
Model-Based Synthesis and Optimization of Static

Multi-Rate Image Processing Algorithms

Joachim Keinert∗, Hritam Dutta†, Frank Hannig†, Christian Haubelt† and Jürgen Teich†

∗Fraunhofer IIS, Digital Cinema Department, Erlangen, Germany

Email: ket@iis.fraunhofer.de
†Hardware/Software Co-Design, Department of Computer Science, University of Erlangen-Nuremberg, Germany

Email: {dutta,hannig,haubelt,teich}@cs.fau.de

Abstract—High computational effort in modern image process-
ing applications like medical imaging or high-resolution video
processing often demands for massively parallel special purpose
architectures in form of FPGAs or ASICs. However, their efficient
implementation is still a challenge, as the design complexity
causes exploding development times and costs. This paper
presents a new design flow which permits to specify, analyze, and
synthesize complex image processing algorithms. A novel buffer
requirement analysis allows exploiting possible tradeoffs between
required communication memory and computational logic for
multi-rate applications. The derived schedule and buffer results
are taken into account for resource optimized synthesis of the
required hardware accelerators. Application to a multi-resolution
filter shows that buffer analysis is possible in less than one
second and that scheduling alternatives influence the required
communication memory by up to 24% and the computational
resources by up to 16%.

I. INTRODUCTION

As design complexity is becoming a major barrier for

technical progress because of expensive and error-prone de-

velopment, new design methodologies raising the level of

abstraction are becoming increasingly popular. Simulink [1] or

SystemC based high-level synthesis [2] tools for instance per-

mit to compose complex systems by communicating blocks.

However, these approaches do not allow for system-level

analysis like determination of required communication buffer

sizes, as the blocks can contain arbitrarily complex operations.

Alternative approaches like [3], [4] are restricted to a subset

of sequential languages like C. However, extraction of the

contained parallelism is challenging, especially as analysis on

individual statements can get computationally expensive [5].

In order to address these aspects, this paper presents a novel

design flow for high-level synthesis of complex multi-rate

image processing applications containing up- and downsam-

plers. It extends existing previous work by usage of lattice-

based buffer analysis which considers different scheduling

alternatives for multi-rate systems. As the obtained results

are directly taken into account during hardware synthesis, we

are able to exploit tradeoffs between required communication

memory and computational logic. Furthermore, in contrast to

many other approaches, analysis of the overall system does

not rely on solving Integer Linear Programs (ILPs) in case

of acyclic problems. Instead ILPs are only required for local

analysis like actor synthesis or dependency calculation in

order to assure good scaling properties of our design flow.

Scheduling
Buffer Analysis

Communication Synthesis

FIFO sizes

Graph
Topology

Implementation (Netlist)

RTL Code

Hardware SynthesisModel-Based Design

Allocation+Scheduling
IO Controller

HW1 HW2
HW3

Multidim. dataflow graph

1 2
3

Initiation Interval (II)
Calculation

Latency

par (0<=x< X, 0<=y < Y){
 g[x,y,0,0] = in[x,y,0,0]
 if (inner image);
 g[x,y,0,0] = in[x,y,0,1]
 if (upper border);
 ...
 out[x,y,0,0]=
SUM[0<=j<=2](g[x,y,0,j]*c[j]);}

Fig. 1. Proposed design flow

Application to a multi-resolution filter used in medical imaging

[6] shows the benefits of our approach.

Fig. 1 illustrates the major steps of the proposed design

flow. The application is modeled by help of a hierarchical

multi-dimensional data flow graph. This not only helps to

handle the system complexity, but also naturally represents the

application parallelism. From this model the minimum execu-

tion periodicity, also called initiation interval, is calculated for

each actor. The determined values are used during synthesis

in order to exploit resource sharing while meeting throughput

requirements. In order to allow for high clock frequencies,

a pipelined RTL implementation is generated. Its latency is

taken into account during graph scheduling which is performed

as a prerequisite for buffer analysis. The latter one enables

quick determination of the required communication memory

by usage of lattice representations. In the final step, the overall

system is assembled by instantiation of the generated hardware

accelerators interconnected by FIFOs having the calculated

size.

