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Abstract—Negative Bias Temperature Instability (NBTI) is
a significant reliability concern for nanoscale CMOS circuits.
Its effects on circuit timing can be especially pronounced for
circuits with standby-mode equipped functional units because
these units can be subjected to static NBTI stress for extended
periods of time. This paper proposes internal node control, in
which the inputs to individual gates are directly manipulated to
prevent this static NBTI fatigue. We give a mixed integer linear
program formulation for an optimal solution to this problem.
The optimal placement of internal node control yields an average
26.7% reduction in NBTI-induced delay over a ten year period
for the ISCAS85 benchmarks. We find that the problem is
NP-complete and present a linear-time heuristic that can be used
to quickly find near-optimal solutions. The heuristic solutions are,
on average, within 0.17% of optimal and all were within 0.60%
of optimal.

I. INTRODUCTION

Due to the scaling trends of CMOS technology, Negative
Bias Temperature Instability (NBTI) is emerging as a significant
reliability concern for digital circuits. NBTI, which in current
technologies only significantly affects PMOS transistors stressed
with a negative bias (Vgs = -Vdd), manifests itself as an increase
in threshold voltage that reduces switching speed [1].

At the atomic level, NBTI is caused by an electric field
dependent disassociation of Si-H bonds at the Si/SiO2 interface.
The hydrogen diffuses into the gate oxide in a temperature-
dependent reaction, leading to the formation of interface traps,
which are responsible for an increase in threshold voltage. These
mechanisms lead to an interesting recovery effect; when the
stress is removed (Vgs = Vdd), the reaction reverses, with some
of the hydrogen diffusing back towards the interface and bonding
with the Si [1].

Under constant stress, static NBTI effects quickly lead to
performance degradation. However, thanks to the previously de-
scribed recovery effect, for circuits experiencing typical switch-
ing activity, the negative impacts of dynamic NBTI degradation
take longer to accumulate. For a 70 nm Berkeley Predictive
Technology Model, Paul et al. predict ∼10% increase in delay
after 10 years of operation for the ISCAS85 benchmarks [2], [3].

During normal circuit operation, standard switching activity
causes alternating stress on the PMOS transistors and thus degra-
dation is dominated by dynamic NBTI. However, many designs
employ sleep or clock-gating techniques in order to reduce
dynamic power consumption. In such schemes, idle functional
units are put in standby or sleep mode by having their inputs
frozen or their clock transitions gated. This prevents unnecessary
switching, reducing dynamic power consumption. However, with
the inputs stable for long periods of time, PMOS transistors
with low inputs may degrade due to static NBTI effects. In this
scenario, static NBTI optimization is relevant.
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In this paper, we propose and evaluate an internal node control
technique to limit the effect of this static NBTI stress. Internal
node controls can be inserted at the output of individual gates
in order to force their outputs to specific values during standby.
Using this technique, static NBTI stress for a PMOS transistor
can be eliminated, for example, by forcing the output of the
preceding gate to Vdd. However, internal node control imposes a
timing penalty; the additional circuitry required for node control
introduces a small delay. NBTI degradation on a timing-sensitive
(i.e., critical path) transistor can be eliminated by forcing non-
critical path gates to circuit structure dependent values, such that
a low value is propagated to the NBTI-sensitive transistor.

We formulate finding the optimal set of insertion points
leading to the minimal degradation in circuit delay after some
elapsed time as a mixed integer linear program. For the ISCAS85
benchmarks, we find that the optimal application of internal node
control leads to an average 26.7% reduction in NBTI-induced
delay relative to input vector control [4], a previously proposed
technique. We have found that the problem isNP-complete. Due
to the time complexity of the optimal formulation, we present
a linear-time heuristic to find good solutions in a reasonable
amount of time. The heuristic is within 0.17% of optimal on
average and within 0.60% of optimal for all benchmarks. The
INC placement requires only a 1.6% increase in area.

