
Pipelined Data Parallel Task Mapping/Scheduling
Technique for MPSoC

Hoeseok Yang
School of EECS

Seoul National University
Seoul, Korea

hyang@iris.snu.ac.kr

Soonhoi Ha
School of EECS

Seoul National University
Seoul, Korea

sha@iris.snu.ac.kr

Abstract—In this paper, we propose a multi-task
mapping/scheduling technique for heterogeneous and scalable
MPSoC. To utilize the large number of cores embedded in
MPSoC, the proposed technique considers temporal and data
parallelisms as well as task parallelism. We define a multi-task
mapping/scheduling problem with all these parallelisms and
propose a QEA(quantum-inspired evolutionary algorithm)-based
heuristic. Compared with an ILP (Integer Linear Programming)
approach, experiments with real-life examples show the
feasibility and the efficiency of the proposed technique.

I. INTRODUCTION
Insatiable demand of system performance makes it

inevitable to integrate more and more processing elements in a
single chip, called MPSoC (Multi-Processor System on a Chip),
to meet the performance requirement. Recently systems that
have a lot of cores are about to appear in market and academia
[1][2]. The system with such a high degree of parallelism raises
a challenge: how to extract parallelisms from applications and
exploit them efficiently.

Parallelisms can be categorized into three types: task, data,
and temporal parallelism. Task parallelism is achieved by
executing multiple tasks on different cores concurrently. Data
parallelism is achieved by instantiating multiple instances of a
task and running them with different input data sets
simultaneously. By dividing an iteration of a task execution
into several pipeline stages, we can exploit temporal
parallelism.

We assume that an application task is specified by a task
graph which consists of graph nodes and edges as shown in
Figure 1(a). Each node represents a computation module, also
called a sub-task, while an edge indicates data dependency
between two end nodes. The numbers annotated on an edge
indicate the number of data samples produced and consumed
by two end nodes per each execution. For instance, on edge A-
C each invocation of node A produces 2 data samples while
node C consumes 1 data sample per execution. Thus node C
should be executed twice more frequently than node A in order
not to accumulate data samples on the edge unboundedly. A
token marked on an edge denotes an initial data sample, which
defines a delayed dependency between two end nodes. For
instance, a token on edge E-D makes the n’th execution of
node D dependent on the n-1’th execution of node E.

Since the task graph represents the true data dependency
between sub-tasks, we can exploit task parallelism from the
given specification by scheduling the task graph as shown in
Figure 1(b). The horizontal axis represents the elapsed time to
run the nodes. After node A is executed, both nodes B and C
can be executed, which are scheduled on two different
processors. The schedule shows that we have to pay
communication overhead between processors to deliver data
samples. And, two instances of node C are scheduled. We
assume that the application task has a latency or throughput
constraint that is marked as a dashed vertical line in Figure 1(b).
In this example, the timing constraint cannot be met by
exploiting task parallelism only.

We express data parallelism of a task graph in two ways.
When multiple data sets are fed into a node and the node can
process them in parallel, one invocation of the node can be
partitioned into multiple processors. We call this node a data-
parallel node and represent it as a shaded node like node B in
Figure 1. It is given a priori whether a node is data parallel or
not by the programmer of the node. In this example, node B
can be mapped into 2 processors to process one input sample
on each processor. Exploiting this data parallelism can reduce
the latency as shown in Figure 1(c) but yet violating the time
constraint. There is another way of exploiting data parallelism:
multiple invocations of the same node can be run concurrently
with different input data samples, as node C in the graph. If
node C does not have any internal state that should be
maintained between invocations, two invocations of node C
can be concurrently executable, which is not shown in the
figure.

