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Abstract—For a number of years, dataflow concepts have
provided designers of digital signal processing systems with
environments capable of expressing high-level software archi-
tectures as well as low-level, performance-oriented kernels. But
analysis of system-level trade-offs has been inhibited by the
diversity of models and the dynamic nature of modern dataflow
applications. To facilitate design space exploration for software
implementations of heterogeneous dataflow applications, devel-
opers need tools capable of deeply analyzing and optimizing
the application. To this end, we present a new scheduling
approach that leverages a recently proposed general model
of dynamic dataflow called core functional dataflow (CFDF).
CFDF supports high-level application descriptions with multiple
models of dataflow by structuring actors with sets of modes
that represent fixed behaviors. In this work we show that by
decomposing a dynamic dataflow graph as directed by its modes,
we can derive a set of static dataflow graphs that interact
dynamically. This enables designers to readily experiment with
existing dataflow model specific scheduling techniques to all or
some parts of the application while applying custom schedulers
to others. We demonstrate this generalized dataflow scheduling
method on dynamic mixed-model applications and show that
run-time and buffer sizes significantly improve compared to a
baseline dynamic dataflow scheduler and simulator.

I. INTRODUCTION

For a number of years, dataflow models have proven invalu-

able for application areas such as digital signal processing

(DSP). Their graph-based formalisms allow natural and yet

semantically rigorous application descriptions. Such a seman-

tic foundation enables a variety of analysis tools, including

determining buffer bounds and efficient scheduling [1]. As

a result, dataflow languages are increasingly popular. Their

diversity, portability, and intuitive appeal have extended them

to many application areas with a variety of targets. (e.g., see

[2] [3]). As system complexity and the diversity of components

in digital signal processing platforms increases, designers are

expressing more types of behavior in dataflow languages,

even combining different dataflow models to describe a single

application.

While the semantic range of DSP-oriented dataflow models

has expanded to cover dynamic interactions, dealing with

model heterogeneity of dataflow is still cumbersome. This

is especially problematic in scheduling, which has a major

impact on key implementation metrics for embedded software

systems, including memory size, performance, and power

consumption (e.g., see [4]). Since scheduling techniques are

model specific, designers are often forced to structure their

applications for existing schedulers.

Ideally, designers would need to only focus on describing

functionality without implementation considerations. An auto-

mated tool would extract those parts of the application avail-

able for optimization, considering multiple dataflow models.

Specific optimization techniques could be applied to relevant

parts of the application, making this step independent from

the functional description of the application. A designer could

try different schedulers with different compilers or software

synthesis techniques, giving the designer a fast iterative design

framework for improving the resulting software implementa-

tion.

To move towards this design flow, we propose a new

scheduling approach that may be applied to dynamic het-

erogeneous applications. We leverage an existing design flow

based on the dataflow interchange format (DIF) package [5],

which was recently extended to include capabilities for the

functional simulation of heterogeneous applications. These

capabilities for functional simulation in DIF are provided

through a framework called functional DIF [6]. Functional DIF

supports dynamic dataflow applications with a semantic model

called core function dataflow (CFDF), which enables dynamic

behavior through structured application descriptions, making

it an ideal platform to demonstrate a generalized scheduling

approach.

In this paper, we present an algorithm that takes dynamic

applications described in the functional DIF formalism and

decomposes the application into a set of static dataflow graphs.

Existing scheduling techniques can then be applied to these

static dataflow graphs. These statically-scheduled subgraphs

dynamically interact to produce the original application be-

havior. Designers using this approach are able to arrive at

quality implementations of dynamic, heterogeneous dataflow-

based systems quickly.

This paper has the following sections: Section 2 discusses

related background, while Section 3 surveys related research

to place this work in context. Section 4 describes our approach

to generalized scheduling, and Section 5 demonstrates it on a

representative set of applications.
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Fig. 1. Boolean dataflow switch described in CFDF.