II. RELATED WORK

Several techniques have been proposed for dealing with the
impacts of NBTI. One class of methods, which includes guard
banding, gate sizing, Vdd tuning, and Vth tuning, has been used in
industry to compensate for timing degradation. Such techniques
compensate for the effects of NBTI at the expense of timing, area,
or power because they do not attempt to minimize the NBTI-
induced degradation.

In guard banding, the maximum clock frequency of a circuit
is artificially limited, often by as much as 10%, to compensate
for possible future NBTI-induced delay [5]. This ensures that the
processor will not fail due to NBTI degradation by sacrificing
a significant percentage of the initially-available performance.
In gate sizing, the sizes of the transistors are increased, thus
increasing the initial speed of the circuit, so that the NBTI-
degraded circuit still meets the timing requirements. However,
this technique imposes an 8%–12% area overhead and increases
power consumption [6]. Similarly, in Vdd and Vth tuning, the
voltage of the circuit is adjusted to increase the initial operating
speed [6]. The problems with this technique are two-fold. First,
increasing the operating voltage increases the rate of NBTI degra-
dation, requiring a further increase of Vdd. Second, increasing
operating voltage increases the power consumption and therefore
temperature of the circuit. Techniques that minimize the NBTI
degradation are needed.

Power gating and clock gating methods have been used to re-
duce the power consumption of idle functional units [7]. In power
gating, a sleep transistor, which can be turned off to prevent static
and dynamic power consumption, is added between the power
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supply and the functional unit. In clock gating, the clock input
to the idle functional unit is disabled to prevent dynamic power
consumption. This is usually combined with Input Vector Control
(IVC) to reduce the leakage power consumption. Leakage power
consumption is dependent on the state of the inputs to a gate, and
thus in IVC, the functional unit inputs are chosen to minimize the
total leakage.

Both techniques could be used for NBTI degradation reduc-
tion. Power-gated transistors do not experience NBTI degrada-
tion. However, the wake-up time for a power-gated functional
unit is orders of magnitude longer than for a clock-gated, input
vector-controlled unit [7]. Clock gating and IVC methods allow
for more temporally fine-grained control.

Wang et al. investigated the use of IVC to reduce NBTI
degradation [4]. In practice, this control can be implemented
either by placing MUXes on the inputs or by using a scan-
chain. Unfortunately, for many circuits, the input vector may
only be able to control a few levels of the circuit’s internal gates.
Consequently, they observed only an average 3% improvement in
delay for the ISCAS85 benchmarks. They predict that for future
technologies, smaller gate sizings and higher temperatures may
increase the benefit of this technique.

In contrast with IVC, internal node control (our proposed
technique) permits much greater control of all levels of the
circuit, allowing for greater reduction in the NBTI-induced delay.

III. INTERNAL NODE CONTROL

Internal node control (INC) refers to setting the states of
individual nodes or gate outputs at any layer of the circuit to
specific values. With this extension to IVC, further control and
thus NBTI mitigation is possible. INC can be implemented by
additional control circuitry at the output of each controlled gate.

There are several important observations about INC insertion
for NBTI minimization in CMOS. We first describe a specific
implementation of INC originally developed for static power
consumption minimization. We then discuss the difficulty of
removing NBTI stress from all PMOS transistors in a circuit and
note a property of NOR gates that lessens the associated cost.
Next, we explain the structural properties of transistors requiring
NBTI stress removal and give our problem definition.

III.A. Internal Node Control Implementation

In order to force a node to a specific value, we borrow a tech-
nique from work by Abdollahi, Fallah, and Pedram on leakage
minimization [8]. In this technique, a gate can be modified to
allow its output to be forced either high or low, although not
to both levels. To force the output high, the output of the gate
is connected to Vdd via a PMOS transistor in parallel with the
existing pull-up network. This is controlled by an active-low
sleep signal that pulls the output high when enabled. In order
to prevent a short through the gate, the pull-down network is
then placed in series with an NMOS transistor. This transistor is
responsible for the majority of the increase in gate delay. To force
an output low, a similar modification is made. This is illustrated
in Figure 1.

