
 

Abstract 

We propose an interleaved memory organization sup-
porting multi-pattern parallel accesses in two-
dimensional (2D) addressing space.  Our proposal tar-
gets computing systems with high memory bandwidth de-
mands such as vector processors, multimedia accelera-
tors, etc. We substantially extend prior research on inter-
leaved memory organizations introducing 2D-strided ac-
cesses along with additional parameters, which define a 
large variety of 2D data patterns. The proposed scheme 
guarantees minimum memory latency and efficient band-
width utilization for arbitrary configuration parameters 
of the data pattern. We provide mathematical descriptions 
and proofs of correctness for the proposed addressing 
schemes. The design complexity and the critical paths are 
evaluated using technology independent resource counts 
and confirm the scalability of the proposal. Hardware 
synthesis results for 90nm CMOS technology suggest that 
throughputs in the range between 44 and 1182 Gbit/s can 
be obtained at the cost of 26-212 Kgates for configura-
tions of 2x2 32-bit up to 8x8 64-bit memory modules. 

Index Terms—Conflict-free access, high bandwidth, 
multi-pattern access, parallel memories. 

1. Introduction 

The performance of modern SIMD machines and vec-
tor processors in particular, is highly dependent on the 
ability of the memory subsystem to rapidly feed the proc-
essing units with data from the main memory storage. 
Conventional cache memories proved to be reasonable 
solutions for increasing memory bandwidth in general 
purpose scalar systems, and significantly improve per-
formance of applications with linear data locality. Such 
caches, however, fail to provide any performance benefits 
to vector machines or to applications with spatial locality 
such as multidimensional (e.g., 2D) matrix computations, 
multimedia, etc. In SIMD processors, this memory per-
formance bottleneck is often prevented by interleaved 
memory systems, also referred to as space-multiplexed 
memories [1]. In these memory systems, parallel memory 
modules are organized to access application specific data 
patterns and to feed the processing units with data in a 

concurrent manner. A module assignment function and a 
module row address function (skewing schemes) ensure 
conflict-free parallel data access [2]. An important pa-
rameter, constituting the data access pattern is the stride, 
defined as the address distance between two adjacent data 
pattern elements in the original data alignment. As indi-
cated in [3], no single skewing scheme exists allowing 
conflict-free accesses for all constant strides at any loca-
tion in one dimensional interleaved memory organiza-
tions, let alone in two dimensional ones.  

In this paper, we address the memory access problem 
of multi-pattern data access in two-dimensional inter-
leaved memories. Our approach is to divide the problem 
into six trivial sub-problems. We consider an exhaustive 
set of pattern definition parameters and propose a per-
formance efficient, interleaved memory organization. 
More specifically, the main contributions of the current 
proposal are as follows: 

• Extended set of 2D pattern access parameters – base 
address; vertical and horizontal strides, group 
lengths, and block sizes; 

• Support for all possible 2D data patterns described 
by the above parameters; 

• Run-time programmability of the memory access 
pattern; 

• Independency of the data pattern size from the num-
ber of the interleaved memory modules; 

• Arbitrary-strided accesses for a minimal number of 
clock cycles; 

• Modular implementation which can be easily simpli-
fied for a restricted subset of 2D data patterns; 

• High design scalability confirmed by hardware syn-
thesis results. 

Theoretical estimations of the design complexity sug-
gest that it is proportional to the square root of the number 
of memory modules. This is confirmed by synthesis re-
sults for 90nm CMOS technology, which indicate that a 
32-bit 2×2 organization requires 26 Kgates and a 64-bit 
8×8 one – 212 Kgates. The critical path is proportional to 
the logarithm of the number of memory modules, con-
firmed by the synthesized operating frequencies, which 
vary from 377 MHz for 2x2 32-bit modules down to 310 
MHz for 8x8 64-bit modules. The maximum throughput, 
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attainable by the synthesized 8x8 64-bit design, is 
1182 Gbit/s. 

