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Abstract—The synchronous model of computation together
with a suitable execution platform facilitates system-level timing
predictability. This paper introduces an algebraic framework for
precisely capturing worst case reaction time (WCRT) characteris-
tics for Esterel-style reactive processors with hardware-supported
multithreading. This framework provides a formal grounding
for the WCRT problem, and allows to improve upon earlier
heuristics by accurately and modularly characterizing timing
interfaces.

I. INTRODUCTION

Reconciling performance and predictability in embedded

systems is a challenge that spans all layers of hard- and

software development. However, as observed by Edwards and

Lee [1], these abstractions typically limit themselves to en-

capsulate and guarantee functionality, not timing. Hence, even

though there is a significant body of work that addresses timing

predictability at different abstraction layers, considering for

example schedulability, worst case execution times (WCET),

or circuit timing, it is very difficult to transfer results across

layers. However, end users are not interested in results that

apply only to one layer—they care about timing guarantees

for complete systems.

The choice of the model of computation—and its model of

time—has a profound influence on how easy or difficult it is

to provide timing guarantees across abstraction layers. From

the predictability point of view, a very appealing candidate in

the embedded systems domain is the synchronous model of

computation [2]. Furthermore, languages built on that model

generally have a well-established formal semantics that allows

reasoning about functional as well as timing properties from

the ground up.

In this paper, we first give an overview on how the syn-

chronous model together with a suitable execution platform

can provide system-level timing predictability (Section III),

and we illustrate this with the case of multi-threaded execution

of synchronous programs written in Esterel-like languages [3].

The main contribution of this paper (Section IV) then is the

introduction of an algebraic framework for performing Worst

Case Reaction Time (WCRT) analyses. These analyses aim

to give conservative yet close estimates on the time from

capturing inputs to determining outputs, in embedded real-

time systems developed with the synchronous model. First

experimental results are reported in Section V.

Due to space considerations, this presentation is fairly

condensed; a more complete development can be found in a

separate report [4].

II. RELATED WORK

Most interface models in synchronous programming are

restricted to causality issues, i. e., dependency analysis without

quantitative time. On the other hand, there exist numerous

approaches to classical WCET analysis [5] but only few on

WCRT analysis [6], [7].

Logothetis et al. [8] have employed model checking to per-

form a precise timing analysis for the synchronous language

Quartz, which is similar to Esterel. However, their problem

is WCET since they are interested in computing the number

of logical ticks required to perform a certain transformational

computation, such as a primality test.

The modules of André et al. [9] do not permit instantaneous

interaction. Such a model is not suitable for WCRT. Hainque et

al. [10] use a topological abstraction of the underlying circuit

graphs (or syntactic structure of Boolean equations) to derive a

fairly rigid component dependency model with the effect that

multi-threaded execution cannot be modeled compositionally.

The interface model also does not cover data dependencies

and thus cannot deal with dynamic schedules and does not

support WCRT, either.

The causality interfaces of Lee et al. [11] are more flexible.

These are functions associating with every pair of input and

output ports an element of a dependency domain D, which

expresses if and how an output depends on some input.

Causality analysis is then performed by multiplication on the

global system matrix. Using an appropriate dioid structure D,

one can perform the analyses of Hainque et. al. [10] as well as

restricted forms of WCRT. However, Lee’s interfaces cannot

express the difference between an output depending on the

joint presence of several values as opposed to depending on

each input individually. Thus they do not support full AND-

and OR-type synchronization dependencies and hence cannot

represent neither multi-threading nor multi-processing. The

work reported here can be seen as an extension of [11] to

address these deficiencies.