Unfortunately, the addition of this extra circuitry required for
INC increases circuit delay. For a 65 nm Berkeley Predictive
Technology Model, [9], [10], this technique results in an∼12.5%
increase in delay for a simple inverter. The absolute delay appears
to be independent of gate type, so the percentage decreases for
larger gates.
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Figure 1. CMOS gates modified to include node control [8].
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Figure 2. For a NOR gate, destressing the top PMOS destresses all
subsequent transistors in the stack.

III.B. Potential of Internal Node Control for CMOS

For an inverting logic implementation technology such as
CMOS, if all of the inputs to a gate are high, then the output
will be low. Thus, it seems that in order to place non-stressing
(high) values on all PMOS inputs, internal node control must be
implemented at the output of every gate. Recall, however, that
NBTI stress is due to negative bias between the source node and
the transistor input (Vgs = -Vdd); it is not just due to the low input
value. For gates with parallel pull-up networks (e.g., inverters
and NAND gates), the source node for each PMOS transistor is
always at Vdd and each transistor is stressed whenever the input
is low. For gates with series pull-up networks (e.g., NOR gates),
the source node voltage, except for the top transistor in the PMOS
stack, is dependent on the state of the transistors higher in the
stack [11]. Specifically, the source node voltage for any transistor
below an “off” transistor will be close to ground and thus, even
for a low input, Vgs will not approach -Vdd. This is illustrated in
Figure 2. While this reduces (to one) the number of high inputs
needed to eliminate static NBTI stress in a NOR gate, it does not
help with the problem of inverting logic. A single high input to a
NOR gate will force the output low, and thus will still potentially
stress the subsequent gate.

To eliminate static NBTI stress on all the PMOS transistors in
a circuit, the outputs of most gates must be forced high. Gates
feeding only into the lower PMOS transistors of NOR gates are
the exception. Because of the increase in delay associated with
INC insertion, the performance gained (rather, retained) due to
NBTI minimization is less than that lost due to INC insertion
at every gate. It is not practical to cover every gate with INC.
Focused mitigation is required. That is, it is necessary to find the
set of nodes for INC insertion that minimizes the overall circuit
delay in the presence of NBTI.

The relevant transistors for NBTI stress removal are those
on the critical path or those which, due to NBTI degradation
over circuit lifetime, may ultimately be on this path. That is, a
critical transistor is one with a timing slack less than its NBTI-
induced increase in delay. If all of these transistors can be placed
in unstressed states, static NBTI will not increase system delay.
Unfortunately, identifying these critical transistors is hard. The
slack for each gate depends on the delays of all the prior and
subsequent gates along its path. Therefore, it is dependent on
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Figure 3. Off path INC insertion example. Gates affected by NBTI are
shaded and critical path lines are darkened.

the NBTI stress and node control delay of each of those gates
as well. The addition of node control to a single gate can, in the
worst case, change the slack of every other gate in the circuit.
These control nodes introduce additional delay that, depending
on their locations, may adversely affect the critical path. It is thus
necessary to optimally trade off the reduction in NBTI-induced
delay and the increase in delay due to the addition of INC.

We now describe three example INC insertion scenarios. First,
we will consider an NBTI-stressed gate on the critical path. If
the degradation in delay is worse than the delay associated with
adding INC to the previous gate, INC can be added to remove the
stress. For the second example, consider an NBTI-stressed NOR
gate on the critical path. Taking advantage of the aforementioned
stack effect, INC can be added to a parent gate that is not on the
critical path. The last example, illustrated in Figure 3, is more
complicated. NBTI stress is removed from the second NAND
gate by inserting an INC node off the critical path such that
the correct value propagates through to the critical gate. In this
scenario, the node control can be added to a gate with sufficient
slack, even if that gate is several gates removed from the critical
path. Note that although the second NAND gate is stressed by
NBTI after INC insertion, the stress does not occur on a critical
path input and therefore does not increase total circuit delay.