The remainder of the paper is as follows: Section II intro-

duces the challenges of multi-rate image processing systems

and discusses further related work. Sections III and IV describe

978-3-9810801-5-5/DATE09 © 2009 EDAA

image src decompose img. snkreconstructfilter

decompose filter reconstruct

decompose filter reconstruct

filter

- +

121 2

3

4

5

6 7

8 9

10 11

Fig. 2. Block diagram of multi-resolution filter

how application modeling allows for efficient buffer analysis.

Hardware synthesis is discussed in Section V, followed by

presentation of the obtained results in Section VI.

II. PROBLEM FORMULATION AND RELATED WORK

In order to show the benefits of our design methodology

we have chosen a multi-rate image processing algorithm in

form of a multi-resolution filter as it requires complex filters

interconnected by a non-trivial communication topology. This

not only leads to huge calculation efforts attaining ≈ 44 giga-

operations per second for 2048 × 2048 images at 30fps,

but also makes determination of the required buffer sizes

challenging.

Fig. 2 shows the block-diagram of a 4-stage multi-resolution

filter. On each level, the input image is decomposed into a

difference image and a downsampled version. After filtering

with a bilateral filter [7], the reconstruct block recombines

the corresponding images. However, due to the successive de-

composition and filtering operations, the downsampled image

arrives much later at the input of the reconstruct block than the

image of bigger size. The latter one has hence to be delayed

on the edge marked by an asterisk leading to huge memory

requirements.

Unfortunately determination of the required buffer sizes

is pretty time consuming even for an experienced designer,

because the occurring pixel latency is not only influenced

by the bilateral filter, but also by the occurring up- and

downsampling. Even worse, as shown later on in Section IV-C,

these operations allow deployment of different implementation

alternatives for the filters influencing both the chip size of

the hardware accelerators and the required communication

memories. This however makes not only buffer analysis very

hard, but also hardware synthesis, as different alternatives of

the accelerators have to be provided.

Consequently, in order to make implementation less error

prone and more efficient, several new design methodologies

have been proposed. Data flow models of computation al-

low for efficient determination of system throughput [8] and

required buffer sizes [9], [10]. However, these approaches

restrict to one-dimensional streams of data whereas image

processing applications communicate multi-dimensional image

arrays. In particular for buffer analysis this information can be

advantageously exploited [11], [12], [13], [14]. However, none

of these approaches considers synthesis of hardware accelera-

tors and the special properties of multi-rate systems. Ref. [15]

explicitly addresses multi-rate systems, but restricts to one-

dimensional down- and upsamplers and does not consider

buffer size determination.

The most similar work to our approach has been proposed

in [16]. However, in contrast to this paper they do not consider

multi-rate systems. Furthermore, their approach requires ILPs

whose size increases with the number of processes contained

in the system. As their solution have exponential complexity,

we deploy a heuristic which only requires local and thus small

ILP programs.

III. APPLICATION MODELING

Similar to the block diagram shown in Fig. 2, our design

flow depicted in Fig. 1 represents the application as a hi-

erarchical multi-dimensional data flow graph G = (V,E)
[17]. Its vertices v ∈ V represent the actors incorporating the

system functionality while the edges e ∈ E model inter-module

communication. The separation of these two aspects is very

beneficial for the design of complex systems, as the vertices

can be synthesized independently of each other. Furthermore,

system analysis is simplified significantly because it is possible

to use an abstract view provided by the communication se-

mantics of the data flow model instead of considering internal

details of the vertices.

a) Communication Semantics: Each edge e ∈ E of the

multi-dimensional data flow graph represents the transport of

multi-dimensional arrays of size ~u ∈ Nn from the edge source

to its sink, n ∈ N being the number of image dimensions.

These arrays however are not produced and consumed as a

whole. Instead each source invocation generates a so called

token which consists of ~p ∈ Nn pixels. The so produced array

is sampled by the sink with possibly overlapping windows

whose size is given by ~c ∈ Nn. The distance between two

consecutive windows is defined by
−→
∆c ∈ Nn.

