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Abstract—In this paper, we propose a multi-task 
mapping/scheduling technique for heterogeneous and scalable 
MPSoC. To utilize the large number of cores embedded in 
MPSoC, the proposed technique considers temporal and data 
parallelisms as well as task parallelism. We define a multi-task 
mapping/scheduling problem with all these parallelisms and 
propose a QEA(quantum-inspired evolutionary algorithm)-based 
heuristic. Compared with an ILP (Integer Linear Programming) 
approach, experiments with real-life examples show the 
feasibility and the efficiency of the proposed technique. 

I.  INTRODUCTION 
Insatiable demand of system performance makes it 

inevitable to integrate more and more processing elements in a 
single chip, called MPSoC (Multi-Processor System on a Chip), 
to meet the performance requirement. Recently systems that 
have a lot of cores are about to appear in market and academia 
[1][2]. The system with such a high degree of parallelism raises 
a challenge: how to extract parallelisms from applications and 
exploit them efficiently. 

Parallelisms can be categorized into three types: task, data, 
and temporal parallelism. Task parallelism is achieved by 
executing multiple tasks on different cores concurrently. Data 
parallelism is achieved by instantiating multiple instances of a 
task and running them with different input data sets 
simultaneously. By dividing an iteration of a task execution 
into several pipeline stages, we can exploit temporal 
parallelism. 

We assume that an application task is specified by a task 
graph which consists of graph nodes and edges as shown in 
Figure 1(a). Each node represents a computation module, also 
called a sub-task, while an edge indicates data dependency 
between two end nodes. The numbers annotated on an edge 
indicate the number of data samples produced and consumed 
by two end nodes per each execution. For instance, on edge A-
C each invocation of node A produces 2 data samples while 
node C consumes 1 data sample per execution. Thus node C 
should be executed twice more frequently than node A in order 
not to accumulate data samples on the edge unboundedly. A 
token marked on an edge denotes an initial data sample, which 
defines a delayed dependency between two end nodes. For 
instance, a token on edge E-D makes the n’th execution of 
node D dependent on the n-1’th execution of node E. 

Since the task graph represents the true data dependency 
between sub-tasks, we can exploit task parallelism from the 
given specification by scheduling the task graph as shown in 
Figure 1(b). The horizontal axis represents the elapsed time to 
run the nodes. After node A is executed, both nodes B and C 
can be executed, which are scheduled on two different 
processors. The schedule shows that we have to pay 
communication overhead between processors to deliver data 
samples. And, two instances of node C are scheduled. We 
assume that the application task has a latency or throughput 
constraint that is marked as a dashed vertical line in Figure 1(b).  
In this example, the timing constraint cannot be met by 
exploiting task parallelism only. 

We express data parallelism of a task graph in two ways. 
When multiple data sets are fed into a node and the node can 
process them in parallel, one invocation of the node can be 
partitioned into multiple processors. We call this node a data-
parallel node and represent it as a shaded node like node B in 
Figure 1. It is given a priori whether a node is data parallel or 
not by the programmer of the node. In this example, node B 
can be mapped into 2 processors to process one input sample 
on each processor. Exploiting this data parallelism can reduce 
the latency as shown in Figure 1(c) but yet violating the time 
constraint. There is another way of exploiting data parallelism: 
multiple invocations of the same node can be run concurrently 
with different input data samples, as node C in the graph. If 
node C does not have any internal state that should be 
maintained between invocations, two invocations of node C 
can be concurrently executable, which is not shown in the 
figure. 
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Figure 1. (a) A task graph example, (b) a schedule with task parallelism, (c) a 
schedule with both task and data parallelism, and (d) a schedule with all three 
types of parallelisms. 
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Temporal parallelism can be obtained by pipelining the task 
graph. Dividing a task graph into several pipeline stages, the 
current iteration of the task can be overlapped with the previous 
iteration. For instance, in Figure 1(d) node D and E can be 
separated to another pipeline stage. For pipelined execution, 
additional buffers to store the output data of the previous stage 
should be inserted into edge B-E and C-D. In Figure 1(d), 
shaded nodes compose a whole iteration of the task, overlapped 
with the other iterations. 