III.C. Problem Definition
We formulate the task of NBTI-induced delay reduction via

INC as an optimization problem. The locations of internal node
controls are selected in order to minimize the total combinational
delay due to both INC overhead and static NBTI after some
specified period of time. The input to the problem consists of a
combinational circuit represented as a graph of connected gates.
For each gate, three delays are specified: (i) the basic delay for
an unmodified gate, (ii) the increase in delay if INC is added, and
(iii) the increase in delay after some period of NBTI-stress, e.g.,
10 years. The task is to find the input vector and node control
insertion points that minimize the critical path delay after it has
been subjected to NBTI stress. In other words, the goal is to
minimize the increase in delay between the original circuit and
the INC-modified circuit.

The decision version of this problem, in which the minimiza-
tion objective is replaced with a bound on the delay, is NP-
complete. We have shown this by reducing circuit-SAT to the
INC insertion problem. The full proof is omitted due to space
constraints, but can be found in Bild’s master’s thesis [12].

IV. OPTIMAL SOLUTION

In order to find the optimal solution, we describe the optimal
mixed integer linear program (MILP) formulation.

A combinational circuit is modeled as a directed acyclic graph
G = (V,E). V is a set of primary inputs (I ⊂ V ), gate
outputs (N ⊂ V ), and primary outputs (Q ⊂ V ). E is a
set of directed edges modeling connections between two gates.

The gate outputs N , are further divided into three sets NI , NR,
and ND representing NOT, NOR, and NAND gates. Pv are the
predecessors of v.

The instrinsic delay of a gate is τn∈N . The increase in delay
due to NBTI stress is ρn∈N , and the increase in delay due to the
addition of node control on the gate output is φn∈N .

The following variables are used. σn∈N is a binary variable
which is 1 if INC is added to gate n and 0 otherwise. κn∈N is
a binary variable representing the forced value of node n, if σn

is 1. 0 ≤ ψv∈V ≤ 1 is the value of node v. If σv is 1, then
ψv is κv . Otherwise, it is determined by the inputs to the gate.
For v ∈ I , ψv is explicitly constrained to be binary. αv∈V is the
earliest arrival time at node v.

We optimize the circuit delay by minimizing the maximum
output arrival time:

minimize max
∀q∈Q

αq (1)

The Boolean function of the gates, combined with the node
control, is modeled by a set of constraints that force each output
ψv to the proper value based on σv , κv , and the inputs to node v.
These constraints are equivalent to those specifying the convex
hull of the function, where each input and output represents one
dimension. For example, the following are the constraints for an
inverter. Table I shows the corresponding truth table. NAND and
NOR gates are similarly determined.

∀n ∈ NI : σn + κn − ψn ≤ 1
σn − κn + ψn ≤ 1
−κn + ψn + ψp − 1 ≤ 0
−σn + ψn + ψp − 1 ≤ 0
−ψp + κn − ψn ≤ 0
−ψp − σn − ψn ≤ −1

The earliest arrival times are modeled by constraining a node
v’s arrival time to be later than or equal to all of its inputs’ arrival
times plus any delays associated with the gate. The instrinsic
delay τv of each gate is always included. The internal node
control delay φv is only included if σv is 1. The NBTI delay
ρv is included when, based on the inputs, the gate is stressed.
For NOT and NAND gates, the following constraint enforces this
relationship.

∀n ∈ NI∪ND,∀p ∈ Pn : αn ≥ αp +τn +(1−ψp)ρn +σnφn

As discussed in the previous section, if any input to a NOR
gate is high, we assume that the whole gate is unstressed. The
variable 0 ≤ γn∈NR

≤ 1 is 1 if NOR gate n is stressed and 0
otherwise. Thus, the following constraints implement the arrival
time computation for NOR gates.