II. BACKGROUND

A. Dataflow Modeling

Modeling DSP applications through coarse-grain dataflow

graphs is widespread in the DSP design community, and a

variety of dataflow models have been developed for dataflow-

based design. A growing set of DSP design tools support such

dataflow semantics [7] [8]. Designers are expected to be able

to find a match between their application and one of the well-

studied models, including cyclo-static dataflow (CSDF) [9],

synchronous dataflow (SDF) [1], single-rate dataflow, homo-

geneous synchronous dataflow (HSDF), or a more complicated

model such as boolean dataflow (BDF) [10].

Common to each of these modeling paradigms is the rep-

resentation of computational behavior as a dataflow graph. A

dataflow graph G is an ordered pair (V, E) , where V is a

set of vertices (or nodes), and E is a set of directed edges.

A directed edge e = (v1, v2) ∈ E is an ordered pair of a

source vertex v1 ∈ V and a sink vertex v2 ∈ V . Nodes or

actors represent computation while edges represents a FIFO

communication links between them.

The semantic foundation for functional DIF is core func-

tional dataflow (CFDF) [6], which is capable of expressing

deterministic, dynamic dataflow applications. In this formal-

ism, each actor a ∈ V has a set of modes, Ma, in which

it can execute. Each mode, when executed, consumes and

produces a fixed number of tokens. Each actor a ∈ V has

an enabling function which indicates if a given mode may be

executed given the present state of the application. The invok-

ing function for an actor a takes an enabled mode and executes

the associated computation, consuming and producing tokens.

The invoking function of an actor can change the mode of

execution of the actor, so the invoking function also produces

the next mode that is valid.

For example, consider the Switch actor and the four SDF

actors in Figure 1. SDF actors can be described with only one

mode, but the Switch is described with 3 modes as shown in

Table I. In the mode Control one control token is read, while

in True or False the data token is routed to the true or false

TABLE I
THE BEHAVIOR OF MODES IN ACTOR SWITCH

mode
consumes produces

Control Data True False

Control 1 0 0 0

True 0 1 1 0

False 0 1 0 1

output, respectively. While each mode has fixed production

and consumption behavior, the dynamic nature of Switch is

captured by transitions between the modes shown in Figure 1

as mode transition edges.

B. Dataflow Interchange Format

To describe the dataflow applications for this wide range of

dataflow models, application developers can use the dataflow

interchange format (DIF) [5], an approach founded in dataflow

semantics and tailored for DSP system design. The DIF

language (TDL) provides an integrated set of syntactic and

semantic features that can fully capture essential modeling

information of DSP applications without over-specification.

From a dataflow point of view, TDL is designed to describe

mixed-grain graph topologies and hierarchies as well as to

specify dataflow-related and actor-specific information. The

dataflow semantic specification is based on dataflow modeling

theory and independent of any design tool.

To utilize the DIF language, the DIF package (TDP) has

been built. Along with the ability to transform DIF descriptions

into a manipulable internal representation, TDP contains graph

utilities, optimization engines, algorithms that may prove use-

ful properties of the application, and a C synthesis framework

[11]. These facilities make the DIF package an effective

environment for modeling dataflow applications, providing in-

teroperability with other design environments, and developing

new tools. An overview of the DIF design flow using TDP is

shown in Figure 2.

Beyond these features, TDP is also suitable as a design

environment for implementing dataflow-based application rep-

resentations. Describing an application graph is done by listing

nodes and edges, and then annotating dataflow specific infor-

mation. TDP also has an infrastructure for porting applications

from other dataflow tools to DIF. The ability to simulate

functional designs in TDP has been recently added, but like

other dynamic dataflow design tools, TDP has been missing a

scheduling approach for dynamic applications.

III. RELATED WORK

A number of development environments utilize dataflow

models to aid in the capture and optimization of mixed-model

applications. Ptolemy II encompasses a diversity of dataflow-

oriented and other kinds of models of computation [12]. De-

velopers employ a “director” that controls the communication

and execution schedule of an associated application graph. To

describe an application with multiple models of computation,

developers can insert a “composite actor” that represents a

subgraph operating with a different model of computation
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Fig. 2. DIF based design flow

(and therefore its own director). In such hierarchical represen-

tations, directors manage the actors only at their associated

design levels, and directors of composite actors only invoke

their actors when higher level directors execute the composite

actors.