Fig. 3 illustrates the communication parameters per edge

assuming a vertical downsampler. For each invocation, the

source generates a single data element (~p = (1, 1)T). The

resulting image is sampled by the downsampler with a sliding

window of size ~c = (1, 3)T . It moves by one pixel in

horizontal direction, but by two pixels in vertical direction

(
−→
∆c = (1, 2)T) in order to achieve the downsampling. As in

realistic applications the sliding window can transcend the im-

age extensions, the pixel array can be virtually extended with a

border as illustrated in Fig. 3 by the gray shading. This border

is not produced by the source, but the actual pixel values are

determined by the deployed border processing algorithm like

symmetric mirroring or constant value extension.

b) System Functionality: Each vertex of the graph rep-

resents a process, also called actor, whose functionality is

described by a nested loop program. The kernel of the loop

nest contains the computations which read from the input

ports, processes the data, and provides the results on the

output ports. Each execution of the kernel corresponds to one

position of the sliding window and output token described

above. Hence, it can only be executed when enough input

data and free space for the output data are available.

In order to select the currently processed pixels, the input

and output ports are accessed with a vector having 2 · n

src

1,
1

=ec
vr

3
,

2
=

e
c

v
r

2
,

2
=

∆
e

c
v

r

1

, 1

=

∆
ec
v

r

1,
1

=ep
vv

1,
2

=ep
vv

1
e
r

2
e
r

vt

Fig. 3. Communication parameters

dimensions when processing n-dimensional images. The first

n dimensions indicate the current window position, while

the next n parameters correspond to the pixel coordinates

relative to the window borders. Taking for instance Fig. 1,

in[0,0,0,1] addresses the first pixel in the second row of

the upper left sliding window as illustrated by the cross in

Fig. 3.

IV. BUFFER ANALYSIS

Based on the introduced communication semantics, this

section presents a method for fast determination of the required

buffer sizes. As these not only depend on the size of the sliding

windows, but also on the time instance an actor can execute,

buffer analysis requires determination of an actor schedule.

This paper proposes a lattice-based approach which exploits

the regularity of the problem for fast analysis. Its major idea is

to embed all actors into a common invocation grid such that

their relative execution time is determined. This allows for

efficient dependency analysis and thus determination of the

required buffer sizes. Note that the final hardware does not

directly implement the determined actor schedule. Instead, a

self-timed schedule is deployed in which the actor invocations

are controlled by the availability of input data and free

output space. The property of monotonic execution for data

flow graphs [9] guarantees that no deadlock occurs and that

the throughput attains at least the value determined during

analysis.

The following subsections detail the individual steps for

buffer analysis consisting in (i) lattice embedding including

grid scaling and (ii) buffer size calculation. Subsection IV-C

takes special care about the possible actor schedule alternatives

in multi-rate systems.

A. Lattice Embedding

Starting from the multi-dimensional data flow graph, it is

possible to derive for each actor the number of invocations

in each dimension. Taking for instance the example given in

Fig. 3, we can see that the source actor executes 5 × 4 times

whereas the sink performs only 5×2 invocations. Each of these

invocations can be represented as a point in an n-dimensional

grid, also known as bounded lattice.

Fig. 4(a) illustrates the principles assuming the example

given in Fig. 3. The gray shaded semicircles belong to the

1
e
r

2
e
r

1
e
r

2
e
r

(a) original (b) shifted sink

2
,e

s sn
k

r
r

0
d
r

Fig. 4. Lattice representation of Fig. 3

source invocations while the sink invocations are represented

by white color. The arrows illustrate data dependencies and

will be discussed later on. Note that the extended image border

is not represented in this picture, as it is not produced by the

source (see Section III). All invocations are executed in row

major order from left to right and from top to bottom.

The embedded lattices thus define the relative execution

order required for correct buffer analysis. However, in order

to obtain reasonable actor schedules, the lattices belonging to

the different actors have to be scaled correctly. In case of the

example shown in Fig. 3, the downsampler actor performs

only half the invocations in vertical direction compared to

the source. This is because the sliding window moves by two

pixels while the source generates only one pixel per invocation.

Consequently, the sink invocation points have to be scaled by

factor two in comparison to the source grid as already done

in Fig. 4(a). In general the corresponding scaling factor in

dimension i can be calculated from the window movement
−→
∆c and the produced token size ~p:

〈−−→ssnk,−→ei 〉 =
〈
−→
∆c,−→ei 〉

〈−→p ,−→ei 〉
∈ Q

After grid scaling, the dependency vectors can be deter-

mined as shown in Fig. 4(a). They define which source

invocations a given sink invocation depends on. The rectangle

corresponds to the lower left sliding window depicted in Fig. 3

and belongs to the bold sink invocation in Fig. 4(a). The

dependency vectors point to the source invocations which

generate the corresponding window pixels. Note that due to

border processing the first row of sink invocations only require

two input dependencies as border pixels are not produced by

the source.