Similar restrictions apply to recent work [12], [13] combin-

ing network calculus [14], [15] with real-time interfaces. These
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works are concerned with the compositional modeling of regu-

lar execution patterns rather than stabilization processes inside

each execution cycle of a synchronous program. Existing

interface theories [11], [12], [13], which aim at the verification

of resource constraints for real-time scheduling, handle timing

properties such as task execution latency, arrival rates, resource

utilization, throughput, accumulated cost of context switches,

and so on. However, the dependency on data and control flow

is largely abstracted. For instance, since the task sequences

of Henzinger and Matic [13] are independent of each other,

their interfaces do not model concurrent forking and joining of

threads. The causality expressible there is even more restricted

than that by Lee et al. [11] in that it permits only one-to-one

associations of inputs with outputs. The interfaces of Wandeler

and Thiele [12] for modular performance analysis in real-time

calculus are like those of Henzinger and Matic [13] but without

sequential composition of tasks and thus do not model control

flow as we do here.

In so far as WCRT analysis aims to obtain exact bounds

on the duration of stabilization processes with synchronous

feedback, it is related to the timing analysis of combinational

circuits (see, e.g., [16], [17], [18], [19]) which is known to be

NP-complete. Although WCRT analysis for single or multi-

threaded synchronous processing can mostly be performed in

max-plus as opposed to min-max-plus algebra, the inherent

data dependency still makes it computationally intractable

without sophisticated heuristics. The work presented here

fits into a general and expressive interface theory [20] for

stabilization processes which has been developed to provide a

semantical foundation for such heuristics. It supports modu-

larization and hierarchical abstraction and systematizes earlier

work on combinational timing analysis.

III. SYNCHRONICITY AND TIMING PREDICTABILITY

The synchronous model of computation divides physical

time into a sequence of discrete ticks, or instants. The abstrac-

tion is that at each tick, outputs are synchronous with the in-

puts. In other words, computations take place instantaneously,

interspersed with durations of inactivity between ticks. Syn-

chronous languages generally do not permit unbounded com-

putations within a tick. For example, the language Esterel

provides a loop construct [3], however, instantaneous loops

are forbidden; i. e., each loop iteration must include at least

one tick-delimiting instruction, and the compiler must be able

to verify this. This simplifies the problem of determining the

maximal number of instructions per tick, which leads to the

worst case reaction time (WCRT). The situation is quite differ-

ent for imperative languages such as Java or C, which permit

unbounded loops and unbounded recursion, and thus only lan-

guage subsets (e. g., with statically bounded loop iterations) are

amenable to WCET analyses. Another helpful characteristic

of (strict) synchrony is that the statuses of signals, which are

basic communication means in synchronous programs, evolve

monotonically. There can be no oscillations between signal

presence and absence, thus guaranteeing convergence after a

finite number of computations. This contrasts, for example,

with Harel’s original Statecharts dialect [21], which assumes

a weaker form of synchrony in which computations are also as-

sumed to not consume any time, but signal statuses are allowed

to oscillate and computations within a tick are unbounded.

Finally, the synchronous paradigm also supports concurrent

and preemptive control flow, with a deterministic semantics

regarding both functionality and timing characteristics. This

again contrasts with classical imperative languages, which

either do not support non-sequential control flow at all (e. g., C

relegates this to the OS level, subject to run-time scheduling

decisions), or support it only in a rather haphazard fashion

(e. g., Java threads [22]).

Synchronous programs may be compiled into hardware

or software. The traditional software design flow is to first

compile the synchronous program into a classical imperative

language, such as C, and to run the resulting program on

a standard micro processor [23]. This approach preserves

the nice semantical properties of synchronous programs at

a functional level. The timing properties, however, are only

partially preserved with this approach. Computations are still

finite per tick, and the synthesized C-code has no unbounded

loops, for example. However, depending on the synthesis

approach used, the control flow may still be rather complex

and difficult to analyze (e. g., computed gotos). Furthermore,

standard processors typically employ various techniques that

improve average execution time, at the expense of worst case

execution time and predictability [24].

An alternative, more recent approach for executing syn-

chronous programs is to run them on processors that directly

support reactive control flow. This reactive processing ap-

proach builds on instruction set architectures (ISAs) that can

express concurrency and preemption and preserve functional

determinism [25]. Note that this approach does typically not

strive for high-performance processing that maximizes average

execution times and uses hardware acceleration techniques

such as caching and pipelining [1]. Instead, the focus here is

on predictable architectures with fixed instruction cycle times.

