

HW/SW partitioning with the profiling tool which we have 

created for our research. We investigated the speed up 

advantages by transferring the computation to eFPGA in 

gradual steps along with the hardware resources needed for 

that. We analyzed our results in terms of overall gains in 

terms of area, power and speed up.  

Looking towards the future we see great advantages that 

can be achieved using eFPGAs in SoCs which gives us 

inspiration about the challenges for our future research. The 

advantages of eFPGAs will only be meaningful if they 

provide high logic density with very low power consumption. 

This will allow us to put relatively more logic in eFPGA 

which is essential to give more overall benefit if there is a 

longer communication delay between processor and eFPGA 

in case of buses (like AMBA). We have analyzed the eFPGA 

as an accelerator in two ways in this work. We will investigate 

it now connected with a bus, like AMBA to provide flexibility 

for wide range of applications like also I/Os etc. The 

balancing figure between overall gain and loss is very 

challenging. We saw in table 3 that the logic resources can 

dramatically change depending on what we want to 

implement. AES was one example; the results can be different 

for different applications. Sometimes they can be much better 

and sometimes may be less like we saw in case of DES there 

was enormous speedup with very low logic resources. So a 

high logic density of eFPGA will improve the chances of 

overall gain for wider range of applications. 

For increasing the logic density we need to make 

innovations both at architectural level and also 

implementation level like ARM® (www.arm.com) which uses 

special custom cells to improve performance. Some nice 

guidelines are also obtained from academic research for 

importance of hard macro blocks [12] and use of custom cells 

to improve logic density of eFPGAs compared to pure soft 

core [13]. We will explore the use of custom cells for eFPGA 

for transforming it from purely soft core to more custom and 

targeted to special technology to achieve optimal results 

which are closer to industrial requirements and also 

investigate how to make it technology independent with 

custom cells also for further flexibility. We will explore the 

addition of hard macro blocks like Memories, DSP blocks, 

shift registers and even small processors. Having coarse 

grained eFPGA will increase the benefits compared to fine 

grained, the range of applications in which eFPGA can give 

advantages will significantly increase. By having more coarse 

grained eFPGA will help reduce the configuration resources 

and hence configuration time, the cost and most importantly 

the gap between ASIC & FPGA. 
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