A domain-specific example of targeting actor descriptions is

CAL [13]. CAL has a variety of language constructs including

actions, guards, variables, and expressions. CAL is rooted

in a semantic formalism, but for the sake of portability and

ease of use, it uses a minimal semantic core. The SysteMoC

approach employs SystemC to capture actors as composed of

input ports, output ports, functionality, and an execution FSM,

which determines the communication behavior of the actor

[14]. SysteMoC also facilitates the mapping of application

graphs to architecture graphs.

For complete functionality in Simulink [8], actors are de-

scribed in the form of “S-functions.” By describing them in a

specific format, such actors can be used in continuous, discrete

time, and hybrid systems. In the Stream Based Function (SBF)

model of computation [15], actors are represented by a set

of functions, a controller, state, and transition function. Each

function is sequentially enabled by the controller, and uses

blocking reads to consume a single token from its inputs.

Once a function is done, the transition function defines the

next function in the set to be enabled.

Our generalized scheduling framework differs from these

related efforts in dataflow-based design in that our framework

uses top-down analysis of (explicitly-specified) application

structure combined with integration of static dataflow sub-

behaviors (actor modes) across groups of dataflow actors. This

approach to analysis and integration systematically extends the

reach of static scheduling techniques so that they can be used

across significant portions of dynamic dataflow designs. The

approach is driven by the modeling architecture of functional

DIF, which provides the explicit decomposition of actors into

static dataflow sub-behaviors, and efficiently exposes to the

scheduler the design spaces associated with separating sub-

behaviors of individual actors, and grouping subsets of sub-

behaviors across different actors.

A limitation of our approach, compared to related tech-

niques, is that special attention is required by the designer

to explicitly specify the dataflow properties associated with

individual modes, and attention is also needed during testing

to validate that the declared and observed behaviors match.

An interesting direction for future work is the integration of

our proposed scheduling methods with more formal reasoning

about actor sub-behaviors, such as those being developed in

conjunction with languages and models such as CAL and

SysteMoc.

IV. GENERALIZED DATAFLOW SCHEDULING

A. Generalized Schedule Trees

There are many types of schedulers and optimization rou-

tines that can the be applied to specific dataflow models (e.g.,

[16]), but scheduling commonalities exists across models.

We leverage generalized schedule trees (GSTs) as a unify-

ing schedule representation [17]. The GST representation in

conjunction with CFDF semantics is well-suited for mixed-

model scheduling because it can be used to represent dataflow

graph schedules irrespective of the underlying dataflow model

or scheduling strategy being used. GSTs are ordered trees with

leaf nodes representing the actors of an associated dataflow

graph. An internal node of the GST represents the loop count

of a schedule loop (an iteration construct to be applied when

executing the schedule) that is rooted at that internal node. The

ordering of leaf nodes determines the order in which actors of

the application graph are traversed.

Functional simulation of an application can be done by

traversing an associated GST iteratively and checking for

enabled actors (and then executing them, if appropriate) that

correspond to the schedule tree leaf nodes. Note that if

actors are not enabled, the GST traversal simply skips their

invocation. Subsequent schedule rounds will revisit actors that

were unable to execute in the current round. Having the ability

to use a schedule tree in which we can safely “skip” (bypass

invocation of) actors is well suited to dynamic applications,

which is what we focus on in this work.

B. Dynamic Dataflow Graph Decomposition

To decompose a dynamic dataflow graph into a set of static

interacting graphs, we utilize the fact that every mode has

fixed production and consumption behavior. To construct a

static graph based on these modes, we find the combination

of modes in which one mode from each actor in the subgraph

is producing or consuming on an edge that has a consuming

or producing mode at the other end of the edge. Since

every actor can potentially provide many modes, there are

an exponential number of combinations to be considered. To

limit the space explored, we perform a reachability analysis to

consider only those modes that are connected to each other.