∀n ∈ NR,∀p ∈ Pn : 1− γn ≥ ψp

1− γn ≤
∑

r∈Pn

ψr

αn ≥ αp + τn + γnρn + σnφn

Optimization Objective 1 ensures that the arrival times on the
critical path are minimal.

V. OPTIMAL EXPERIMENTAL RESULTS

We evaluated the proposed technique on the ISCAS85 combi-
national benchmarks [3]. The experimental setup and results are
presented below. We also provide some analysis of the variance
in results seen across the benchmark set.



TABLE I
TRUTH TABLE FOR AN
INVERTER WITH INC

ψp σn κn ψn

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

ψp is the input, σn is the INC
selection, κn is the forced value,

and ψn is the output.

TABLE II
PATH DELAYS (NS) FOR ISCAS85 CIRCUITS

Circuit Baseline Optimal IVC Only Optimal IVC + INC % Improvement
LB UB % Gap LB UB % Gap LB Mid UB

c432 1650.6 1697.9 1701.3 0.20 1690.7 1691.8 0.07 12.9 17.0 20.9
c499* 1588.7 1633.0 1641.2 0.50 1626.7 1629.6 0.18 7.8 18.6 27.7
c880 1884.3 1926.7 1927.9 0.06 1911.4 1914.0 0.14 30.1 34.1 37.9
c1355* 1505.1 1546.8 1555.5 0.56 1534.6 1541.5 0.45 12.7 28.4 41.5
c1908 2112.0 2175.0 2176.1 0.05 2171.3 2175.7 0.20 -1.1 3.2 7.5
c2670* 1607.1 1651.3 1657.1 0.35 1627.5 1629.1 0.10 50.3 55.0 59.2
c3540* 2546.4 2615.6 2624.7 0.35 2595.7 2598.4 0.11 24.8 31.3 37.1
c5315 2396.9 2448.2 2450.9 0.11 2435.6 2435.8 0.01 24.2 26.3 28.4

∗ Solver was stopped after 24 hours but before the 0.2% stop gap was reached.

V.A. Experimental Setup
In order to gauge the performance of the method, it was

tested on the ISCAS85 combinational benchmark suite for a 7
gate library {inv, nor2, nor3, nor4, nand2, nand3, nand4}. For
consistency, the gates were sized for a maximum fanout of three.
Timing information for the gates (with and without node con-
trol) was obtained through HSpice simulations using the 65 nm
Berkeley Predictive Technology Model [10], [9]. The timings for
these self-developed gates, without node control, were calibrated
to similar gates in a TSMC 65 nm library to ensure that the
timings were representative of real-world libraries [13]. Static
NBTI delay was assumed to be about 10% of the initial gate delay
after 10 years of stress [2]. The benchmarks were mapped to the
library using Synopsis Design Compiler.

The MILP was solved using the open-source software SYM-
PHONY [14] for three different cases.

1) In order to obtain a baseline optimal circuit delay without
internal node control or NBTI degradation, the solver was
first run with the node control variables forced to 0 and the
NBTI delays set to 0 ns.

2) The solver was then run with the actual NBTI delays to
determine the delay using only input vector control.

3) Finally, the solver was run using internal node control.
The resulting problem instances are rather large for an MILP
solver. Therefore, the solver was set to stop solving and report
the results when the upper and lower bounds for the optimal delay
were within 0.2% of each other.

V.B. Analysis of Results
The circuit delay results for each benchmark are shown in

Table II. Even with the 0.2% stop gap for the solver, it did not
finish for several of the benchmarks after several days. Thus,
for the reported results, we manually terminated execution when
the solver had been running for more than 24 hours. For all
circuits we report both the lower and upper bounds as well as
the percentage difference between them. The improvement is
reported as the percent reduction in NBTI-induced delay between
the IVC-only and the IVC+INC cases:

%improve = 100× (Dinc −Dbase)− (Divc −Dbase)
Divc −Dbase

We report lower and upper bounds on this improvement as well.
The lower bound is computed using the IVC lower bound and the
IVC+INC upper bound. The upper bound is computed using the
IVC upper bound and the IVC+INC lower bound. We also report
a midpoint improvement which is calculated using the midpoints
of the IVC bounds and the IVC+INC bounds.