Based on those dependency vectors it is possible to con-

struct valid schedules by taking care that no pixel is read

before being produced. Unfortunately, this is not automatically

the case. In Fig. 4(a) for instance, the bold sink execution

depends on the striped source invocation although the latter

one is executed in the future due to the row-major execution

order of the lattice. Mathematically this corresponds to anti-

lexicographically positive dependency vectors
−→
d ∈ Qn for

which the following holds: ∃i : 〈
−→
d ,−→ei 〉 > 0 ∧ ∀j > i :

〈
−→
d ,−→ej 〉 ≥ 0.

Thus, in order to construct valid schedules, the sink has

to be delayed such that no dependency vector is anti-

lexicographically positive. Fig. 4(b) exemplarily depicts the

result of this operation when applied to Subfigure 4(a).

Additional shifting is possible in order to take the actor

latency derived by the hardware synthesis (see Section V)

into account: Assuming for instance that the result of the

source actor is only available after the time equivalent of two

invocations, we would additionally shift the sink lattice by

two in direction −→e1 in order to avoid reading of illegal data.1

Furthermore, this operation allows parallel execution of the

coinciding sink and source lattice points.

If a sink actor disposes of several input edges, then it

must be embedded such into the common lattice that none of

the corresponding dependency vectors is anti-lexicographically

positive. For a graph containing cycles however this is any-

thing but easy, as actors have to be placed into the lattice while

not all of their predecessors are already embedded. Typically

this is solved by complex heuristics like [18] or even solution

of ILPs [16].

In image processing, however, often multi-dimensional data

flow graphs without feedback loops occur which can be

analyzed much more efficiently. In this case, we establish

a topological order such that each actor is visited after its

sources. The numbers in Fig. 2 illustrate such a sequence

when ignoring that some actors are hierarchical. Based on this

topological order, the lattice grids of all actors can be easily

scaled and shifted as described above, because all predecessors

are processed before their successors.2

B. Buffer Size Calculation

Once the relative execution order of all actors is determined,

we can derive for each edge its associated buffer size. The

latter one is determined by the dependency vectors as they in-

dicate for each sink lattice point the earliest source invocation

whose data are still required. Thus, all pixels produced since

this source execution up to the considered sink invocation have

to be stored in the edge buffer. Hence, intuitively the required

memory size is determined by that dependency vector which

spans the most lattice points. Mathematically this corresponds

to the anti-lexicographically minimal dependency vector
−−→
dmin.

Note that 〈
−−→
dmin,−→en〉 ≤ 0. The buffer size calculates as

m =





n∑

i=1



d∗i ·
i−1∏

j=1

〈−−→rsrc,
−→ej 〉



 + 1



 ·
n∏

i=1

〈−→p ,−→ei 〉

︸ ︷︷ ︸

(2)

(1)

d∗i =
〈−

−−→
dmin,−→ei 〉

〈−−→ssrc,
−→ei 〉

∈ N

n represents the number of image dimensions. −−→ssrc stands

for the grid scaling factor of the source actor derived in

Section IV-A. The division is necessary in order to take into

1In order to increase efficiency of the generated schedule, our prototyping
tool wraps around sink invocations which transcend the original grid. How-
ever, due to space restrictions further details are omitted.

2Graphs with multiple sources require an extended effort in order to obtain
small buffer sizes. Although implemented in our prototyping tool, further
details are omitted due to space restrictions.

1
e
r

2
e
r

1
e
r

2
e
r

(a) original (b) shifted sink

0
d
r

Fig. 5. Situation of Fig. 4 after load smoothing

account that due to grid scaling not all lattice points correspond

to an actor invocation. Hence, they do not contribute to the

required buffer size. −−→rsrc represents the number of actor

invocations in each dimension. The value of product (2)

corresponds to the number of data elements which a produced

token consists of.

Example 1: In Fig. 4(b) we find
−−→
dmin = (0,−2)T and

−−→ssrc = (1, 1)T . Together with n = 2, −→p = (1, 1)T

and −−→rsrc = (5, 4)T we obtain for the buffer size m =(

0 · 1 + −(−2)
1 · 5 + 1

)

= 11. This corresponds to two lines

and one pixel which is indeed the minimum buffer size for a

1 × 3 downsampler.