The reminder of the paper is organized as follows: in 
Section 2, some related work and necessary theoretical 
background is provided. The proposed memory access 
scheme is described in Section 3. Its hardware implemen-
tation and complexity evaluation are presented in Section 
4. The experimental results are reported in Section 5. Fi-
nally, Section 6 concludes the paper. 

2. Related work and theoretical basis 

Our goal is to develop a memory hierarchy with dy-
namically adjustable regular 2D access patterns, which 
would improve the data throughput between the main 
memory and processing units. We target highly data-
parallel applications with regular data patterns, such as 
audio/video compression (ADPCM, G721, GSM, 
MPEG4, JPEG) or scientific vector calculations.  

Related work: A number of solutions for conflict-free 
parallel memory access have been proposed in the litera-
ture. Vector processor designers have developed memory 
systems that are capable to deliver data at the required 
bandwidth to high pipeline numbers, e.g. [4], [7]. Various 
solutions have been proposed for optimal alignment of 
data in multiple parallel memory models [3], [5], [6], [7], 
[8]. Module assignment and row address functions have 
been used in different interleaved memories to improve 
their performance. In graphical visualization systems, 
researches have been investigating various data patterns, 
such as rectangles, horizontal and vertical lines, forward 
and backward diagonals [5], [9]. Other researches explore 
memory scheduling of DRAM chips by addressing local-
ity characteristics within the 3D (bank, row, column) 
memory structure [10]. 

The above mentioned works lack architectural flexibil-
ity as the data access pattern is defined once at design 
time and cannot be changed at a later stage. Moreover, in 
previous work a number of restrictions on the access pat-
tern parameters are applied [3], [5], [6], narrowing the 
application domain and increasing the programming ef-
forts required. Our design is essentially an extension and 
generalization of the solution proposed in [6] preserving 
all its design advantages. Contrary to related work, our 
proposal provides a complete analysis of the pattern ac-
cess parameters. As a result, we suggest design problem 
partitioning into six subtasks that cover arbitrary combi-
nations and dimensions of the considered access pattern 
parameters.  

Data pattern parameters: In interleaved memory or-
ganizations, the data distribution among the parallel 
memory modules is determined by a module assignment 
function m. A data element with a linear address a is as-
signed to a memory module according to m(a). A row 
address function A determines the physical address of data 
element a inside a memory module. Fig. 1 illustrates the 

data pattern parameters we consider, namely: W∈ℕ - data 
word width in bytes; Aw ∈ℕ - row address  width in bits; 

b′(vb,hb)∈[0,ℕ] - linear base address of the accessed 
block with 2D constituents vb and hb; VS,HS∈ℕ - verti-
cal and horizontal strides (in words); VGL,HGL∈ℕ - re-
spective group lengths (in words); VBL,HBL∈ℕ - respec-
tive block lengths (in groups); M×N∈ℕ - the memory 
dimensions; VD×HD∈ℕ - size of the matrix of memory 
modules; (i,j) - vertical/horizontal group indices; (k,l) - 
respective indices of the elements inside a group. Fig. 1 
depicts an example of a data pattern of six groups of size 
VGL×HGL=2×4 and strides (VS,HS)=(4,5). 

 
Fig. 1. Considered memory access pattern. 

Theoretical basis: We first need to translate the linear 
base address b′  into a 2D-address ),( hbvb :  

hbNvbb +⋅=′ ,  Nbvb /′= , Nbhb mod′=  (1) 

Furthermore, any data element inside an accessed data 
block has the following 2D address (va,ha): 

haNvaa +⋅=′ , 
kiakVSivbva ,=+⋅+= , ljalHSjhbha ,=+⋅+=  (2) 

where i∈[0,VBL-1], k∈[0,VGL-1]; j∈[0,HBL-1],  
l∈[0,HGL-1]. Equation (2) suggests that the 2D address is 
completely separable, i.e. its vertical and horizontal con-
stituents are not correlated. Moreover, they are identical. 
Therefore, in the following discussion we shall skip the 
direction prefixes ‘V’ and ‘H’ in the parameters notations.  