A
B

E

(a) (b)

A

2
2

DB

1

2 2 2

uP0

uP1

uP2C 1

C0 C12

(c)

A

DB’

uP0

uP1

uP2

C0 C1

B’

(d)

A

D B’

uP0

uP1

uP2

C0 C1

B’

D 1
1

1
1 E

E E

A

D B’

C0 C1

B’

E …

Figure 1. (a) A task graph example, (b) a schedule with task parallelism, (c) a
schedule with both task and data parallelism, and (d) a schedule with all three
types of parallelisms.

This work was supported by BK21 project, System IC 2010 project of
Korean Ministry of Knowledge Economy, and Acceleration Research
sponsored by KOSEF research program (R17-2007-086-01001-0). The ICT at
Seoul National University provided research facilities for this study.

978-3-9810801-5-5/DATE09 © 2009 EDAA

Temporal parallelism can be obtained by pipelining the task
graph. Dividing a task graph into several pipeline stages, the
current iteration of the task can be overlapped with the previous
iteration. For instance, in Figure 1(d) node D and E can be
separated to another pipeline stage. For pipelined execution,
additional buffers to store the output data of the previous stage
should be inserted into edge B-E and C-D. In Figure 1(d),
shaded nodes compose a whole iteration of the task, overlapped
with the other iterations.

In this paper, a multi-task mapping/scheduling problem
which considers three kinds of parallelisms altogether for
heterogeneous MPSoC is defined. There is no previous work
that tackles this problem before to our best knowledge. We
propose a mapping/scheduling technique based on the
Quantum-inspired Evolutionary Algorithm (QEA). Compared
with an Integer Linear Programming (ILP) technique that
produces an optimal solution, the proposed technique shows a
near-optimal result in significantly reduced time.

The rest of this paper is organized as follows. In section II,
we review the related work and the QEA. The
mapping/scheduling problem with three kinds of parallelisms is
defined in section III. Section IV explains the proposed QEA
solution as well as an ILP based solution. The effectiveness of
the proposed technique is demonstrated by experiments in
section V. Then, the conclusion is drawn in section VI.

II. RELATED WORK

A. Task Mapping and Scheduling
A multi-processor mapping/scheduling problem is a well-

known NP complete problem even for homogeneous
processors. Hence many heuristics have been proposed [3]. To
cope with the increasing complexity of the problem, systematic
approaches such as genetic algorithm based heuristics [4][5]
and ILP based solutions [6] have been proposed. Most of them
consider only task parallelism of an application.

Temporal parallelism by pipelining has been considered in
some researches. Pipelined mapping/scheduling based on list-
scheduling was proposed in [7], which maximizes the
throughput of a DSP program for homogeneous multi-
processor architecture. Another list scheduling based heuristic
[8] which separates the component selection and the
mapping/scheduling was proposed to minimize the hardware
area cost under performance constraints. A branch-and-bound
heuristic was proposed in [9] and integer programming based
approaches were used in [10] and [11]. Compared with these
works, we consider more general problems. In most previous
approaches except [9], processors are not shared between
separate pipeline stages, while our approach has no such
limitation: nodes B and D share uP1 in Figure 1(d) for instance.
Moreover, the input task graph may be a multi-rate and cyclic
task graph with delays in the proposed approach.

Data parallelism has not been considered in most of the
previous works. Recently an ILP based mapping/scheduling
technique which considers both data parallelism and task
parallelism was proposed in [12]. The proposed technique is
the first technique, to our best knowledge, that considers three

types of parallelisms altogether targeting general heterogeneous
multiprocessor architectures.

B. Quantumn-insprired Evolutionary Algorithm
Evolutionary Algorithms (EA) operate a population of

solutions for a given problem, selecting the best in each
generation to make a better solution survive to final as in
natural adaptation. Like all other EAs, a QEA also consists of
the representation of individuals, the evaluation function, and
the population dynamics [13]. The only difference is that it
uses quantum bits as probabilistic representation for individuals
instead of binary representation of genes. The probabilistic
representation of quantum bit is described with two values, α
and β, where |α|2 and |β|2 mean the probability that the
corresponding bit becomes 0 or 1 respectively, as shown in the
lower part of Figure 2. This probabilistic representation makes
QEA overcome some difficulties reported in [4] on fitting EA
to mapping/scheduling problem: genetic operators such as
crossover or mutation are severely restricted by
mapping/scheduling constraint.