To this end, we extend depth first search (DFS) graph traversal

with the concept of mode traversal to arrive at the set of static

subgraphs as shown in Figure 3.

The key addition to the traditional DFS is that the next nodes

to be added to the working stack S are found by following a

mode from the current node. Another stack of nodes T keeps



DecomposeCFDFGraph(CFDFGraph G)

Returns set of static graphs

Graphs Gs← {}
for all source mode ∈ G do

{use stacks for both the DFS and mode coverage }
Stack S ← {}, Stack T ← {}
mark every mode and node as not visited

SDFGraph sdfG← empty graph

mark all other modes in node that contains source mode

T .push(node that contains the source mode)

while T has elements do

S.push(T .pop())

while S has elements do

Actor A← S.pop()

if A not visited then

mark A as visited

for all mode M ∈ A do

if M not visited and matches the connecting

edge then

S.push(actors on inputs and outputs of M )

sdfG.add(A)

sdfG.annInEdges(M .cons)

sdfG.annOutEdges(M .prod)

break forall

end if

mark M as visited

end for

if no matching mode found in A then

{graph sdfG is invalid}
break while

end if

T .push(A)

end if

end while

{when the stack is empty, one static graph is complete}
if sdfG is a valid and Gs.doesNotContain(sdfG) then

Gs.add(sdfG)

end if

{in every case, unwind graph}
while T has elements do

if T.peek().allModesVisited() then

Actor B ← T .pop()

B.resetNodeVisitedFlag()

B.resetAllModeVisitedFlags()

else

T .peek().resetNodeVisitedFlag()

break while

end if

end while

reset S using active edges from nodes in T

end while

end for

Return Gs

Fig. 3. Algorithm for dynamic graph decomposition.
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Fig. 4. Application decomposition example

track of what order the nodes have been visited, so that the

graph visited state may be unwound. When a static subgraph

has been completed or an invalid graph has been found in

the course of DFS, nodes are popped off of T until a node is

found that has another mode to be considered (i.e. the potential

of another unique static subgraph). Each of the popped nodes

have their mode and node visited flags cleared, thus unwinding

the graph state by making them available for the mode at

the top of T . Therefore multiple graphs maybe constructed

from the same source mode. For this paper, we only consider

directed acyclic graphs, so DFS is started at the source modes

in the application (i.e., those that do not need input tokens to

execute). Note that mode transition edges are not considered as

edges to be traversed in DFS, effectively separating the graph

at mode boundaries.

For example, consider the decomposition that results from

Figure 1 as shown in Figure 4. Two source modes were found

in A and B. The DFS from the mode of A ended immediately

in the control mode of Switch, but the DFS from B found two

matching modes in Switch (namely true and false). One state is

taken, and a complete static graph is formed by following one

of the branches. After the completed graph is saved from B, the

graph visited state unwinds back to Switch and DFS continues

using the remaining mode from Switch mode. Thus, the single

dynamic BDF application graph has been transformed into

three static subgraphs. Note that for a complete iteration of the

original application to finish, more than one of the subgraphs

must be run to completion. Indeed, because mode transitions

may be arbitrary, we have no a priori way in general of exactly

balancing the execution of these three graphs, and we must

rely on the dynamic GSTs as described in Section IV-A for

proper simulation.

All graphs in the set of graphs that are created by this

algorithm must be subgraphs of the original graph. Edges of

this subgraph are annotated with the corresponding production

and consumption numbers described by the modes used in a

given run of DFS. Since the decomposition algorithm is based

on DFS, the complexity of this algorithm is founded on it

as well, but mode combinations make it exponential in the

number of modes. Fortunately, we have found in practice that

this approach is efficient, since modes tend to be connected

together in a structured way.
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Fig. 5. Dual sample rate conversion application graph

V. RESULTS

To demonstrate this approach, we chose representative

mixed-model applications to experiment with: a dynamic data

distribution of audio streams to be sample-rate-converted, a

polyphase decimated DFTfilter bank, and an application with

multiple polynomial evaluation accelerators.