The average midpoint improvement is 26.7% with a stan-
dard deviation of 15.1%. The average of the lower bounds is

20.2% and the average of the upper bounds is 32.5%. However,
the improvement depends quite heavily on the benchmark. For
benchmark c2670 over 50% of the degradation is prevented,
while for benchmark c1908 the upper bound shows only single-
digit improvement. The calculated lower bound on improvement
for c1908 is negative. Obviously, the optimal worst case lower
bound is 0%, if no INC placements are added. However, the
best IVC+INC solution found by the solver (an upper bound
on optimal) is worse than the IVC lower bound, leading to the
negative improvement.

We do not discuss the area or power impacts of INC here
because the MILP formulation only optimizes critical path delay,
but not the total number of INC placements. Section VI describes
a near-optimal heuristic that optimizes the delay while attempting
to minimize the number of modified gates. The results in Sec-
tion VII show that near-optimal delays can be achieved with little
impact on area and power consumption.

One potential cause for the high variance of the improvements
among the benchmarks is that, due to the short critical paths of
these circuits, the removal of NBTI from a single gate on the
critical path has a large impact on the percentage improvement. In
the best case, INC will remove NBTI stress from all critical path
gates. Thus, for circuits such as these, with critical path lengths
of 10 to 20 gates, each gate represents 5% to 10% of the total
delay. Therefore, removing NBTI stress from one additional gate
can add 5–10 percentage points to the delay improvement.

More formally, we can model the removal of NBTI stress from
each critical path gate as an independent Bernoulli trial. In reality,
there is some dependence between successive gates. However, we
can safely assume independence because the actual dependence
is limited to a few levels of logic. By the law of large numbers, as
the number of gates on the critical path increases, one can expect
the observed improvements to be closer to an expected or average
improvement.

VI. HEURISTIC SOLUTION

The MILP-based optimal solution method is not practical for
large circuits because this problem is NP-complete. A heuristic
solution that provides good, and ideally near-optimal, solutions
in a reasonable amount of time would therefore be useful. In
this section, we describe a linear-time algorithm for input vector
selection and internal node control placement. Our technique
draws from work on leakage power minimization by Cheng,
Chen, and Wong [15].

VI.A. Overview
Our heuristic (see Algorithm 1) takes advantage of the fact that

the problem can be solved optimally for rooted-tree structures in
linear time using dynamic programming. It first partitions a given



Algorithm 1 INC Placement Heuristic Overview
Require: circuit G
Require: maximum number of iterations, N

1: partition circuit into trees
2: select initial values for dangling inputs
3: for i = 0 to N do
4: for all partitions do
5: choose IVC and INC using dynamic programming
6: end for
7: update dangling input values
8: if solution is the same as previous then
9: break {Check for convergence}

10: end if
11: if oscillation is detected then
12: repartition the circuit
13: end if
14: end for
15: greedily remove INCs which do not affect delay
16: return input vector and INC placements

Tree 0

Tree 1DAG Circuit

Figure 4. A circuit partitioned into rooted trees, with the dangling inputs
shaded.

circuit into rooted trees by removing some connections between
gates (line 1). This partitioning creates dangling inputs at these
gates whose input connections were removed, as illustrated in
Figure 4. Values are assigned to these dangling inputs (line 2) and
the optimal values for the primary inputs and INC placements are
chosen for each partition (lines 4–6). The values for the dangling
inputs are updated based on the new outputs of their parent gates
in the original circuit (line 7) and the solutions for the partitions
are recomputed based on these new dangling input values (line
3). This iteration continues until the solution has converged (lines
8–10) or a pre-set number of iterations has been reached (line 3).
Convergence is identified when the values for the dangling inputs
do not change between two consecutive iterations. To ensure
convergence, when the revisitation of a solution is detected, the
circuit is repartitioned (lines 11–13). Empirical results show that
this repartitioning breaks oscillations and leads to convergent
solutions.