Note that for d∗i /∈ N a more complex formula has to be

deployed. Due to space restrictions, this however is out of

scope for this paper.

C. Multi-Rate Analysis

After having introduced the principles of lattice-based buffer

analysis, this section will describe how these techniques can be

extended in order to incorporate load smoothing for efficient

synthesis.

For motivation, we consider again Fig. 4. There we can

clearly see that the workload of the downsampler is not

equally distributed over time, but shows bursty behavior: The

phases where each source invocation also induces execution

of the downsampler are followed by idle lines. For complex

actors like the bilateral filter however, this bursty behavior

leads to increased hardware resources due to a resulting small

initiation interval (II). It corresponds to the time between two

actor invocations and amounts to one for the actor schedule

illustrated in Fig. 4. However, the same system throughput

would be possible when deploying an initiation interval of two,

thus increasing the potential for hardware resource sharing.

This effect can be taken into account during buffer analysis

by redistributing the sink lattice points. Fig. 5 exemplarily

illustrates the results for the downsampler actor. Its workload

is now equally balanced, because it is executed only each

second source invocation (II = 2). However, this has to be paid

by less regular dependency vectors which can be calculated

by help of an ILP. As it only depends on the parameters

of a single edge, the complexity scales well with increasing

size of the multi-dimensional data flow graph. For Fig. 5, its

solution leads to
−→
d0 = (1,−3)T . By help of (1) we can thus

derive that the required communication memory has increased

to m = 3 · 5 − 1 · 1 + 1 = 15 resulting in an increase of

approx. 36%. Hence, the capability to analyze and synthesize

both actor schedule alternatives permits to exploit a trade-off

between communication memory and hardware requirements

for the accelerator. To the best of our knowledge, this has not

been done before.

V. HARDWARE SYNTHESIS

After presentation of the buffer analysis and its ability to

incorporate load smoothing techniques, this section discusses

the synthesis step of our design flow. It is steered by the

determined initiation intervals in order to generate resource

optimized hardware accelerators with the requisite throughput.

This is done by applying a sequence of high-level transforma-

tions to the actor loop description (see Fig. 1), scheduling, and

RTL generation as discussed in the next subsections.

A. Operation Scheduling

As the bilateral filter [7] is the most computational intensive

algorithm in Fig. 2, it is chosen for explaining the principles

of our high-level synthesis. The algorithm processes the image

with a sliding window of size 3 × 3 using filter coefficients

which depend on the image content. This leads to a large

number of arithmetic operations (44 MUL, 16 ADD, 9 SUB,

9 EXP, 1 DIV, . . .) for each output pixel. The boundary pixels

need symmetric extension for acquiring the requisite inputs.

The corresponding calculation rules and the occurring data

dependencies are described in form of an actor loop descrip-

tion as exemplified in the upper right corner of Fig. 1. It

contains the iteration bounds representing the computation

domain. The border processing is defined by conditional

statements. From this loop description, the high-level synthesis

must derive the required hardware resources and schedule

the operations on them. For this purpose, the loop actor

description is analyzed in order to build the dependence

graph containing all variables and operations. Compact rep-

resentation is possible by usage of a polytope model which

allows for efficient parallelization and hardware generation.

Based on this dependence graph the operation scheduling and

allocation is performed via mixed integer linear programming.

It considers resource constraints, data dependencies, and the

required initiation interval (II) determined by model-based

analysis as described in Section IV-A.

The obtained operation schedule gives the allocated re-

sources as well as the execution times of the loop iterations

and the contained operations. Furthermore, it allows calcu-

lating the iteration latency, also called actor latency, which

corresponds to the number of clock cycles required to output

the first result pixel after all necessary input data are available.

The corresponding value is taken into account during buffer

analysis as described in Section IV-A.

B. Architecture Synthesis

The allocation and scheduling information determined in

the previous section is used to automatically derive the RTL

implementation of the accelerator which is then retargeted

S
U

B

MUL

ADD

ADD

sum_pixel

sum_weights

pixel_center

pixel_input

Internal Buffer

input

pixels

Pipelined

Divider output

pixel

M
U

L

M
U

L

MUL

Adaptive Mask

fixed mask

MUL

Global Counter

Global Controller

Input/Output

FIFO Controller

enable

fifo

empty

External

(Input) FIFO

rd enable

output pixels

fifo full

External

(Output) FIFO

write enable

Bilateral Filter IP

E
X

P

Computation Kernel

C
o
n
tr

o
lle

r

Internal Buffer

Fig. 6. Bilateral Filter Architecture (II=1)

to VHDL. Fig. 6 exemplarily shows the generated hardware

architecture of the bilateral filter. It consists of three parts,

namely (i) the computation kernel, (ii) the internal delay

buffers, and (iii) the controller.

