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Abstract—We present an application tailored packed-based
SoC communication system with one-hop communication be-
tween all entities, priority-based arbitration, broadcast and
multicast support on a bus-shaped basis. It is located as a
hybrid between NoC and bus approaches, closing the gap for
mostly streaming-based systems with the need for highly flexible
communication patterns and multicast messages that are below
a certain size. The system is implemented and evaluated on a
FPGA within a car-to-car communication gateway application.

I. INTRODUCTION

Recent years showed a lot of research in the field of
packed-based Network-on-Chip (NoC) communication struc-
tures striving to get power-efficient, performant and above
all scalable information interchange for future systems. Many
comparisons like [1], [2] show that NoCs outperform bus
systems above a certain size-threshold. In large communica-
tion systems they give benefits regarding performance, power
consumption and area used.

But when looking at smaller systems and a more streaming-
based computation, a flexible combination of packet-based
communication over a specially designed structure can offer
high performance with less resource usage than needed for
a relatively complex NoC. Based on the car-to-car communi-
cation application introduced in [3] we present a streaming-
oriented communication structure that offers flexibility, simple
interfacing, high throughput and very small latencies using
a packed-based communication approach on a bus-shaped
structure.

The remainder of this paper is organized as follows: In
section II we summarize a selection of related work. Section
III motivates our communication approach that is presented in
section IV in some detail. In section V we give figures about
our implementation and the resources needed while section VI
contains performance data. Section VII concludes and points
to further research.

II. RELATED WORK

Looking at SoC communication supporting future designs
and applications the idea to use packed-based network struc-
tures known from device networks has been exploited inten-
sively. These approaches build on networks of switches and/or
routers to deliver network packets from sender to receiver.
Basic proposals can be found in Dally and Towle [4] proposing

a tile-based NoC approach and Jantsch [5] giving a proposal
for a NoC protocol stack. Guerrier and Greiner [6] propose
the special NoC architecture SPIN providing figures about
scalability and performance and also hardware-wrapper for
support of different communication interfaces. An approach
combining different bus structures connected with a NoC is
presented by Wielage and Goossens [7].

Beside the NoC approach there are proposals to extend
or upgrade bus structures to fit future demands. Targeting
reconfigurable devices the work presented in [8] summarizes
state of the art processor buses and discusses their limitations
in comparison to NoCs. In [9] the AMBA bus structure is
exchanged by a crossbar switch resulting in higher perfor-
mance of the system. The migration from bus to crossbar is
transparent for the IPs that can directly connect to the crossbar.
However the distinctive master/slave classification of system
buses remains unchanged. Further bus extensions are proposed
in [10] allowing faster access to the bus peripherals by dynami-
cally changing the master to bus connection. Another approach
is to segment the bus as shown e.g. in [11], [12]. Here the
shorter lines give a reduction in power consumption because
of the smaller capacitance and also parallel transmission over
different segments is supported.

Several approaches have been designed for FPGA based
systems. In [13], [14] different approaches for optimized NoC
implementations are evaluated. Building a low overhead NoC
on token ring basis is presented in [15]. Very few work is
published on interfacing IP Cores and NoCs on FPGAs such
as the approach presented in [16] introducing a small overhead
NoC OPB connection. Sophisticated communication structures
for partial and dynamic partial reconfiguration were presented
in [17], [18]

III. MOTIVATION FOR A TAILORED APPROACH

We base our considerations on a concrete scenario serving
as an example for similar specialized systems. Our application
is a car-to-car communication (C2CC) system integrated into a
central automotive gateway. The system concept can be found
in [3] for the overall system and in [19] for the gateway part.
Here we just recall the parts needed to understand the basic
system layout. Figure 1 gives a rough overview of the relevant
processing units and dataflows.
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Fig. 1. C2CC gateway system data flow

The depicted C2CC module implements the complete pro-
cessing of C2C beaconing messages according to the upcom-
ing WAVE standard, focusing on security [20], [21]. It shall be
integrated in a FPGA automotive gateway and achieve hard-
ware separation of internal and external network, presenting a
clearly defined interface for relevant information between the
C2CC network and the internal vehicle network gateway. In
special situations (i.e. traffic jam) up to 3000 messages per
second from many dozens of vehicles 1 are received and need
to be processed and forwarded thus creating a high processing
load for the overall system. The internal communication
between all modules should impose low latencies and support
prioritization of messages to support accelerated handling for
important information. Also shall there be no blocking of
entities on the same priority level.