In this paper, a multi-task mapping/scheduling problem 
which considers three kinds of parallelisms altogether for 
heterogeneous MPSoC is defined. There is no previous work 
that tackles this problem before to our best knowledge. We 
propose a mapping/scheduling technique based on the 
Quantum-inspired Evolutionary Algorithm (QEA). Compared 
with an Integer Linear Programming (ILP) technique that 
produces an optimal solution, the proposed technique shows a 
near-optimal result in significantly reduced time. 

The rest of this paper is organized as follows. In section II, 
we review the related work and the QEA. The 
mapping/scheduling problem with three kinds of parallelisms is 
defined in section III. Section IV explains the proposed QEA 
solution as well as an ILP based solution. The effectiveness of 
the proposed technique is demonstrated by experiments in 
section V. Then, the conclusion is drawn in section VI. 

II. RELATED WORK 

A. Task Mapping and Scheduling 
A multi-processor mapping/scheduling problem is a well-

known NP complete problem even for homogeneous 
processors. Hence many heuristics have been proposed [3]. To 
cope with the increasing complexity of the problem, systematic 
approaches such as genetic algorithm based heuristics [4][5] 
and ILP based solutions [6] have been proposed. Most of them 
consider only task parallelism of an application. 

Temporal parallelism by pipelining has been considered in 
some researches. Pipelined mapping/scheduling based on list-
scheduling was proposed in [7], which maximizes the 
throughput of a DSP program for homogeneous multi-
processor architecture. Another list scheduling based heuristic 
[8] which separates the component selection and the 
mapping/scheduling was proposed to minimize the hardware 
area cost under performance constraints. A branch-and-bound 
heuristic was proposed in [9] and integer programming based 
approaches were used in [10] and [11]. Compared with these 
works, we consider more general problems. In most previous 
approaches except [9], processors are not shared between 
separate pipeline stages, while our approach has no such 
limitation: nodes B and D share uP1 in Figure 1(d) for instance. 
Moreover, the input task graph may be a multi-rate and cyclic 
task graph with delays in the proposed approach. 

Data parallelism has not been considered in most of the 
previous works. Recently an ILP based mapping/scheduling 
technique which considers both data parallelism and task 
parallelism was proposed in [12]. The proposed technique is 
the first technique, to our best knowledge, that considers three 

types of parallelisms altogether targeting general heterogeneous 
multiprocessor architectures. 

B. Quantumn-insprired Evolutionary Algorithm 
Evolutionary Algorithms (EA) operate a population of 

solutions for a given problem, selecting the best in each 
generation to make a better solution survive to final as in 
natural adaptation. Like all other EAs, a QEA also consists of 
the representation of individuals, the evaluation function, and 
the population dynamics [13]. The only difference is that it 
uses quantum bits as probabilistic representation for individuals 
instead of binary representation of genes. The probabilistic 
representation of quantum bit is described with two values, α 
and β, where |α|2 and |β|2 mean the probability that the 
corresponding bit becomes 0 or 1 respectively, as shown in the 
lower part of Figure 2. This probabilistic representation makes 
QEA overcome some difficulties reported in [4] on fitting EA 
to mapping/scheduling problem: genetic operators such as 
crossover or mutation are severely restricted by 
mapping/scheduling constraint. 

For the diversity of generated solutions, we can deploy 
multiple groups at the same time, each of which has its own 
quantum stream. Similarly, numerous individuals can be 
generated in the same group. This redundancy results in a 
better solution by preventing local optimal solution, even 
though too excessive duplication may slow down the proposed 
technique. In the figure, the length of individual stream is m, 
while the number of groups and generated individuals in a 
group are n and p respectively. 
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Figure 2. Overall QEA Procedure. 