The computation kernel performs the arithmetic operations

and deploys heavy pipelining such that several pixels can be

processed in parallel. It instantiates parameterizable compo-

nents like adders or dividers which are available in an IP

library. Similarly to handcrafted designs, the internal delay

buffers temporarily store the input pixels such that each of

them is read only once in order to avoid I/O bottlenecks.

Their size can be calculated from the static operation schedule

and the underlying dependencies. The controller is respon-

sible for keeping track of the image pixels being processed

and orchestrates the correct computations and I/O. For this

purpose, the global counter generates the coordinates of the

currently processed pixel from which the global controller

derives several control signals. They select which conditional

statement to execute such that correct border processing and

I/O access is possible.

Communication with the predecessor and successor actors

is performed on pixel granularity by help of external FIFOs.

Together with the internal delay buffers they build the required

memory buffer whose size is determined by the analysis

described in Section IV. The pixel coordinates provided by the

global counter allow generation of the correct read and write

enable signals for the input and output FIFOs. In case the

input FIFO is empty or the output FIFO is full the accelerator

is stopped by the I/O controller.

VI. RESULTS

In order to illustrate the benefits of the proposed design

flow, this section presents its results when mapping the multi-

resolution filter depicted in Fig. 2 to Xilinx FPGAs.

Table I shows the results of our buffer analysis for 512×512
images and varying number of filter instances by presenting

the required memory size for all communication buffers.

Two different schedule variants leading to bursty (Fig. 4) or

smoothed (Fig. 5) actor load are distinguished. Depending on

TABLE I
BUFFER ANALYSIS RESULTS (OVERALL BUFFER)

#stages bursty smoothed increase

2 22628 25712 13.6 %
4 94092 114096 21.2 %
5 182720 225744 23.5 %

TABLE II
FPGA RESOURCE CONSUMPTION

Flip Flops Look-up Tables Multipliers

2
bursty 38229 37153 292

smoothed 34770 35167 278
increase -9.0% -5.3% -4.8%

4
bursty 67351 71780 454

smoothed 60144 67877 392
increase -10.7% -5.4% -13.7%

5
bursty 80494 88748 522

smoohted 73335 86691 438
increase -8.9% -2.3% -16.1%

the number of filter blocks we measured up to 24% increased

buffer requirements when switching to the smoothed schedule

strategy.

On the other hand this offers a possibility to trade memory

like Xilinx Block RAMs against the required computational

hardware resources. The latter ones are shown in Table II by

adding up the synthesis results for all filter, decompose, and

reconstruct blocks when using 32 bit fixed point arithmetic.

Evaluation has shown that 90% of the required hardware re-

sources are assigned to the bilateral filters because they contain

complex arithmetic operations like divisions and exponential

functions. As this leads to important possibilities for resource

sharing, the smoothed schedule reduces the FPGA resources

between 2.3% and 16.1% while achieving the same system

throughput. This is, because the bursty schedule requires

initiation intervals of 1, 2, 4, . . . for the filters in the different

levels whereas for the smoothed implementation 1, 4, 16, . . . is

sufficient. Consequently more resources can be shared because

the number of pixels which have to be processed per clock

cycle decreases. The latency measured for the bilateral filter

amounts 159 cycles for an initiation interval of one due to

the presence of dividers and exponential units. It stays almost

constant for the other initiation intervals.

Table III finally shows the run-time analysis of the proposed

buffer analysis and compares it against some related work.

It demonstrates its capacity for fast analysis even when the

number of graph actors and edges is large. This is due to

the renouncement of integer linear programming for the de-

termination of the overall schedule together with model-based

analysis. [15] and [5] in contrast use fine-grained analysis

together with solution of ILPs making it computationally more

expensive. IMEM [16] achieves similar results, but performs

ILP scheduling which scales less well. Ref. [11] also reports

similar analysis speeds, but direct comparison is difficult as

they do not deploy model-based design. Furthermore, both

publications do not consider the particularities of multi-rate

systems.