The stride parameter S, can be represented as [3]: 
sS 2⋅= σ ∈ℕ, (3) 

where 12 +⋅= kσ , k∀ ∈ℕ and s∈[0,ℕ]. Consequently, 
S is odd when s=0, and even for s∈ℕ. Consider the fol-
lowing theorems. 

Theorem 1: No single skewing scheme can be found 
that allows conflict-free access for all the constant strides 
and group lengths when the data pattern can be unrestrict-
edly placed. The theorem is valid for arbitrary number of 



 

memory modules, when at least two data elements are 
accessed concurrently1. 

Proof: Let m(a) be the module assignment function 
and lSjBaid +⋅+=  the first accessed data element. Then, 
the next accessed data element is: 
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The two elements can not be accessed conflict-free if 
there are stride S and group length GL such that 
m(aid)=m(aid+1) □ 

Theorem 2: All odd strides can be accessed conflict-
free with the low-order interleaved scheme if the number 
of memory modules is a power of two: D=2d, d ∈ℕ [11]. 

Theorem 3: Let stride S΄=2s, group length GL=2gl , 
and number of memory modules along one dimension 
D=2d , where s,gl,d∈ℕ. Also let ds ≥  which means that 
the strides have less than one access per row. Then: 

  DDaGLaam ds mod
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 (4) 

allows conflict-free accesses to D memory modules. 
Proof: We find a period P of function (4). If function 

m(a) maps address a to its module address for a stride S΄ 
and group length GL, then m(a)=m(a+P·S΄), ∀ a . Let us 
transform (4) as follows:  
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According to the properties of the modulo operation, 
this equality holds when (P·(S΄+GL)) mod D=0, which 
corresponds to the following set of periods: 
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where x,y,z∈ℕ and x,y,z:P∈ℕ. Thus, the minimum pe-
riod is: ),(min GLDGCDDP = , where GCD is greatest 
common divisor. 

Now, we find number of accesses performed to the dis-
tinct memory modules. Harper and Jump showed in [12] 
that for a basic skewing storage scheme the number of 
distinct modules referenced during a vector access is 

),min( DPA =′ . For our case GL=2gl, gl∈ℕ and the num-
ber of distinct modules is: 

( ) .),,(min,
),(

min),min( DDGLDLCMD
GLDGCD

GLDDGLPA ==






 ⋅=⋅=
 

Thus, any vector of length D, having the form of Fig. 1 
and (2), inside the sequence of module addresses gener-

                                                        
1 This theorem follows Theorem 1 from [1] but in our case it is gen-

eralized since it considers the group length together with the stride. 

ated by m(a) has exactly D  distinct addresses. This is the 
definition of a conflict-free access. □ 

Theorem 4: Let stride S΄=2s, group length GL=2gl, 
and number of memory modules along one dimension 
D=2d, where s,gl,d ∈ℕ. Also let s<d which means that 
the strides have at least one access per row. Then 
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allows conflict-free parallel accesses to D modules. 
Proof: Identically to Theorem 3 we find a period P  

based on )()( SPamam ′⋅+= , ∀a. 
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Using properties of the modulo operation, we derive: 
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The first equation gives the set of periods SDxP ′⋅= , 

x∈ℕ: P∈ℕ. Substitute P in the second equation: 
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Using the same property of modulo operator we obtain: 
(x·GL) mod S΄=0 ⇒ GLSyx ′⋅= , where y∈ℕ: x∈ℕ. 
Substituting x  provides the set of periods P :  

GL
Dy

S
D

GL
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S
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⋅

′
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′
⋅= , y ∈ℕ: P ∈ℕ. 