For the diversity of generated solutions, we can deploy
multiple groups at the same time, each of which has its own
quantum stream. Similarly, numerous individuals can be
generated in the same group. This redundancy results in a
better solution by preventing local optimal solution, even
though too excessive duplication may slow down the proposed
technique. In the figure, the length of individual stream is m,
while the number of groups and generated individuals in a
group are n and p respectively.

b

b1 b2 bn

x11 x12 x1p

q1

… xn1 xn2 xnp

qn

…

…

………...……
m quantum bits

()βα
βα

,
122 =+

Q(t)

P(t)

B(t)

best

1. Generate
populations based
on quantum bits

2. P(t) evaluation

3. Quantum bit
adjustment

4. B(t) evaluation

5. Migrate global solution
on migration-condition………...……

m binary string

Figure 2. Overall QEA Procedure.

Overall procedure of QEA can be summarized as follows:
1) For each group, p individuals are generated based on the
probability that quantum bits of the group implies. Each
generated individual is repaired by some application dependent
rules to make a valid solution. 2) Then, we evaluate the
generated individuals and save the best solution in each group.
3) Based on the best solution of each group, the quantum
stream is adjusted so as to make newly generated individuals
getting close to the best solution in probability: α and β values
are adjusted, which is called “quantum bit rotation”. 4) Among
the best solutions for all groups, the best one is saved for the
highest solution. 5) If the termination condition is met, we stop
the evolution process and output the highest solution. The

termination condition is usually defined by the maximum
number of generations or by the case that all individuals are
converged to the highest solution probabilistically. For the case
that neither of above conditions are met, we go back to step 1
for the next generation.

III. PROBLEM DEFINITION
The target architecture assumed in this paper is a

heterogeneous multi-processor system that consists of multiple
pools of homogeneous processors. The architecture is scalable
so that we can increase the number of pools as well as the
number of processors in each pool. For instance, IBM CELLTM
[1] has 2 processor pools: one pool has only one PowerPC
processor (1 PPE) and the other has eight synergistic
processors (8 SPEs).

For multiple tasks that have different periods, we expand
the task graphs by their hyper-period (least common multiple
of all periods). In addition to hyper-period expansion, the
multi-rate task graph is expanded to equivalent single-rate task
graph in the proposed technique to solve the problem more
efficiently. Each node is repeated up to its execution ratio and
every multi-rate edge is divided into single-rate edges. In
Figure 1(a), node C should be instantiated into 2 nodes in the
expanded graph. Note that multiple initial delay tokens are
scattered to the corresponding single-rate edges. The
conversion into the equivalent single-rate task graph was
presented in [14].

In an expanded graph, many nodes may correspond to the
multiple instances of the same node in the original task graph.
We enforce that they should be mapped to the same processor
to keep any internal state consistent if any. If they are mapped
to different processors, we have to deliver internal states
between processors while keeping the dependency order. So we
avoid this situation.

Another restriction we enforce is that data parallel
execution should be performed on the same pool of processors,
which is quite a reasonable assumption in real situations. If the
target architecture has a DSP array for example, a data parallel
task is likely mapped solely to the DSP array for data parallel
execution.

To evaluate the mapping and scheduling result, we assume
that the cost of each processor, the buffer cost of each edge,
and the worst case execution time of all nodes on each
processor are given. If a data parallel node is mapped to
multiple processors, the execution time of the node is simply
divided by the number of mapped processors, which is a quite
ideal assumption: this assumption can be released easily if the
execution time table on the varying number of processors is
given. Now we summarize the mapping/ scheduling problem
tackled in this paper as follows:

Input:

Target architecture: a heterogeneous MPSoC that consists
of multiple pools of homogeneous processors. Each pool has D
processors at most.