There have been various proposals on how to support con-

currency in reactive processing, including sequentialization,

parallel execution, and, most recently, multi-threading [26],

[27], [28]. The latter one appears to be the most effective

at this point, and significantly outperforms classical software-

based execution strategies while using minimal resources.

In the multi-threaded reactive processing approach, timing

determinism is assured by a combination of static schedul-

ing, hardware-supported context switching, and fixed machine

instruction execution times. This has been exploited in a

compiler which translates Esterel programs into multi-threaded

assembler code for the Kiel Esterel Processor (KEP), and as

part of the compilation process analyzes the WCRT in terms

of instruction cycles [7].

The WCRT analysis technique developed by Boldt et al. [7]

already provide fairly promising results with a reported accu-

racy typically in the 30–40% range. However, this heuristics

still makes conservative and simplifying assumptions and is

not grounded in a formal timing model. To illustrate this,



// Esterel Program G:
present I then
emit R end;

present I else
emit S;
emit T end;

emit U;

(a)

// Assembler Fragment G
L04: G0: PRESENT I,G1
L05: EMIT R
L06: G1: PRESENT I,G3
L07: GOTO G2
L08: G3: EMIT S
L09: EMIT T
L10: G2: EMIT U

(b)

wait

v1 present I

v3 present I

v4 goto

v5 emit S

G1

v6 emit T

G2

v2 emit R

G

I

L11

G3

active

G0

v7 emit U

(c)

Fig. 1. Example program G: Esterel source (a), KEP assembler (b), control
flow graph (c).

consider the small program G in Fig. 1(a) and the corre-

sponding assembler (b). Considering that each of the basic

instructions present, emit, goto takes 1 instruction cycle (ic)
regardless how it is entered or exited, the longest-path heuristic

implemented in the KEP compiler [7] will compute a WCRT

of 6 ics. This, however, is overly conservative, as the longest

path makes contradictory assumptions (signal I present and

absent at the same time). Furthermore, the existing WCRT

algorithms are neither compositional nor scalable in terms of

precision. They are global analyses on the complete and fully-

expanded control-flow graph of a monolithic program and run

at the ground level of atomic program statements rather than

hierarchical sub-systems.

In this paper we propose a theory of WCRT interfaces for

synchronous programming and show how it can be employed

to obtain type-directed and modular WCRT analyses which (1)

give precise statements about exactness and coverage of timing

values, supporting a variety of timing abstractions, (2) are

dedicated to express the imperative synchronous programming

languages, and (3) are scalable across component hierarchies

and the software-hardware abstraction boundary. As an inter-

face theory our WCRT algebra operates on matrices of delay

values characterizing whole sub-systems rather than individual

nodes like existing graph-theoretic WCRT algorithms do.

Like the propositional stabilization theory presented in [20]

it combines max-plus algebra (N,max,+, 0,−∞) [14] with
an intuitionistic refinement of Boolean logic to reason about

implicit control-flow.

IV. THE WCRT ALGEBRA

An execution σ is a finite and monotonically increasing

sequence of sets of control signals A ∈ S, which can be data-

signals or control-flow labels. We also use activation controls

active(v) ∈ S for nodes v in the hierarchical decomposition

of the program. An execution σ models the micro-sequence

of instruction cycles (ic) which are executed by a given thread

within a single synchronous instant. Each step σ(i) 7→ σ(i+1)

records the change of controls between two successive acti-

vations of the thread. The empty execution σ = ∅ is included
as a degenerated case. The difference ∆i = σ(i + 1) \ σ(i)
may be an arbitrary subset of S. It will encompass more than

one signal when the thread forks into concurrent sub-threads

or if other concurrent threads get executed between the two

activations i and i + 1 of the thread represented by σ.