TABLE III
RUNTIME FOR BUFFER ANALYSIS

Actors # Edges Time CPU

MMAlpha [15] 6 8 0.4s 1.7GHz
MMAlpha [15] 24 22 59.8s 1.7GHz

CRP [5] 7 10 73s 1.4GHz
IMEM [16] 12 16 <1s ?

ours 79 92 0.8s 3GHz

VII. CONCLUSIONS

This paper introduced a novel design flow which eases

design of complex image processing systems by (i) increasing

the level of abstraction, (ii) high-level synthesis of parallel

hardware accelerators and (iii) automatic determination of the

required buffer sizes. The underlying analysis permits to trade

required buffer sizes against logic resources while attaining

similar analysis speed than the best known algorithms. Future

work entails extension of our design flow for MPSoC systems

which also include dynamic algorithms.

REFERENCES

[1] The MathWorks, “Simulink,” www.mathworks.com/.
[2] Forte Design Systems, “Cynthesizer,” www.forteds.com. [Online].

Available: http://www.forteds.com/products/cynthesizer.asp
[3] Synfora, “Pico Express,” www.synfora.com.
[4] H. Ziegler and M. Hall, “Evaluating heuristics in automatically mapping

multi-loop applications to FPGAs,” in FPGA, 2005, pp. 184–195.
[5] P. Feautrier, “Scalable and structured scheduling,” Int. J. Parallel Pro-

gram., vol. 34, pp. 459–487, 2006.
[6] F. Zhang, Y. M. Yoo, L. M. Koh, and Y. Kim, “Nonlinear diffusion in

laplacian pyramid domain for ultrasonic speckle reduction,” IEEE Trans.

Med. Imaging, vol. 26, pp. 200–211, 2007.
[7] H. Dutta, F. Hannig, J. Teich, B. Heigl, and H. Hornegger, “A Design

Methodology for Hardware Acceleration of Adaptive Filter Algorithms
in Image Processing,” in Proceedings of IEEE 17th International Con-

ference on Application-specific Systems, Architectures, and Processors

(ASAP), Sep. 2006, pp. 331–337.
[8] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer re-

quirements and throughput constraints for synchronous dataflow graphs,”
in DAC, 2006, pp. 899–904.

[9] M. Wiggers, M. Bekooij, and G. Smit, “Efficient computation of buffer
capacities for cyclostatic dataflow graphs,” University of Twente, Tech.
Rep., Nov. 2006.

[10] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of
embedded software from synchronous dataflow specifications,” J. of

VLSI Signal Processing Systems, vol. 21, pp. 151–166, 1999.
[11] Q. Hu, A. Vandecappelle, P. G. Kjeldsberg, F. Catthoor, and M. Palkovic,

“Fast memory footprint estimation based on maximal dependency vector
calculation,” in DATE, 2007, pp. 379–384.

[12] F. Balasa, P. G. Kjeldsberg, M. Palkovic, A. Vandecappelle, and
F. Catthoor, “Loop transformation methodologies for array-oriented
memory management,” in ASAP, 2006, pp. 205–212.

[13] A. Darte, R. Schreiber, and G. Villard, “Lattice-based memory alloca-
tion,” IEEE Trans. on Comp., vol. 54, pp. 1242–1257, 2005.

[14] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and automated
multiprocessor system design, programming, and implementation,” IEEE

Trans. on CAD of Integrated Circuits and Systems, vol. 27, pp. 542–555,
2008.

[15] F. Charot, M. Nyamsi, P. Quinton, and C. Wagner, “Modeling and
scheduling parallel data flow systems using structured systems of
recurrence equations,” in ASAP, 2004, pp. 6–16.

[16] N. Lawal, M. O’Nils, and B. Thörnberg, “C++ based system synthesis
of real-time video processing systems targeting FPGA implementation,”
in IPDPS, 2007, pp. 1–7.

[17] J. Keinert, C. Haubelt, and J. Teich, “Modeling and analysis of win-
dowed synchronous algorithms,” ICASSP, vol. III, pp. 892–895, 2006.

[18] S. Verdoolaege, M. Bruynooghe, G. Janssens, and F. Catthoor, “Multi-
dimensional incremental loop fusion for data locality,” ASAP, pp. 17–27,
2003.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