Overall procedure of QEA can be summarized as follows: 
1) For each group, p individuals are generated based on the 
probability that quantum bits of the group implies. Each 
generated individual is repaired by some application dependent 
rules to make a valid solution. 2) Then, we evaluate the 
generated individuals and save the best solution in each group. 
3) Based on the best solution of each group, the quantum 
stream is adjusted so as to make newly generated individuals 
getting close to the best solution in probability: α and β values 
are adjusted, which is called “quantum bit rotation”. 4) Among 
the best solutions for all groups, the best one is saved for the 
highest solution. 5) If the termination condition is met, we stop 
the evolution process and output the highest solution. The 



termination condition is usually defined by the maximum 
number of generations or by the case that all individuals are 
converged to the highest solution probabilistically. For the case 
that neither of above conditions are met, we go back to step 1 
for the next generation. 

III. PROBLEM DEFINITION 
The target architecture assumed in this paper is a 

heterogeneous multi-processor system that consists of multiple 
pools of homogeneous processors. The architecture is scalable 
so that we can increase the number of pools as well as the 
number of processors in each pool. For instance, IBM CELLTM 
[1] has 2 processor pools: one pool has only one PowerPC 
processor (1 PPE) and the other has eight synergistic 
processors (8 SPEs). 

For multiple tasks that have different periods, we expand 
the task graphs by their hyper-period (least common multiple 
of all periods). In addition to hyper-period expansion, the 
multi-rate task graph is expanded to equivalent single-rate task 
graph in the proposed technique to solve the problem more 
efficiently. Each node is repeated up to its execution ratio and 
every multi-rate edge is divided into single-rate edges. In 
Figure 1(a), node C should be instantiated into 2 nodes in the 
expanded graph. Note that multiple initial delay tokens are 
scattered to the corresponding single-rate edges. The 
conversion into the equivalent single-rate task graph was 
presented in [14].  

In an expanded graph, many nodes may correspond to the 
multiple instances of the same node in the original task graph. 
We enforce that they should be mapped to the same processor 
to keep any internal state consistent if any. If they are mapped 
to different processors, we have to deliver internal states 
between processors while keeping the dependency order. So we 
avoid this situation. 

Another restriction we enforce is that data parallel 
execution should be performed on the same pool of processors, 
which is quite a reasonable assumption in real situations. If the 
target architecture has a DSP array for example, a data parallel 
task is likely mapped solely to the DSP array for data parallel 
execution. 

To evaluate the mapping and scheduling result, we assume 
that the cost of each processor, the buffer cost of each edge, 
and the worst case execution time of all nodes on each 
processor are given. If a data parallel node is mapped to 
multiple processors, the execution time of the node is simply 
divided by the number of mapped processors, which is a quite 
ideal assumption: this assumption can be released easily if the 
execution time table on the varying number of processors is 
given. Now we summarize the mapping/ scheduling problem 
tackled in this paper as follows: 

Input:  

Target architecture:  a heterogeneous MPSoC that consists 
of multiple pools of homogeneous processors. Each pool has D 
processors at most.  

Application tasks: a set of expanded task graphs with 
known execution times of each node on all processors and 

buffer cost of each edge. Data parallel tasks are marked 
beforehand. 

Constraints: For Time constraints, deadline can be set for 
each task or for an individual sub-task node. In addition, the 
resource constraint specified as a weighted sum of the 
processor cost and the pipeline buffer size. 

Problem: 

For each node of the task graphs, determine the mapped 
processor (or processors if data parallelism is exploited) and 
the scheduled time considering the communication overhead 
between the processors. For each edge of task graphs, 
determine how many pipeline buffers inserted on it. The 
objective is to maximize the throughput, which is the same as 
minimizing the Initiation Interval (II) or to minimize the 
resource cost such as total processor or pipeline buffer cost 
while satisfying all deadline constraints in periodic tasks. 