Application tasks: a set of expanded task graphs with
known execution times of each node on all processors and

buffer cost of each edge. Data parallel tasks are marked
beforehand.

Constraints: For Time constraints, deadline can be set for
each task or for an individual sub-task node. In addition, the
resource constraint specified as a weighted sum of the
processor cost and the pipeline buffer size.

Problem:

For each node of the task graphs, determine the mapped
processor (or processors if data parallelism is exploited) and
the scheduled time considering the communication overhead
between the processors. For each edge of task graphs,
determine how many pipeline buffers inserted on it. The
objective is to maximize the throughput, which is the same as
minimizing the Initiation Interval (II) or to minimize the
resource cost such as total processor or pipeline buffer cost
while satisfying all deadline constraints in periodic tasks.

IV. PROPOSED SOLUTION
In the proposed technique, mapping and pipelining

decisions are made by a QEA-based heuristic, where it is
crucial to generate valid candidate solutions and properly
evaluate them. Figure 3 shows the proposed Q-stream structure
that represents an individual or a solution. It consists of two
sections that represent the mapping and pipeline information
separately.

For the mapping information, Q-bits are allocated on each
sub-task as many as the total processors in the target
architecture. In Figure 3, n sub-tasks and m pools exist while
pool1 had q processors. In the bit stream, the bits associated
with the mapped processors become ‘1’ and all other bits are
‘0’. On the other hand, p bits are allocated to represent pipeline
information. Each bit in this section stands for a possible
pipeline, which will be explained in detail later. In short, task
and data parallelisms are determined by the mapping bits in the
first section, while temporal parallelism is represented by the
pipeline bits in the second section in a Q-stream individual.

0 1

sub-task0

Mapping info. Pipeline info.

sub-task1 sub-taskn-1…

pool0 pool1 poolm-1…

… q-1

pipe0 pipe1 pipep-1…

<Design of Q-stream>

Figure 3. Q-stream structure of the proposed technique.

A. Mapping
When the QEA initially generates a solution by setting each

Q-bit according to the associated probability, it may be an
invalid mapping. So, it is fed to a repair function to be
validated. Generating a valid mapping solution corresponds to
exploring task and data parallelisms at the same time.

To be a valid mapping solution, two requirements should be
satisfied. One is that at most one processor in each pool can be

selected if the sub-task is not data-parallelizable. If multiple
processors are initially chosen for a sub-task, the repair
function randomly selects one and invalidates all others. If it is
a data-parallel sub-task, it can be mapped to multiple
processors. But if the number of mapped processors is larger
than the maximum data parallelism of the task, invalidate
mapped processor randomly one by one till it becomes valid.

The other requirement is that only one pool should be
selected for each sub-task. Every bit except the chosen pool is
driven to 0. Pool selection should also be done randomly.

B. Pipelining
In contrast to the mapping solution, special care should be

taken to enumerate all possible pipeline solutions. We may not
select arbitrary edges for pipelines since it may break the task
functionality. If we deploy pipeline buffers as in Figure 4(a),
for instance, the functionality is broken at sub-task E: the other
ports get delayed input samples by 1 iteration cycle while the
bottom-most port gets delayed samples by 2 iteration cycles. A
valid pipeline should be a cut that separates a graph into two
sub graphs without cycle dependency. Various cuts are
depicted in Figure 4(b). Cut a is not a valid pipeline since it
makes a cycle dependency between pipeline stages.