A. Scheduling Types

A set of executions S defines a schedule. The possible

schedules of a program are specified by a scheduling type

φ ::= A | true | false | φ ∧ φ | ¬φ | φ ⊃ φ |

φ ∨ φ | φ ⊕ φ | φ ‖ φ | ◦φ.

We write S |= φ (σ |= φ) to say that schedule S (execution

σ) validates the type φ. As a type, each signal A ∈ S

represents the statement that “A is active (is present, traversed,

scheduled) in all executions of the schedule.” The constant

true is validated by all schedules and false only by the empty

execution or the schedule which contains the empty execution

only. The type operators ¬, ⊃ are (intuitionistic) negation and
implication. The operators ∨ and ⊕ are two forms of logical
disjunction to encode internal and external non-determinism

and ∧, ‖ are two forms of logical conjunction related to true
concurrency (multi-processing) and interleaving concurrency

(multi-threading), respectively. Finally, ◦ is the operator to
express execution delays. This type syntax permits definitions

provided in the following.

A basic control type is an expression ζ built from literals

A, ¬A (A ∈ S) and constants true, false using conjunction

∧ and disjunction ⊕. Basic control types satisfy S |= ζ

iff σ |= ζ for all σ ∈ S, i. e., they express properties of

individual executions. On executions, ζ behaves like a standard

Boolean combination of the atomic statements A (“A present

throughout”) and ¬A (“A absent throughout”). For instance,

σ |= A ⊕ ¬A says that signal A is constant in σ, i. e., it is

either present from the start, or never becomes active. Since

signals which are not active initially may occur in the course

of an execution, the type A ⊕ ¬A is not a tautology, i. e.,

A ⊕ ¬A 6∼= true. This intuitionistic nature of negation is

crucial to handle the semantics of synchronous languages in a

compositional and fully abstract way [29]. For special signals

like the activation of nodes active(T ) it is safe to assume
active(T ) ⊕ ¬active(T ) ∼= true since these state signals are
decided at the start of every instant. Every basic control has an

equivalent disjunctive normal form ζ =
⊕

i

∧

j lij over literals

lij . Basic controls ζ are used to specify scheduling interaction

at the input and output side of a program node. When used

as an output we need to express that ζ occurs delayed after

some maximal number of ics, d say. We write σ |= d : ζ to

abbreviate of σ′ |= ζ where σ′ = σ(d)σ(d + 1) · · ·σ(|σ| − 1)
is the suffix of σ starting after d ics. Note that if the delay

is larger than the length of the execution, d > |σ| − 1, then
this suffix is empty σ′ = ∅ and thus σ |= d : ζ for all ζ,

even ζ = false is validated. This is natural since by stepping
beyond the final event within a thread’s instant an inconsistent



state is reached. This may be exploited for optimizations in

WCRT analysis [4]. The specification wait =df 1 : false is
of particular interest. It says that an execution has at most

one event, i.e., σ |= wait iff |σ| ≤ 1. If non-empty such an
execution has reached the end of the scheduling instant and

is pausing in a final event σ(0) ⊆ S. The reaction time of an

execution σ may then be bounded by d either as σ |= d : wait
or σ |= d + 1 : false depending on whether we are interested
in the number of steps or the number of events in σ.

An output control is an expression ψ = ◦ζ1⊕◦ζ2⊕· · ·⊕◦ζn

with basic controls ζi. S |= ψ specifies that schedule S reaches

at least one of the controls ζj after a bounded number of in-

struction cycles (ics). The selection ⊕ of which ζj is activated

is an internal choice which is dynamically resolved during

each execution. Each operator ◦ stands for a possibly different
delay depending on which output ζj is taken. In contrast to

this, an output control such as ψ = ◦(ζ1 ⊕ ζ2 ⊕ · · ·⊕ ζn) only
specifies a single bound for all exits ζj .

An input control is an expression φ = ζ1 ∨ ζ2 ∨ · · · ∨ ζm

where the disjunction ∨ refers to the external non-determinism
resolved by the environment which determines how a program

node is started. There is also no delay involved which is why

we do not need operator ◦. Formally, S |= φ if there is at least

one ζi such that S |= ζi.