Fig. 2. C2CC gateway system architecture

For the communication structure there are basically three
options – direct wiring, bus communication and NoC commu-
nication (see section II):

Although the system’s operation is dataflow-oriented, no
singular dataflow can be determined along which processing
units could be chained. Depending on the situation and the
beacon contents, different units process the packets and dif-
ferent paths are used. So communication by direct links would
create a complex and costly1 structure.

A classical bus structure has serious drawbacks as well. As
all processing units are part of a pipelined processing chain,
no partitioning in master and slave modules is apparent. All

1in terms of area and resources used

modules have to be equipped with both master and slave
interfaces implicating significant overhead or every transfer
from slave-to-slave has to be done over a master thus doubling
the bus occupancy time.

A full-grown NoC finally gives probably the highest
throughput for the communication. But this comes along with
a complex structure of routers and switches causing hardware
overhead and additional issues like routing algorithms. Also
some messages in the C2CC module are used by several
units. Therefore a multicast functionality is beneficial which
complicates the routing further, so that this approach, too,
would result in serious overhead and complexity.

IV. SYSTEM DESIGN

Based on these considerations we propose a tailored ap-
proach located somewhere in between a classical bus and a
NoC, implementing a packet-based communication over a bus
structure. We accept the obvious bottleneck of a bus as we
have a small number of nodes which is far less compared to
the break even of two dozens stated in [1]. All modules are
enabled to send and receive. Broadcast and multicast can be
realized by addressing groups of modules. For arbitration we
chose a multi-criteria scheme with dynamic priorities so that
every sender is able to send each packet at any priority level.
Packets on the same priority level are scheduled round robin
(RR). In the following we look at the different parts in some
more detail.

A. Packet protocol

Each packet is divided into header and data field. Because
only on-chip-communication is considered, we omit a CRC
mechanism. Table I details the header of a data packet. The
allocation of the fields is given below.

Header

DATAByte0 Byte1 Byte2 Byte3
7..0 7..0 7..4 3 2..0 7..0
SRC DST PRI CF res LEN

TABLE I
HEADER STRUCTURE FOR DATA PACKETS

SRC: 8 bit source address, always the address of the sender, consisting
of 5 bits node ID and 3 bits subnet mask.

DST: 8 bit destination address. This may be either a module or a group
of modules, in the latter case implementing a multicast message.
DST 0 is defined as broadcast destination.

PRI: 4 bit priority information. In bit 7..5 application priorities are
coded while bit 4 is a superpriority (SP) flag for control messages.

CF: Chaining-Flag. This indicates the packet is part of a chained multi-
packed transmission.

res: 3 reserved bits for future protocol extensions.
LEN: Data length field in byte.

The maximum data field length of 128 byte is chosen rela-
tively small to minimize the delay for high-priority messages.
An arbitrary number of single packets can be chained to a
multi-packed transmission enforcing delivery in the correct or-
der and without delivering any other packets to the destination
in between.



To optimize transfer volumes and to ensure data and in-
formation integrity, the bus is designed to avoid any packet
loss. Therefore a blocking mechanism is implemented that is
described in section IV-D

B. System layout

The system consists of a single central arbiter with all
modules attached to it. Each module has write lines to the
arbiter in full bus width. After winning the arbitration they
are connected to the central bus via multiplexers. All modules
listen to the central bus. Based on the destination address in
the packet header they decide whether to store or ignore the
packet. To enable multicast messages each module can store
several addresses or IDs, one unique ID, and some group IDs.
DST 0 serves as broadcast address.

Our test system consists of four nodes as depicted in section
VI, figure 8. As the final system consists of five to eight pro-
cessing nodes, this is sufficient for testing. If necessary several
of these systems can be connected via bridges. The 3 address-
bits for a subnet mask are reserved for this enhancement. The
following paragraphs survey arbiter, module interfaces, and
bridge separately.