Figure 5 shows a pictorial representation of the sample rate

conversion application based on concepts found in [18] and

[11]. Two audio channels are to be converted on two different

subsystems. The input streams are interleaved, such as how

multiple audio channels might come over a single digital

input. With an arbitrary interleaving, the DISTRIBUTOR actor

distributes them to the appropriate multirate datapath. In this

case, a series of FIR filters is dedicated to sample rate

conversion and the DISTRIBUTOR two modes that service

arbitrary interleaving of the data.

We also implemented an M channel uniform discrete

Fourier transform (DFT) filter bank. We constructed a dec-

imated uniform DFT filter bank using a mixed-model con-

sisting of CSDF and SDF actors. In addition, to show the

applicability of our approach to heterogeneous applications,

we used one with multiple polynomial evaluation accelerators

(PEAs), which utilizes both CSDF, SDF, and BDF elements

[19]. Polynomial functions may change when senders transmit

data to receivers, so the application employs Switch and Select

to dynamically change between the two datapaths. Polynomial

evaluation is a commonly-used primitive in various domains

of signal processing, such as wireless communications and

TABLE II
SIMULATION TIMES AND MAXIMUM BUFFER SIZES FOR MIXED-MODEL

APPLICATIONS

Average Max Obser-
Appli- Schedule Simulation ved buffer
cation Strategy Time (ms) size (tokens)

Sample Canonical 9,148 9,394
Rate Flat 1,425 2,408
Conv APGAN 1,462 2,278

PolyPhase
Canonical 910 17

Flat 1,017 24
APGAN 1,117 24

Multi-PEA
Canonical 2,163 11,198

Flat 586 57
APGAN 548 57

cryptography.

We applied our generalized scheduling approach to each

of these applications and compared it to a naive round-robin

scheduler called the canonical scheduler, in which every actor

appears once in the schedule with a loop count of one.

We compared this to the static subgraphs generated by our

approach, which were scheduled with both a flat scheduler

based on the repetition vectors of the SDF clusters and an

APGAN-based scheduler [16]. The resulting schedule trees

were combined into a single tree by profiling the number

successful executions, to balance the execution rates.

As an example, Figure 6 shows the APGAN-generated

schedule derived from our design flow on the sample rate

conversion application. Two unique schedule trees resulted

from the two subgraphs from the original application, which

were were evenly balanced based on profiling results. While

at any given time the simulator might be traversing the

wrong side of the schedule tree during execution, the guarded

execution of checking the enabling function before invoking

ensures the application produced correct results.

Results for these different styles of implementation with

different schedules are summarized by Table II. We simulated

thousands of tokens for each application on a 1.7GHz Pentium

with 1GB of memory. In two out of the three cases, utilizing

the generalized scheduling technique produced a significant

improvement in simulation time and buffer size needed. How-

ever, while the PolyPhase application has multiple static sub-

graphs, these subgraphs are not multirate, so the scheduler pro-

vides little benefit. Instead the lightweight canonical schedule

better services this application. The diversity in results show

the utility of being able to apply the generalized scheduling

approach presented in this work.

VI. CONCLUSION

In this work, we presented a new approach to scheduling

dynamic dataflow applications. It leverages a new model of

dataflow that structures dynamic actors as a set of modes with

fixed behavior. We presented an algorithm that decomposes

dynamic dataflow graphs into a set of dynamically interacting

static dataflow graphs. We demonstrated this on mixed-model

applications leveragin existing static schedulers, which gave a

positive indication of the utility of this approach for software
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Fig. 6. The APGAN schedule of the sample rate conversion application

implementations of such dynamic dataflow applications. An

immediate direction of future work is to improve the sophisti-

cation of the simulator. With a more intelligent way of dynam-

ically switching between the resulting static schedule trees, we

should achieve better runtimes and smaller maximum buffer

sizes. Beyond that we would like to compare versus other

dynamic scheduling approaches and to try more complex, real

world applications, which we believe will further show the

utility of this approach.
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