IV. PROPOSED SOLUTION 
In the proposed technique, mapping and pipelining 

decisions are made by a QEA-based heuristic, where it is 
crucial to generate valid candidate solutions and properly 
evaluate them. Figure 3 shows the proposed Q-stream structure 
that represents an individual or a solution. It consists of two 
sections that represent the mapping and pipeline information 
separately.  

For the mapping information, Q-bits are allocated on each 
sub-task as many as the total processors in the target 
architecture. In Figure 3, n sub-tasks and m pools exist while 
pool1 had q processors. In the bit stream, the bits associated 
with the mapped processors become ‘1’ and all other bits are 
‘0’. On the other hand, p bits are allocated to represent pipeline 
information. Each bit in this section stands for a possible 
pipeline, which will be explained in detail later. In short, task 
and data parallelisms are determined by the mapping bits in the 
first section, while temporal parallelism is represented by the 
pipeline bits in the second section in a Q-stream individual. 

0 1

sub-task0

Mapping info. Pipeline info.

sub-task1 sub-taskn-1…

pool0 pool1 poolm-1…

… q-1

pipe0 pipe1 pipep-1…

<Design of Q-stream>

 

Figure 3. Q-stream structure of the proposed technique. 

A. Mapping 
When the QEA initially generates a solution by setting each 

Q-bit according to the associated probability, it may be an 
invalid mapping. So, it is fed to a repair function to be 
validated. Generating a valid mapping solution corresponds to 
exploring task and data parallelisms at the same time.  

To be a valid mapping solution, two requirements should be 
satisfied. One is that at most one processor in each pool can be 



selected if the sub-task is not data-parallelizable. If multiple 
processors are initially chosen for a sub-task, the repair 
function randomly selects one and invalidates all others. If it is 
a data-parallel sub-task, it can be mapped to multiple 
processors. But if the number of mapped processors is larger 
than the maximum data parallelism of the task, invalidate 
mapped processor randomly one by one till it becomes valid.  

The other requirement is that only one pool should be 
selected for each sub-task. Every bit except the chosen pool is 
driven to 0. Pool selection should also be done randomly. 

B. Pipelining 
In contrast to the mapping solution, special care should be 

taken to enumerate all possible pipeline solutions. We may not 
select arbitrary edges for pipelines since it may break the task 
functionality. If we deploy pipeline buffers as in Figure 4(a), 
for instance, the functionality is broken at sub-task E: the other 
ports get delayed input samples by 1 iteration cycle while the 
bottom-most port gets delayed samples by 2 iteration cycles. A 
valid pipeline should be a cut that separates a graph into two 
sub graphs without cycle dependency. Various cuts are 
depicted in Figure 4(b). Cut a is not a valid pipeline since it 
makes a cycle dependency between pipeline stages. 

Cuts b, c, and d do not make cycle dependencies between 
pipeline stages. Among them cuts b and d are valid while cut c 
is not. Note that cuts c and d both include delayed feedback 
edges (C-B and E-B). Pipelining of a task graph with cycles 
can be performed by retiming after inserting an imaginary 
feedback edge between the destination node and the source 
node with infinite number of delay tokens as shown in Figure 
4(c). The retiming technique moves the initial data samples on 
the arcs without breaking the functionality of the task graph [7]. 
Figure 4(c) illustrates a case when nodes A, B, and C are 
retimed, where a dotted circle means consumption of an initial 
sample. After retiming, two pipeline buffers are inserted on 
edge A-D and C-E. It corresponds to cut d Figure 4(b). No 
retiming associated with cut c is possible, as it incurs a non-
delayed cycle dependency. 

In theory, there can be at most n-1 pipeline cuts on n 
delayed feedback edge [7]. Since edge C-B has only a single 
delay, it can have zero pipeline cut. On the other hand, edge E-
B has two initial samples, so can accommodate one pipeline cut.  