VI.B. Partitioning and Initial Solution

Solution quality is highly dependent on the method used to
partition the circuit and the initial values assigned to the dangling
inputs. Tree-based partitioning has been proposed for several
circuit design problems in the past, including leakage power
minimization and technology mapping [15]. For these problems,
the cost function (e.g., total leakage power, circuit area) is ad-
ditive: the overall cost is essentially the sum of the costs of the
individual partitions. It is thus important to maximize the sizes
of the partitions in order to maximize the effectiveness of the
optimal dynamic programming algorithm. The specific choice of
which connections to remove, though, is not as critical.

For INC placement, the cost function is not additive: the
critical path delay for the entire circuit is not the sum of the
critical path delays of each partition. Thus, in addition to max-
imizing the sizes of the partitions, it is also important to keep
the original critical path in a single partition. Of course, for

Algorithm 2 Dynamic Programming Algorithm
Require: tree-structured circuit partition P
Require: arrival times and node values for dangling inputs {Forward

Pass}
1: for all gates g in a topological ordering of P do
2: for all combinations of inputs i do
3: compute arrival time and output value based on the arrival

times of g’s parent gates
4: compute arrival time and output value if INC is added
5: end for
6: store i with a 0 output and the smallest arrival time
7: store i with a 1 output and the smallest arrival time
8: end for
{Backward Pass}

9: choose primary output value with smallest arrival time
10: for all gates g in a reverse topological ordering of P do
11: select the stored i with the output that matches the child’s

selected i
12: end for
13: return the input values and the INC placements

circuits with reconvergent critical paths, this will not always
be possible. Our partitioning algorithm maintains these critical
paths by using slack information to determine which connections
to remove. In a rooted-tree structured circuit, each gate has a
fanout of 1. Thus, for each gate with a fanout greater than 1,
our partitioning algorithm keeps the connection with the smallest
slack, removing the others. Dangling inputs are inserted at the
broken connections.

As mentioned in the previous paragraph, the choice of the
initial values for the dangling inputs is also important. We choose
these initial values by applying the optimal dynamic program-
ming algorithm to the unmodified directed acyclic circuit. Be-
cause the circuit is not tree-structured, in the backward pass phase
of the algorithm, conflicts will occur. At each gate with a fanout
greater than 1, the child gates may require differing output values
from their shared parent. In these cases, the value required by the
majority of the children is chosen. In the case of a tie, 1 is chosen
because, in general, it will prevent NBTI stress on the child gates.

VI.C. Dynamic Programming

The optimal dynamic programming algorithm is shown in
Algorithm 2. The algorithm takes as input a tree-structured circuit
partition and, for each of the dangling inputs, the arrival time and
node value. For primary inputs, the arrival time is assumed to be 0
and the node value is determined by the algorithm. The algorithm
consists of two phases, the forward pass and the backward pass.
In the forward pass, two pieces of information are computed for
each gate, the input combination and INC state with a 0 output
and the smallest arrival time, and the input combination and INC
state with a 1 output and smallest arrival time. Specifically, the
gates are examined in a topological order (line 1). For each gate,
each possible input combination is examined (line 2). The output
value is computed and, based on the arrival times previously
computed for the parent gates, the arrival time is computed (line
3). The value and arrival time if INC are added is also computed
(line 4). For each output value, 0 and 1, the input combination
and INC state with the smallest arrival time is stored (lines 6–
7). In the backward phase, a specific value (and thus INC state)
is chosen for each of the gates. Specifically, the primary output
value and corresponding input combination with the smallest
arrival time is chosen (line 9). The remaining gates are then
examined in a reverse topological order (line 10). For each
gate, the required output value is specified by the chosen input