Notice the change of quantifiers between input and output

controls regarding executions: S |= ζ1 ∨ ζ2 requires ∃i ∈
{1, 2}.∀σ ∈ S. σ |= ζi which is an external choice, whereas

S |= ζ1 ⊕ ζ2 is ∀σ ∈ S.∃i ∈ {1, 2}. σ |= ζi which expresses

an internal choice.

B. Interface Types

We build interface types for program fragments as impli-

cations φ ⊃ ψ between input controls φ =
∨m

i=1
ζi and

output controls ψ =
⊕n

j=1
◦ξj . The input controls φ capture

all the possible ways in which the program fragment can be

started within an instant and the output controls sum up the

ways in which it can be exited during the instant. Intuitively,

S |= φ ⊃ ψ says that whenever any set of executions

from schedule S enters the program through one of the input

controls ζi, then within some bounded number dij of ics all

these executions are guaranteed to exit through one of the

output controls ξj . The bounds dij may depend on the choice

of input and output control, in general. To capture the bounds,

we associate with each interface type a delay matrix of shape

n×m. Our type specifications then become logical expressions

of the form D : φ ⊃ ψ consisting of a timing matrix D

together with an interface type φ ⊃ ψ. The former describes

the quantitative aspect of scheduling, the latter captures the

qualitative part of the interface. Formally, φ ⊃ ψ is a type

specification for schedules S and the instrumented D : φ ⊃ ψ

specifies a set of executions.

Fig. 2 depicts a program fragment T abstracted into a

reactive box with input and output controls. The paths inside T

seen in Fig. 2 illustrate the four ways in which a reactive node

T may participate in the execution of a logical tick: Threads

may (a) pass straight through the node entering at some input

ζ

T

ξ

active

wait

b
d

c

a

Fig. 2. The four types of thread paths: through path (a), sink path (b), source
path (c), internal path (d).

control ζ and exiting at output control ξ; (b) enter through ζ

but pausing inside, waiting there for the next instant; (c) start

the tick inside the node and eventually (instantaneously) leave

through some exit control ξ, or (d) start inside the node and

never leave it during the current instant. These paths or rather

sections of a path are called through paths, sink paths, source

paths and internal paths, respectively.

The interface type for such a node T (considering only

one input control ζ and one output control ξ) separates these

different paths and associated WCRT values:

T =

(

dthr dsrc
dsnk dint

)

: (ζ ∨ active) ⊃ (◦ξ ⊕ ◦wait)

If one of the paths does not exist its associated delay is set to

−∞. A node T can be classified according to the paths that

are executable in it. We define the (not necessarily disjoint)

sets of through nodes, Nthr = {T | dthr ≥ 0}, source nodes,
Nsrc = {T | dsrc ≥ 0}, sink nodes, Nsnk = {T | dsnk ≥ 0}, and
internal nodes, Nint = {T | dint ≥ 0}. A delay node is a node
with at least one non-instantaneous path (Ndel = Nsrc∪Nsnk∪
Nint). A strong delay node is a delay node without any through

path (Nsdel = Ndel \Nthr). A transient node is a through node

that contains only through paths, i. e., dsrc = dsnk = dint = −∞
(Ntrans = Nthr \ Ndel). Each cyclic dependency loop in the

program must be broken by at least one strong delay node,

which corresponds to the rule mentioned earlier that forbids

instantaneous loops.