Figure 4(d) shows a pipeline schedule associated with the 
graph of Figure 4(c) assuming that node A is a data parallel 
node. Nodes D and E are executed independently of A and C 
respectively. The dashed arrow shows that the 2-delayed data 
dependency from E to B is still kept. 

To enumerate all possible pipelines and find a valid 
combination of them, we propose a novel data structure, called 
a Pipeline Ordering Graph (POG). Basically it enumerates all 
possible topological sorts of nodes starting from the destination 
node as shown in Fig 5(a). Without loss of generality, we 
assume that there is a single destination node in the task graph. 
A POG node is associated with a set of nodes that are partially 
topological-sorted.  

Procedure of POG generation is as follows: Starting from a 
set that has the destination sub-task as its only element, 

investigate all predecessors of the elements in the set. If all out-
going edges of a predecessor are directed into the set, make a 
new set adding the sub-task to the set. If there is no POG node 
associated with the newly made set, make a new POG node as 
a child node. If there is already a POG node associated with the 
newly made set, just add an edge to represent parent-child 
relationship. Repeat this process until a POG node that contains 
all sub-tasks is made. 

A E

CB

D

A E

CB

D

a

b c

d

(c)

(a) (b)

A E

CB

D

…

pipeline 
buffer

An BnDn-1uP0

uP1 En-1

II

(d)

…
An

Cn An+1 Bn+1Dn

EnAn+1

Cn+1

Time
 

Figure 4. (a) A graph with pipeline buffers randomly inserted, (b) edge cuts, 
(c) a valid graph with pipeline buffers associated with cut d, and (d) a valid 
pipelined schedule. 

(a)

E

CE DE

BCE CDE

BCDE

ABCDE

(b)

E

CE DE

BCE CDE

BCDE

ABCDE

(c)

E

CE DE

BCE CDE

BCDE

ABCDE

AnBn-1

Dn-2

uP0

uP1 En-2

(d)

…An

Cn-1

II

An+1Bn

Dn-1 En-1 An+1

Cn An+2Bn+1

Dn En An+2

Cn+1

Time
 

Figure 5. (a) The POG of the task grph of Figure 4, (b) a repaired POG, (c) a 
valid pipeline solution, and (d) a pipelined schedule associated with (c). 

Figure 5(a) is the POG of the task graph of Figure 4. 
Starting from ‘E’, two nodes ‘CE’ and ‘DE’ are inserted to the 
POG as children of ‘E’ since all non-delayed output edges of 
both sub-task C and D are directed to sub-task E. Similarly, 
‘BCE’ and ‘CDE’ are added, while ‘ADE’ cannot.  

Each POG node represents a pipeline cut: for example POG 
node ‘DE’ denotes the pipeline cut d in Figure 4(c). We 
allocate as many Q-bits as the number of POG nodes to 
represent task graph’s pipelines in Figure 3. Note that some 
POG nodes correspond to invalid pipelines such as POG node 
‘CE’ associated with cut c. So we define a repair function to 
repair the invalid pipeline solutions.  

Figure 5 shows the repairing procedure with an example. 
Suppose that 5 POG nodes (‘V’ marked) are chosen initially as 
shown in Figure 5 (a). The first repair is to invalidate the nodes 
that violate the feedback edge rule: at most n-1 pipelines are 



chosen for a feedback edge with n delay. POG nodes ‘CE’ and 
‘CDE’ are invalidated, X marked in Figure 5(b) since it cuts an 
feedback edge C-B with one delay. As feedback edge E-B has 
two delays, at most one pipeline may exist across it. So, POG 
nodes ‘E’ and ‘DE’ cannot be chosen at the same time. Then 
we randomly select the victim pipeline that will be invalidated: 
‘E’ is invalidated in this example. Finally, three nodes ‘DE’, 
‘BCE’, and ‘BCDE’ remain as valid.  