TABLE III
HEURISTIC RESULTS FOR ISCAS85 CIRCUITS

Circuit Optimal Delay Heuristic % Worse % Worse Time Total INC Original INC %
LB Mid UB Delay than Mid than UB (s) Gates Gates Trans. Trans. Increase

c432 1690.7 1691.3 1691.8 1700.8 0.56 0.53 1.3 159 11 636 22 3.5
c499 1626.7 1628.1 1629.6 1628.0 -0.01 -0.10 6.7 526 18 1836 36 2.0
c880 1911.4 1912.7 1914.0 1914.0 0.07 0.00 2.7 336 11 1306 22 1.7
c1355 1534.6 1538.1 1541.5 1547.4 0.60 0.38 5.2 480 12 1840 24 1.3
c1908 2171.3 2173.5 2175.7 2175.7 0.10 0.00 3.2 363 8 1322 16 1.2
c2670 1627.5 1628.3 1629.1 1629.1 0.05 0.00 11.9 592 13 2302 26 1.1
c3540 2595.7 2597.0 2598.4 2595.7 -0.05 -0.10 27.0 725 29 2966 58 2.0
c5315 2435.6 2435.7 2435.8 2435.8 0.00 0.00 41.0 1452 12 5650 24 0.4

combination for its child. The corresponding input combination
is selected for the gate (line 11).

VI.D. Runtime
The heuristic requires time linear in the number of gates.

Partitioning is performed with a single topological traversal. The
dynamic programming algorithm requires one traversal for each
phase. Although all the input combinations for each gate must be
examined, this is effectively constant time because the number
of inputs is restricted. Finally, although the overall algorithm
iterates multiple times, empirical results show that it converges
rapidly and the number of iterations can be limited to a small
number (15 in our reported results).

VII. HEURISTIC EXPERIMENTAL RESULTS

We implemented the proposed heuristic in Python and tested
it on the same benchmarks and with the same 7 gate library as
in Section V. Note that the runtime is independent of the number
of cells in the library. All tests were done on a 2.5 GHz AMD
Athlon XP computer with 2 GB of memory. The runtime for each
benchmark is shown in the “Time” column of Table III.

The results are shown in Table III. For each benchmark, the
lower, midpoint, and upper bounds from the optimal solutions
are given. The heuristic solutions are first compared with the
midpoint, because this was used in Section V to compute the
average improvement. In all cases, the heuristic solutions are
quite good, with an average 0.17% degradation from the optimal
midpoint. For benchmarks c499 and c3540, the heuristic solution
is actually better than the optimal midpoints, although obviously
not better than the lower bound. Benchmark c1355 shows the
worst degradation with a 0.60% increase in the critical path delay.

We also compare the heuristic solutions to the optimal upper
bound because it is entirely possible that for many of these
benchmarks, the upper bound actually is optimal. In all cases
except two, the heuristic solutions are at least as good as the
optimal upper bound. Benchmarks c432 and c1355 show the
only degradation, with 0.53% and 0.38% increases in critical path
delay, respectively.

The last five columns of Table III show the impact on circuit
area for the solutions produced by the heuristic. The number of
gates modified with INC and the percent increase in transistor
count needed to implement INC are shown. On average, INC
imposes only a 1.6% area overheard, in contrast with the 8–
12% overheard required for gate sizing [6]. Note that the esti-
mated area increase is based solely on the increase in transistor
count; we did not perform place and route. For designs that are
interconnect-dominated, the area impact may be even smaller.
Benchmark c432 is the worst with a 3.5% increase. The impact
on power consumption will also be small. The average 1.6%
increase in transistor count should translate into a similarly-small
increase in leakage and switching power consumptions.

VIII. CONCLUSION

We have described internal node control, a technique for
minimizing the impact of static NBTI on circuits with standby-
equipped functional units. The optimal placement of INC yields
an average 26.7% improvement in NBTI-induced delay degrada-
tion for the ISCAS85 benchmarks. A linear-time heuristic was
shown to give solutions within 0.17% of optimality on average.
The area and power consumption overheads are negligible, with
a 1.6% increase in transistor count.
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