Cuts b, c, and d do not make cycle dependencies between
pipeline stages. Among them cuts b and d are valid while cut c
is not. Note that cuts c and d both include delayed feedback
edges (C-B and E-B). Pipelining of a task graph with cycles
can be performed by retiming after inserting an imaginary
feedback edge between the destination node and the source
node with infinite number of delay tokens as shown in Figure
4(c). The retiming technique moves the initial data samples on
the arcs without breaking the functionality of the task graph [7].
Figure 4(c) illustrates a case when nodes A, B, and C are
retimed, where a dotted circle means consumption of an initial
sample. After retiming, two pipeline buffers are inserted on
edge A-D and C-E. It corresponds to cut d Figure 4(b). No
retiming associated with cut c is possible, as it incurs a non-
delayed cycle dependency.

In theory, there can be at most n-1 pipeline cuts on n
delayed feedback edge [7]. Since edge C-B has only a single
delay, it can have zero pipeline cut. On the other hand, edge E-
B has two initial samples, so can accommodate one pipeline cut.

Figure 4(d) shows a pipeline schedule associated with the
graph of Figure 4(c) assuming that node A is a data parallel
node. Nodes D and E are executed independently of A and C
respectively. The dashed arrow shows that the 2-delayed data
dependency from E to B is still kept.

To enumerate all possible pipelines and find a valid
combination of them, we propose a novel data structure, called
a Pipeline Ordering Graph (POG). Basically it enumerates all
possible topological sorts of nodes starting from the destination
node as shown in Fig 5(a). Without loss of generality, we
assume that there is a single destination node in the task graph.
A POG node is associated with a set of nodes that are partially
topological-sorted.

Procedure of POG generation is as follows: Starting from a
set that has the destination sub-task as its only element,

investigate all predecessors of the elements in the set. If all out-
going edges of a predecessor are directed into the set, make a
new set adding the sub-task to the set. If there is no POG node
associated with the newly made set, make a new POG node as
a child node. If there is already a POG node associated with the
newly made set, just add an edge to represent parent-child
relationship. Repeat this process until a POG node that contains
all sub-tasks is made.

A E

CB

D

A E

CB

D

a

b c

d

(c)

(a) (b)

A E

CB

D

…

pipeline
buffer

An BnDn-1uP0

uP1 En-1

II

(d)

…
An

Cn An+1 Bn+1Dn

EnAn+1

Cn+1

Time

Figure 4. (a) A graph with pipeline buffers randomly inserted, (b) edge cuts,
(c) a valid graph with pipeline buffers associated with cut d, and (d) a valid
pipelined schedule.

(a)

E

CE DE

BCE CDE

BCDE

ABCDE

(b)

E

CE DE

BCE CDE

BCDE

ABCDE

(c)

E

CE DE

BCE CDE

BCDE

ABCDE

AnBn-1

Dn-2

uP0

uP1 En-2

(d)

…An

Cn-1

II

An+1Bn

Dn-1 En-1 An+1

Cn An+2Bn+1

Dn En An+2

Cn+1

Time

Figure 5. (a) The POG of the task grph of Figure 4, (b) a repaired POG, (c) a
valid pipeline solution, and (d) a pipelined schedule associated with (c).

Figure 5(a) is the POG of the task graph of Figure 4.
Starting from ‘E’, two nodes ‘CE’ and ‘DE’ are inserted to the
POG as children of ‘E’ since all non-delayed output edges of
both sub-task C and D are directed to sub-task E. Similarly,
‘BCE’ and ‘CDE’ are added, while ‘ADE’ cannot.

Each POG node represents a pipeline cut: for example POG
node ‘DE’ denotes the pipeline cut d in Figure 4(c). We
allocate as many Q-bits as the number of POG nodes to
represent task graph’s pipelines in Figure 3. Note that some
POG nodes correspond to invalid pipelines such as POG node
‘CE’ associated with cut c. So we define a repair function to
repair the invalid pipeline solutions.