Pipeline cuts that cross each other should not be chosen 
together: POG nodes ‘BCE’ and ‘DE’ should not be selected 
together in the example of Figure 5. Any two POG nodes do 
not cross each other if one is an ancestor node of the other, 
since the child POG node contains all sub-tasks that are 
associated with the ancestor POG node. So, to be a valid 
pipeline solution, all chosen POG node should be in ancestor-
children relationship. That is, all chosen POG node should be 
in a path from the terminal POG node to the root node. So, the 
second repair is to select a path from the terminal POG node to 
the root node that has the most number of valid pipelines. The 
other POG nodes which are not in the chosen path are 
invalidated. (‘BCE’ in the example) POG nodes ‘DE’ and 
‘BCDE’ are finally chosen for a valid pipeline solution as 
depicted in Figure 5 (c). 

C. Scheduling 
Given a valid solution for mapping and pipelining, we 

evaluate it by a fixed-priority list scheduling. Note that sub-
tasks mapped to separate pipeline stages are scheduled 
independently as there is no data dependency in-between.  

Fig 5(d) shows an evaluation result, where the task graph is 
divided into 3 pipeline stages for the solution of Fig 5(c). The 
highlighted nodes form an iteration cycle: During each iteration 
period, data parallel node A of n-th iteration is parallelized on 
two processors. And, nodes B and C of (n-1)-th iteration are 
mapped to uP0 and nodes D and E of (n-2)-th iteration are 
mapped to uP1. 

D. ILP Formulation 
To obtain an optimal solution, we extended the ILP solution 

presented in [12] to take temporal parallelism into account, 
where the ILP solution considered task and data parallelisms 
only. In addition to the ILP formulations made there, we 
formulate the valid pipeline conditions based on the POG. We 
explain the additional formulas only. For detailed discussion of 
the ILP formulation, refer to [12].  

We define a new variable, pipeij, that indicates the number 
of pipeline buffers inserted on an edge, eij, between sub-task i 
and j. In equation (1), the number of pipeline inserted on each 
edge (pipe) is calculated as the sum of the selected POG nodes 
where pog variable becomes 1 when the POG node is selected. 
ff(pog) is a set of the feed-forward edges included in the cut 
associated with the POG node. Integer variables s, t, and comm 
in equation (2) denote start time, execution time, and 
communication overhead respectively. By equation (2), the 
data dependency is nullified if at least one pipeline is applied to 
an edge. The pipeline buffer cost is added to the cost 
computation in the ILP formulation. 
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V. EXPERIMENTS 
Experiments with real-life examples proved the 

effectiveness and feasibility of the proposed technique. All 
experiments were done on Dual Xeon 3.4GHz machine with 
4GB main memory and CPLEX 11.0 was used as the ILP 
solver. Group size and population size of QEA, n and p in 
Figure 2, were adjusted from 50 to 300 according to the 
problem size, while all other parameters were set to the same as 
[13]. IPC overhead was modeled as linearly proportional to 
data size. 

The first experiment examines the effectiveness of three 
parallelisms. A DivX player application consists of 3 tasks: 
AviReader, MADPlayer, and H263Decoder. The task graphs 
have 19 sub-tasks as shown in Figure 6. Initially, the original 
multi-rate task graphs are mapped to 6 ARM926ej-s processors 
considering task parallelism only. While the original graph 
does not have any data parallelizable node, there is a set of 
nodes that can be clustered together to make it as a data 
parallelizable super node as shown in shaded nodes surrounded 
by rounded boxes in Figure 6. Then, we consider both task and 
data parallelism. Lastly, we include temporal parallelism in the 
mapping/schedule decision. 
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Figure 6. Task graphs of DivX player example. 