In general, the interface type of a program T will mention

a number of controls ζ1, ζ2, . . . ζm and ξ1, ξ2, . . . , ξn on the

input and output side for which the type would be

T = D : (ζ1 ∨ ζ2 · · · ∨ ζm) ⊃ (◦ξ1 ⊕ ◦ξ2 ⊕ · · · ⊕ ◦ξn) (1)

with a WCRT matrix D of shape n×m. A composite program

will be made up of a number of program fragments Ti each

with its interface Di : φi ⊃ ψi. The total specification is

the logical conjunction
∧

i Di : φi ⊃ ψi in WCRT type

algebra. The basic controls appearing in φi, ψi describe the

causal dependencies between the nodes Ti. In its general form,

WCRT analysis amounts to a transformation
∧

i

Di : φi ⊃ ψi ¹ D : φ ⊃ ψ (2)

in which the individual timing interfaces Di are combined into

a total delay matrix D for an external interface φ ⊃ ψ such



that D is the smallest (component-wise) matrix of values such

that (2) holds. The external interface φ ⊃ ψ determines the

functional precision with which we are computing the WCRT

of a composite system. For instance, instead of an interface

like (1), which distinguishes m input and n output controls, a

less discriminative type ζ ⊃ ◦ξ with ζ =df

∨

i∈I ζi and ξ =df

◦
⊕

j∈J ξj might consider merely subsets I ⊆ {1, . . . ,m} and
J ⊆ {1, . . . , n} of inputs and outputs bundled into a single
control. Such an interface ζ ⊃ ◦ξ, which specifies only one
delay value is more abstract than (1). Of course, we do not

expect to get an equivalence ∼= but only an inclusion ¹ in (2)
if the calculation of D involves timing abstractions. We can

trade off precision and efficiency of the WCRT analysis within

wide margins by choosing different types φi ⊃ ψi for the

components and φ ⊃ ψ for the composite program in (2).

By logical transformations of interfaces, various optimizations

can be achieved including such as those employed by classic

combinational timing analyses [20].

C. An Example

To illustrate the use of WCRT types consider again Fig. 1.

Each node v1–v7 in the control-flow graph (c) of the associated

Esterel program (a) is compiled into an assembler instruction

(b) which is entered either sequentially through its instruction

number L4–L10 or through an explicit jump to a control flow

label such as G0–G3. For instance, node v3 is accessed both

through its linear instruction number L6 as well as by jump

to its label G1. In contrast, node v4 is only accessed through

its line number L7 while node v5 only by jumping to its label

G3. The present nodes v1 and v3 are tests which branch to

their two successor instructions depending on the status of

signal I . If I is present then v1 moves to instruction v2 which

immediately follows it and if I is absent then v1 passes control

to instruction v3 by jumping to label G1.

An interface which only considers the input G0 and com-
putes the longest path through G is (6) : G0 ⊃ ◦L11.
A full WCRT specification encapsulating program G as a

component would require mention of program labels G1, G3,
G2 which are accessible from outside for jump statements.
Therefore, the interface type of G would be (6, 4, 3, 1) :
(G0∨G1∨G3∨G2) ⊃ ◦L11. This is still not the most exact
description of G since it does not express the dependency

of the WCRT on signal I . In particular, the longest path of

length 6 from G0 to L11 is not executable. To capture this
we consider signal I as just another control input and refine

the WCRT scheduling type of G as follows: (5, 5, 3, 4, 3, 1) :
((G0∧I)∨(G0∧¬I)∨(G1∧I)∨(G1∧¬I)∨G3∨G2) ⊃ ◦L11.

The inclusion of signal I in the interface has now resulted in

the distinction of two different delays 3 and 4 for G1 ⊃ ◦L11
depending on whether I is present or absent during the

reaction. On the other hand, G0 split into controls G0∧ I and

G0∧¬I produces the same delay of 5 ics in both cases, which
is a decrease of WCRT compared to 6 from above. Assuming
that input signal I is causally stable, i. e., I ⊕ ¬I ∼= true, the
two entries of value 5 can be merged into a single value as in
(5, 3, 4, 3, 1) : (G0∨(G1∧I)∨(G1∧¬I)∨G3∨G2) ⊃ ◦L11.