C. Central arbiter

Arbitration is done by a central module. Send requests
are scheduled according to their priorities. Implemented are
eight application priority levels and an additional SP level for
blocking messages (see IV-A). On each priority level a RR
scheduling with history is done, so that after arbitration of a
higher priority packet the schedule is resumed at the correct
state. As RR is also applied on the highest priority level a
guaranteed latency time for such packages can be found. This
guarantee is also valid for lower priorities when no request on
any upper priority layer exists. Figure 3 gives an overview of
the central arbitration unit.

Fig. 3. Structure of the central arbiter

A complete arbitration process is done within one single
clock cycle. Out of all requests the highest priority level is
detected and a request vector which contains all requests on the
selected level are transmitted to the scheduler. A RR pointer
contains the node ID of the node that has sent the last packet.
Such a pointer is stored for each priority level. The scheduler
selects the successor based on the request vector and the
pointer information. Bus access is granted by switching the

bus multiplexer to the selected node ID. Adapting the arbiter
to different bus widths is quite simple as the multiplexer is
the only element that depends on the bus width. Currently the
arbiter is configurable to 8, 16 and 32 Bit. The FSM monitors
overall module behavior as well as correct frame length.

D. Node interface

Packet encapsulation is done by the node interface shown
in figure 4. We decided to use a host register interface with a
simple processor bus standard and configurable register width
of 8,16 or 32 Bit. So we can simply add our interface to a 32
Bit MicroBlaze OPB bus [8] as well as an 8 Bit PicoBlaze
port. The packet bus width is configurable to 8,16 and 32 Bit
as well. Host interface and packet bus width are independent.
Packet headers are generated by the application due to possibly
multiple identities of each node. This allows different tasks to
be joined on one processing unit.

Fig. 4. Structure of the node interface

The TX buffer has space for two packets. So enqueueing a
new packet is possible while sending of the prior packet is in
progress. Space for buffering multiple packets is implemented
in the RX buffer where the queue also respects packet priorities
(see below). Packet transmission is organized by the control
FSM which requests bus access and transmits the packet to
the bus autonomously.

Valid incoming packets with matching ID are stored into the
RX buffer. One BRAM block has been used for data storage
which is sufficient for 16 packets. Packet loss due to full
RX buffers in any of the nodes is not acceptable. To avoid
an overflow a special blocking packet with highest priority
is sent as soon as the node’s buffer is full and the current
transmission matches any of the node’s IDs. The current packet
transmission is interrupted by the arbiter and the blocking
packet is broadcasted to all nodes storing the information in
their blocking table hindering any further request targeting the
critical node. The state remains until the blocking is revoked
by the critical node. Any other transmission can be continued.
Using this mechanism, acknowledgments are not necessary.

Some application packets must be split into several bus
packets that should be stored sequentially in the RX buffer.
This buffering constraint avoids fragmentation and overhead



for processing within the module. During chaining transmis-
sion no other packet shall be received. Therefore a special
chaining packet is sent blocking all packet transmissions
addressing the chaining destination except for the packet chain
sender. The chain block is revoked by the receiver as soon as
the chained transmission is completed.

Fig. 5. Structure of the RX header memory

Packet prioritization is a major request within our overall
C2CCC application. Therefore a preferred handling of mes-
sages in the RX buffer is done additionally to the arbitration
prioritization to reduce packet latency of high priority packets.
The host interface only sees the packet with highest priority.
All packet headers are stored and sorted by the RX Header
RAM according to their priority. Packets with identical priority
levels are sorted in FIFO style. The information is organized
in a linked list running in hardware. The first list element is
selected and displayed to the host interface. In addition the
address of the first and last header of every priority level are
stored. This allows to select, add and remove list elements
within a single clock cycle (see figure 5).

E. Bridge

Multiple net segments of different bit widths can be con-
nected via a bridge. Our implementation is configurable freely
and independently on both sides to bit widths of 8, 16 or 32.
The concept is depicted in figure 6.

Fig. 6. Concept of the bridge

The bridge consists of two bridge buffers supporting block-
ing, chaining and prioritization. The structure is similar to

two crosswise connected node interfaces but without a host
interface or TX buffer. The RX buffer of the opposite bridge
buffer acts as respective TX buffer. Figure 7 gives an overview
of the structure. As the bridge is implemented completely in
hardware and controlled by a FSM no separate processor is
needed for data transport. The latency between end of the read
operation and sending request on the opposite side is just one
clock cycle. This was approved by a performance test with
two connected buses with 8Bit and 32Bit width.