TABLE 1 Throughput maximizing mapping/scheduling result with DivX 
player example varying the degree of parallelism. 
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time 

Initiation 
Interval 

Elapsed 
time 

Task 6 0 5,286,894 1.92 s 5,286,894 8.26 s
Task

+Data
3 3 2,941,848 2.01 s 2,941,848 9.36 s
1 5 2,582,808 2.50 s 2,582,808 16.02 s

All 1 5 1,168,099 9.39 s *1,167,833 *10800 s



The experimental results are summarized in TABLE 1. The 
row named ‘Task’ in TABLE 1 shows the result when only 
task parallelism is considered. ‘Task+Data’ is the case when 
data parallelism is additionally considered, while all three 
parallelisms are considered in ‘All’. We divided processors into 
2 pools and assumed that data parallelism is only allowed in 
‘PL1’. As the fourth row shows, we achieve better throughput 
by allowing more degree of data parallelism even using the 
same number of processors. As shown in the last row (‘All’), 
significant throughput gain can be obtained by exploiting all 
three parallelisms. The proposed QEA approach shows optimal 
or near-optimal result with orders of magnitude speed gain 
compared to the ILP solution. Note that the * marked result in 
the last row is not optimal but the best result after 3 hours of 
computation. Even though it is not optimal, it is close to 
optimal as it shows 7.8% gap compared to the cut-off value 
1,076,687 in the ILP solver. 

Read Model
X Light

View
X

Pers.
Proj. Div.

Viewport
X Shade Z-buf

a

b c d

e

f g h

i j k

l m

n

o

p

q

r

(a) (b)

Read 644,050 Div. 186,169

ModelX 451,865 ViewportX 196,646

Light 408,624 Shade 2,369,676

ViewX 276,787 Z-buf 1,437,539

Pers.Proj. 271,137 - -

 

Figure 7. (a) 3-D rendering task graph and (b) synthetic task graphs. 

The second experiment is on 3-D graphic rendering task 
graph that is shown with performance table in Fig 7(a). It uses 
Gouraud shading and Z-buffer algorithm. The task graph 
renders 100 polygons per iteration executing 9 sub-tasks 
sequentially and all edges deliver 20,800 bytes per execution. 
All sub-tasks except ‘Read’ have data parallelism: Each 
polygon can be rendered independently with others. As all sub-
tasks in the task graph are sequential, task parallelism cannot 
be exploited in this example. The target architecture used in the 
fourth row (PL0:1, PL1:5) in TABLE 1 is also used here and 
the objective is set to minimize the cost of pipeline buffer. The 
proposed technique finds the solution within 5 seconds that 
inserts a pipeline buffer into edge ModelX-Light and exploits 
data parallelism in following 7 sub-tasks, which is verified as 
optimal by ILP solution. 

The last experiment is done on two synthetic task graphs 
which have 18 sub-task nodes. The target architecture has a 
pool with 6 homogeneous processors and allows data parallel 
execution. Execution times of all sub-tasks are assumed to be 
100 and shaded sub-tasks are data parallel ones. All edges are 
assumed to deliver 16 bytes token. Without retiming for 
multiple delayed feedback edges, the best initiation interval (II) 
is 400 due to the critical path length (b-f-i-l). On the other hand 
the proposed technique considering retiming for multi-delayed 
feedback edges, achieves 308 as II, which is very close to the 

optimal solution, 300, obtained by ILP. The proposed 
technique deduces the solution in 49.31 seconds on average, 
while it takes 19551 seconds by ILP. 

VI. CONCLUSION 
In this paper, we proposed a multi-task mapping/ 

scheduling heuristic based on the QEA technique considering 
data and temporal parallelisms as well as task parallelism for 
MPSoC. In contrast to the previous researches, multi-rate task 
graphs with cycles are allowed as input task graphs. The target 
architecture is a heterogeneous multiprocessor system that 
consists of multiple pools of homogeneous processors.  

By exploiting three parallelisms altogether, we could get 
significantly better result with the same number of processors. 
The QEA based technique takes significantly less time with 
negligible penalty on the solution quality than an ILP technique. 
The proposed approach is scalable and extensible to more 
complex architectures and/or design constraints. We 
implemented the proposed technique in a system-level design 
environment that generates the software for a target MPSoC 
after the mapping/scheduling decision. 
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