Figure 5 shows the repairing procedure with an example.
Suppose that 5 POG nodes (‘V’ marked) are chosen initially as
shown in Figure 5 (a). The first repair is to invalidate the nodes
that violate the feedback edge rule: at most n-1 pipelines are

chosen for a feedback edge with n delay. POG nodes ‘CE’ and
‘CDE’ are invalidated, X marked in Figure 5(b) since it cuts an
feedback edge C-B with one delay. As feedback edge E-B has
two delays, at most one pipeline may exist across it. So, POG
nodes ‘E’ and ‘DE’ cannot be chosen at the same time. Then
we randomly select the victim pipeline that will be invalidated:
‘E’ is invalidated in this example. Finally, three nodes ‘DE’,
‘BCE’, and ‘BCDE’ remain as valid.

Pipeline cuts that cross each other should not be chosen
together: POG nodes ‘BCE’ and ‘DE’ should not be selected
together in the example of Figure 5. Any two POG nodes do
not cross each other if one is an ancestor node of the other,
since the child POG node contains all sub-tasks that are
associated with the ancestor POG node. So, to be a valid
pipeline solution, all chosen POG node should be in ancestor-
children relationship. That is, all chosen POG node should be
in a path from the terminal POG node to the root node. So, the
second repair is to select a path from the terminal POG node to
the root node that has the most number of valid pipelines. The
other POG nodes which are not in the chosen path are
invalidated. (‘BCE’ in the example) POG nodes ‘DE’ and
‘BCDE’ are finally chosen for a valid pipeline solution as
depicted in Figure 5 (c).

C. Scheduling
Given a valid solution for mapping and pipelining, we

evaluate it by a fixed-priority list scheduling. Note that sub-
tasks mapped to separate pipeline stages are scheduled
independently as there is no data dependency in-between.

Fig 5(d) shows an evaluation result, where the task graph is
divided into 3 pipeline stages for the solution of Fig 5(c). The
highlighted nodes form an iteration cycle: During each iteration
period, data parallel node A of n-th iteration is parallelized on
two processors. And, nodes B and C of (n-1)-th iteration are
mapped to uP0 and nodes D and E of (n-2)-th iteration are
mapped to uP1.

D. ILP Formulation
To obtain an optimal solution, we extended the ILP solution

presented in [12] to take temporal parallelism into account,
where the ILP solution considered task and data parallelisms
only. In addition to the ILP formulations made there, we
formulate the valid pipeline conditions based on the POG. We
explain the additional formulas only. For detailed discussion of
the ILP formulation, refer to [12].

We define a new variable, pipeij, that indicates the number
of pipeline buffers inserted on an edge, eij, between sub-task i
and j. In equation (1), the number of pipeline inserted on each
edge (pipe) is calculated as the sum of the selected POG nodes
where pog variable becomes 1 when the POG node is selected.
ff(pog) is a set of the feed-forward edges included in the cut
associated with the POG node. Integer variables s, t, and comm
in equation (2) denote start time, execution time, and
communication overhead respectively. By equation (2), the
data dependency is nullified if at least one pipeline is applied to
an edge. The pipeline buffer cost is added to the cost
computation in the ILP formulation.

()
∑
∈

=∀

 ,
ffe s.t. ij pogk k

pogpipee kijij

 (1)

 pipescommtse ijjijiiij ×∞+≤++∀ ,
 (2)

V. EXPERIMENTS
Experiments with real-life examples proved the

effectiveness and feasibility of the proposed technique. All
experiments were done on Dual Xeon 3.4GHz machine with
4GB main memory and CPLEX 11.0 was used as the ILP
solver. Group size and population size of QEA, n and p in
Figure 2, were adjusted from 50 to 300 according to the
problem size, while all other parameters were set to the same as
[13]. IPC overhead was modeled as linearly proportional to
data size.

The first experiment examines the effectiveness of three
parallelisms. A DivX player application consists of 3 tasks:
AviReader, MADPlayer, and H263Decoder. The task graphs
have 19 sub-tasks as shown in Figure 6. Initially, the original
multi-rate task graphs are mapped to 6 ARM926ej-s processors
considering task parallelism only. While the original graph
does not have any data parallelizable node, there is a set of
nodes that can be clustered together to make it as a data
parallelizable super node as shown in shaded nodes surrounded
by rounded boxes in Figure 6. Then, we consider both task and
data parallelism. Lastly, we include temporal parallelism in the
mapping/schedule decision.