Fig. 7. Structure of the bridge

To enable simple routing between different net segments the
node IDs are divided into two parts, a local ID identifying the
node in the segment and the global net ID identifying the net
segment. The bridge itself is then programmed only to two net
IDs. Upon reception of a packet the FSM checks whether the
net ID matches the ID of the opposite side and then forwards
or drops the packet accordingly.

To connect more then two net segments the bridge has to
be extended with a routing table for net IDs to be able to send
packets over multiple net segments.

V. IMPLEMENTATION AND RESOURCE USAGE

The system has been implemented and tested in several
versions on various Xilinx FPGAs. Three different bus widths
and four numbers of priority levels were used. The default
system has a bus width of 32 bit and eight priority levels plus
one SP level. These parameters are used if not stated explicitly
otherwise.

We again regard central arbiter and node interfaces sepa-
rately. Table IIa gives selected results about the arbiter imple-
mentation for different bus widths. The maximum frequency
displays no dependency on the bitwidth of the arbiter. As
expected the arbiter size slightly increases with bus bandwidth
solely caused by the multiplexer width.



a) Resource usage central arbiter

FPGA type unit 8 bit 16 bit 32 bit(Xilinx)

Spartan3
Slices(map) 179 200 235
Gates 2259 2506 2918
fmax(MHz) 66.37 67.58 66.36

Virtex2P
Slices(map) 178 195 232
Gates 2235 2485 2894
fmax(MHz) 108.41 108.90 116.41

Virtex4
Slices(map) 180 203 238
Gates 2280 2527 2945
fmax(MHz) 145.96 148.58 144.84

Virtex5
Slices(map) 246 280 335
Gates 2051 2288 2665
fmax(MHz) 216.78 216.78 216.61

b) Resource usage node interface

FPGA type unit 8 bit 16 bit 32 bit(Xilinx)

Spartan3
Slices(map) 720 717 768
Gates 79870 79849 80463
fmax(MHz) 73.44 79.73 71.04

Virtex2P
Slices(map) 705 710 757
Gates 84244 84368 84899
fmax(MHz) 136.91 140.12 126.58

Virtex4
Slices(map) 716 744 777
Gates 79817 80631 80894
fmax(MHz) 165.32 163.88 166.11

Virtex5
Slices(map) 763 770 918
Gates 82889 82897 149289
fmax(MHz) 252.92 238.53 249.72

All architectures Mem (kbit) 18 18 18

TABLE II
RESOURCE USAGE OVERVIEW

Table IIb shows results for the node interfaces. The size
is fairly large mainly due to the prioritization and blocking
mechanisms. Resource usage could be minimized by dropping
the prioritization in the buffer and using a simple FIFO. A
pragmatic simplification of the RX buffer towards a FIFO gave
about 360 Slices on a Spartan 3. Besides the implementation
with eight application priority levels, the system was also
implemented using less priorities2. Table III gives an overview
of the changed resource usage of the modified system. A
significant resource reduction of 36% can be achieved for the
central arbiter with one priority level. Further reduction by
reducing the bitwidth gives another 24%. The node interface
resource consumption slightly decreases by about 21% with
one priority level. Combining the 8 Bit version with one
priority level gives an increase of the maximal frequency of
20MHz. In general the node interface size is almost equal for
8 and 16 Bit versions on all architectures. Moreover the size
of the node interface strongly depends on the buffer size.

To the best of our knowledge features like hardware prioriti-

2The SP level is always additional to the given number of application
priority levels.