In the same vein, we could further bundle G1∧I and G3 into
a single input control (G1∧I)⊕G3 with delay 3. This finally
gives (5, 3, 4, 1) : (G0∨ ((G1∧I)⊕G3)∨ (G1∧¬I)∨G2) ⊃
◦L11. Still, if we only ever intend to use G as a composite

node from G0 to L11, the typing (5) : G0 ⊃ ◦L11, which
takes care of signal dependency on I , might be sufficient.

All operations on interfaces and WCRT analyses are sup-

ported by semantically sound transformation rules in WCRT

type algebra. The logical manipulation of types often can

be done implicitly and hard-coded into the graph-theoretic

search strategies that make up the cleverness of a particular

WCRT algorithm. Where interface types are not used directly

in the calculations they provide for a highly compositional

fine-analysis which allows us to validate WCRT algorithms in

terms of precise statements about correctness and exactness.

Due to their logical-symbolic nature WCRT interfaces can

be applied in rather general situations which involve data

and higher control-flow constructs as used in synchronous

programming.

V. RESULTS

To evaluate our approach, we prototypically implemented

some of the key ideas. We identify blocks with threads and

compute the through, source, sink and internal WCRT for each

thread independently. All outgoing transitions from a thread

are abstracted into one. The results for some test-cases, taken

from the Estbench test suite [30], can be found in Table I.

Since the approach does not consider traps yet, we had to

replace traps by local signals and weak abortion. This is trivial

for these examples. In general, the transformation can be done

analogously to the hardware synthesis from Esterel [23].

TABLE I
EXPERIMENTAL RESULTS FOR THE REACTION TIME IN INSTRUCTION

CYCLES. Graph AND Interface ARE STATICALLY ESTIMATED WCRT, USING
THE GRAPH BASED APPROACH [7] AND THE INTERFACE APPROACH

PRESENTED IN THIS PAPER, RESPECTIVELY.

WCRT
Module name Graph Interface

abro 11 11

atds 60 34
mca200 1779 1782
runner 20 16

tcint 191 126

watch 11 12

This limited implementation already leads to improvements

over earlier analyses [7] in most of the tested example cases.

Still, the analysis is not as exact as it could be. In two cases

(mca200 and watch) we are slightly worse than the graph

based approach, because the interface approach so far does

not distinguish between immediate and delayed aborts. The

implementation could also be improved, e. g., by unbundling

outgoing thread transitions and other heuristics. The theory

could be further strengthened, e. g., by directly integrating

abortion in the control flow graph.



VI. CONCLUSION AND FUTURE WORK

We introduced an interface algebra for compositional anal-

ysis of WCRT in synchronous multi-threading and illustrated

this with a small, sequential example. The full report [4]

expands on this in several areas, notably on the handling of

delay nodes and concurrency, and on how to trade off precision

against efficiency by interface bundling.

This algebraic approach is very flexible: from considering

all possible data, which gives an exact WCRT for the price of

possible exponential computation time, to abstracting from all

internal behavior, which is very fast but might lead to a large

over-approximation, all levels of exactness can be applied.

Beside the handling of control data, the more systematic

treatment of parallel execution leads to tighter WCRTs. Since

the interfaces are compositional, we should also be able

to get a better performance for the WCRT computation on

large programs. Furthermore, data-dependencies with arbitrary

precision can be easily expressed in the interface algebra, to

rule out impossible executions and get an even tighter WCRT.

The flexibility for modularization and abstraction together

with the tight semantic coupling of numeric and functional

information are the main advantages over previous approaches

on Boolean timing analysis [19].

Encouraged by our experimental results, we want to fully

implement a suite of WCRT algorithms based on the new

interfaces. We would like to extend our interfaces to cover exit-

traps and non-immediate aborts as well. A further step would

be to integrate thread priorities into the interfaces, to reduce

the number of considered paths. At the moment, abortions

are handled by adding transitions to all pause nodes inside

them. It might be more natural to extend the control flow

graphs by hierarchy to directly express the hierarchical nature

of abortions. This should easily be captured by our interfaces.

A central part of future work on the hardware side will consist

in developing a formal operational execution model of KEP

and verifying our WCRT algorithms with respect to this model.
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