0

1

2

3

4

18

9

13

8

6

7

5

10

11

12

14

15

16

17

AviReader

MADPlayer H263Decoder

Exec. time

0 18718

1 139934

2 42368

3 69315

4 226855

5 390186

6 405536

7 2409*99

8 1026*99

9 135*99

10 2409*99

11 1026*99

12 3745*99

13 3745*99

14 2409*396

15 1026*396

16 3745*396

17 237206

18 1076687

Figure 6. Task graphs of DivX player example.

TABLE 1 Throughput maximizing mapping/scheduling result with DivX
player example varying the degree of parallelism.

P
L
0

P
L
1

QEA ILP
Initiation
Interval

Elapsed
time

Initiation
Interval

Elapsed
time

Task 6 0 5,286,894 1.92 s 5,286,894 8.26 s
Task

+Data
3 3 2,941,848 2.01 s 2,941,848 9.36 s
1 5 2,582,808 2.50 s 2,582,808 16.02 s

All 1 5 1,168,099 9.39 s *1,167,833 *10800 s

The experimental results are summarized in TABLE 1. The
row named ‘Task’ in TABLE 1 shows the result when only
task parallelism is considered. ‘Task+Data’ is the case when
data parallelism is additionally considered, while all three
parallelisms are considered in ‘All’. We divided processors into
2 pools and assumed that data parallelism is only allowed in
‘PL1’. As the fourth row shows, we achieve better throughput
by allowing more degree of data parallelism even using the
same number of processors. As shown in the last row (‘All’),
significant throughput gain can be obtained by exploiting all
three parallelisms. The proposed QEA approach shows optimal
or near-optimal result with orders of magnitude speed gain
compared to the ILP solution. Note that the * marked result in
the last row is not optimal but the best result after 3 hours of
computation. Even though it is not optimal, it is close to
optimal as it shows 7.8% gap compared to the cut-off value
1,076,687 in the ILP solver.

Read Model
X Light

View
X

Pers.
Proj. Div.

Viewport
X Shade Z-buf

a

b c d

e

f g h

i j k

l m

n

o

p

q

r

(a) (b)

Read 644,050 Div. 186,169

ModelX 451,865 ViewportX 196,646

Light 408,624 Shade 2,369,676

ViewX 276,787 Z-buf 1,437,539

Pers.Proj. 271,137 - -

Figure 7. (a) 3-D rendering task graph and (b) synthetic task graphs.

The second experiment is on 3-D graphic rendering task
graph that is shown with performance table in Fig 7(a). It uses
Gouraud shading and Z-buffer algorithm. The task graph
renders 100 polygons per iteration executing 9 sub-tasks
sequentially and all edges deliver 20,800 bytes per execution.
All sub-tasks except ‘Read’ have data parallelism: Each
polygon can be rendered independently with others. As all sub-
tasks in the task graph are sequential, task parallelism cannot
be exploited in this example. The target architecture used in the
fourth row (PL0:1, PL1:5) in TABLE 1 is also used here and
the objective is set to minimize the cost of pipeline buffer. The
proposed technique finds the solution within 5 seconds that
inserts a pipeline buffer into edge ModelX-Light and exploits
data parallelism in following 7 sub-tasks, which is verified as
optimal by ILP solution.

The last experiment is done on two synthetic task graphs
which have 18 sub-task nodes. The target architecture has a
pool with 6 homogeneous processors and allows data parallel
execution. Execution times of all sub-tasks are assumed to be
100 and shaded sub-tasks are data parallel ones. All edges are
assumed to deliver 16 bytes token. Without retiming for
multiple delayed feedback edges, the best initiation interval (II)
is 400 due to the critical path length (b-f-i-l). On the other hand
the proposed technique considering retiming for multi-delayed
feedback edges, achieves 308 as II, which is very close to the

optimal solution, 300, obtained by ILP. The proposed
technique deduces the solution in 49.31 seconds on average,
while it takes 19551 seconds by ILP.