Central Arbiter on Xilinx Spartan3

unit 32 bit 32 bit 32 bit 32 bit 8 bit
8 prio 4 prio 2 prio 1 prio 1 prio

Slices(map) 235 184 161 149 93
Gates 2918 2330 2060 1871 1185
fmax(MHz) 66.37 63.28 71.86 72.17 73.06

Node interface on Xilinx Spartan3

unit 32 bit 32 bit 32 bit 32 bit 8 bit
8 prio 4 prio 2 prio 1 prio 1 prio

Slices(map) 768 698 648 606 548
Gates 80463 79378 78667 78084 77343
fmax(MHz) 71.04 71.04 71.04 71.04 90.66

TABLE III
RESOURCE USAGE FOR DIFFERENT NUMBERS OF PRIORITY LEVELS

zation and chaining without dedicated channels can be hardly
found in other implementations. For example NoC interfaces
do not implement buffer prioritization which covers for a large
part of our resource consumption. Often the node interfaces
are integrated into routers as simple FIFOs and all together
show sizes of approximately 450− 650 slices [14], [13].

VI. PERFORMANCE EVALUATION

The system was evaluated using the test system shown in
figure 8. Four different modules, each containing a soft pro-
cessor core, are attached to the central arbiter. The MicroBlaze
(B) runs a TCP/IP stack that allows for packet sending and
receiving from a standard PC with some debugging software.
PicoBlaze (D) has a simple UART Interface for text outputs.
PicoBlaze (C) can act as a packet source generating as much
traffic as possible suitable for performance measurements. To
get our structure to its performance limits, we added some
hardware packet generation. PicoBlaze (A) sends some stan-
dard packets for functional verification. A special test interface
was added to the arbiter in order to count packets per second.
The output is given to PicoBlaze (D). In addition Chipscope
was used for functional verification. On this basis several
scenarios were tested to verify the theoretical performance
values and the correct functional behavior.

Fig. 8. Setup of the system



The packet protocol (see IV-A) defines a constant header
size of four byte and a maximum packet size of 132 byte,
consisting of the header and 128 byte payload. At a bus
speed of 50 MHz this results in a maximum throughput of
almost 1.55GBit/s. Our implementation imposes an additional
arbitration gap of four clock cycles per packet, reducing the
throughput to 1.4GBit/s by loosing four times the bitwidth
per frame. Closing this arbitration gap is one goal for further
improvement.

Property unit 8 bit 16 bit 32 bit

Channel capacity (cc) MBit/s 400 800 1600
Header transmission clk cycle 4 2 1

Arbitration gap clk cycle 4 4 4

Payload capacity MBit/s 44.4 57.1 66.7
min. packet size (5 Byte) % of cc 11.1 7.1 4.2

Payload capacity MBit/s 376.4 731.4 1383.7
max. packet size (128 Byte) % of cc 94.1 91.4 86.5

Packet latency, max. size, clk cycle 136 70 37
immediate arbitration µs 2.72 1.4 0.74

Max. delay to arbitration clk cycle 408 210 111
using highest PRI µs 8.16 4.2 2.22

TABLE IV
TEST RESULTS PERFORMANCE

Testing showed the implementation performs correctly up to
the theoretical maximum. Table IV gives some performance
values for different bus widths measured on a Xilinx Virtex-II
Pro FPGA at a clock speed of 50 MHz.

Latencies were evaluated with all four modules sending on
highest priority. Using a bus structure we benefit from one-
hop transmission. NoC approaches usually induce per-hop-
latencies of 2 [13] to 38 [14] clock cycles. Instead our waiting
time may be longer, lacking alternative routes from source to
destination.

VII. CONCLUSION AND FURTHER RESEARCH

We presented a packed-based communication system over
a central bus structure located in between classical bus ap-
proaches and recent NoC solutions. The approach is tailored
for small to mid size data-stream oriented systems. All nodes
are able to send and receive on arbitrary priority levels with
round robin scheduling on each level. Broadcast and multicast
messages are supported and packet loss is prevented. The
system’s performance as well as resource usage were evaluated
on various real hardware implementations.

Compared to a classical bus system our approach gives
a higher modularization by encapsulating all bus access and
most of the protocol issues like chaining and blocking in the
hardware interface. This is especially beneficial thinking of
hardware modules with only minimal control logic.

In contrast to a NoC our pragmatic approach goes without
the internal infrastructure of routers and switches. The underly-
ing bus structure accounts for the relatively high percentage of
broadcast and multicast messages coming from the application.
We also achieve very small minimal latencies transmitting
from sender to receiver in a single hop.

Further research includes optimization of the overall system
structure. Also the arbitration gap shall be narrowed thus
further increasing performance. The system will then be inte-
grated into a car-to-car communication system.
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