VI. CONCLUSION
In this paper, we proposed a multi-task mapping/

scheduling heuristic based on the QEA technique considering
data and temporal parallelisms as well as task parallelism for
MPSoC. In contrast to the previous researches, multi-rate task
graphs with cycles are allowed as input task graphs. The target
architecture is a heterogeneous multiprocessor system that
consists of multiple pools of homogeneous processors.

By exploiting three parallelisms altogether, we could get
significantly better result with the same number of processors.
The QEA based technique takes significantly less time with
negligible penalty on the solution quality than an ILP technique.
The proposed approach is scalable and extensible to more
complex architectures and/or design constraints. We
implemented the proposed technique in a system-level design
environment that generates the software for a target MPSoC
after the mapping/scheduling decision.

REFERENCES
[1] D. Pham et al., “The design and implementation of a first-generation

CELL processor-a multi-core SoC,” In Proc. of ICICDT, pp. 49-52, May,
2005.

[2] K. Asnovic et al., “The landscape of parallel computing research: A
view from berkeley,” Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, 18, Dec. 2006.

[3] Y-K. Kwok and I. Ahmad, “Benchmarking and comparison of the task
graph scheduling algorithms,” Journal of Parallel and Distributed
Computing, 59(3), 1999.

[4] E. S. H. Hou, N. Ansari, and H. Ren, “A Genetic Algorithm for
Multiprocessor Scheduling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no.2, pp.113-120, Feb. 1994.

[5] Robert P. Dick and Niraj K. Jha, "MOGAC: A Multiobjective Genetic
Algorithm for the Co-Synthesis of Hardware-Software Embedded
Systems," In Proceedings of ICCAD, p. 522, 1997.

[6] P. Arato, S. Juhasz, Z.A. Mann, A. Orban, and D. Papp, “Hardware-
software partitioning in embedded system design,” IEEE International
Symposium on Itelligent Signal Processing, pp. 197-202, Sep. 2003.

[7] P. D. Hoang and J. M. Rabaey, “Scheduling of DSP Programs Onto
Multiprocessors for Maximum Throughput,” IEEE Trans. On Signal
Processing, pp. 2225-2235, June 1993.

[8] S. Bakshi and D. D. Gajski, “Partitioning and pipelining for
performance-contrained hardware/software systems,” IEEE Transactions
on VLSI Systems, vol. 7, no. 4, pp. 419-432, Dec. 1999.

[9] K. S. Chatha and R. Vemuri, “hardware-software partitioning and
pipelined scheduling of transformative applications,” IEEE Trans. on
VLSI, 10(30), 2002.

[10] L. Benini, D. Bertozzi, A. Guerri, and M. Milano, “Allocation and
scheduling for mpsocs via decomposition and no-good generation,” in
Proc. of International Joint Conferences on Artificial Intelligence, 2005.

[11] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad
memory optimization and task scheduling for MPSoC architectures,” in
Proc. of CASES, 2006.

[12] H. Yang and S. Ha, “ILP Based Data Parallel Multi-task
Mapping/Scheduling Technique for MPSoC,” in Proc. of ISOCC, pp.
134-137. Nov.2008.

[13] K-H. Han and J-H. Kim, “Quantum-inspired Evolutionary Algorithm for
a Class of Combinatorial Optimization," IEEE Trans. on Evolutionary
Computation, IEEE Press, Vol. 6, No. 6, pp. 580-593, Dec. 2002.

[14] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trasnsactions on
Computers, vol. C-36, no. 1, pp. 24-35, Jan, 1987.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