This set of periods is identical to the one from the proof of 
Theorem 3. Therefore, the minimum period equals to 

),(min GLDGCDDP =  and, as follows from the same 
proof, the number of distinct addresses equals to D. Thus, 
the module assignment function (5) is conflict-free. □ 

Theorem 5: If a vector is to be accessed with even 
stride S=σ · 2s, where GCD (σ,2)=1, s ∈ℕ, s ≠ 0, and its 
elements are arranged in memory according to the storage 
scheme for a stride S΄=2s, the accesses are conflict-free. 

Proof: The proof is similar to [3] with the only differ-
ence that, we examine the sequence of groups of module 
addresses instead of the sequence of single addresses. □ 

3. Proposed memory access scheme 

Since no single scheme exists for all strides and group 
lengths (Theorem 1), we propose to partition the problem 
in a number of cases. This reduces the problem to a set of 
trivial sub-problems (see Fig. 2). The initial problem par-
titioning is done based on the stride oddness. Theorem 2 
suggests that odd strides can be accessed conflict-free 



 

using a basic skewing scheme [1], [6]. Furthermore, all 
odd and even strides are divided into six subgroups. 

3.1 Module assignment function 

We partition the design problem, imposed by the mul-
tiplicity of access patterns, into trivial subtasks. A module 
assignment function is devised for each of six different 
cases with respect to particular initial conditions:  
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Fig. 2. Problem partition. 

Case I. Initial conditions:  
}0;1)2,(|2{ ==⋅= sGCDS s σσ , .BL

D
GL

GL
D
BL

⋅



<⋅



  (6) 

The inequality guarantees that the number of accesses 
required for the complete pattern is minimal. When 
BL>D, more than one access are required to reed/write a 
whole group of data. If D–(BL mod D)>0, then the re-
maining memory modules stay unused. This case repre-
sents a conventional interleaved scheme with stride access 
which can be implemented conflict-free according to 
Theorem 2. Thus, the module assignment function is:  

Daam mod)( = , (7) 

The indices iterate according to the following sequence: 

(i,k) =  ((0,0);(1,0);…;(VBL-1,0); 
 (0,1);(1,1);…;(VBL-1,1); 
 …; 
 (0,VGL-1);(1,VGL-1);…;(VBL-1,VGL-1)). 

(8) 

The number of read/write accesses for the complete 
data pattern is equal to: 

GL
D
BLt ⋅



= . (9) 

Case II. Initial conditions:  
}0;1)2,(|2{ ==⋅= sGCDS s σσ , 

}0;1)2,(|2{ ≠=⋅= sGCDS s σσ  & glGL 2≠ , 
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D
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D
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

≥⋅



 . 

(10) 

An access to the data pattern is performed group-wise. 
When GL>D, multiple accesses are required to reed/write 
a complete group. If D-(GL mod D)>0, there are unused 
memory modules. The inequality again guarantees mini-
mal number of accesses cycles. It has been shown in [6] 
that any separate group inside the block can be accessed 
conflict-free. 

The module assignment function is the same as for 
case I (see (7)), but the sequence of indices is different: 

(i,k) =  ((0,0);(0,1);…;(0,VGL-1); 
 (1,0);(1,1);…;(1,VGL-1); 
 …; 
 (VBL-1,0);(VBL-1,1);…;(VBL-1,VGL-1)). 

(11) 

The number of the read/write accesses is: 

BL
D

GLt ⋅



= . (12) 

Case III. Initial conditions:  
gls GLsGCDS 2&}0;1)2,(|2{ ≠≠=⋅= σσ , 
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(13) 

In this case, the indices iterate as in (8), but we employ 
the module assignment function proposed in [3]: 
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In fact, all initial conditions for this case exactly repeat 
the ones used in [3]. The number of read/write accesses to 
the complete data pattern is described by (9). 

Case IV. Initial conditions:  
gls GLsGCDS 2&}0;1)2,(|2{ ≠≠=⋅= σσ , 

,BL
D

GLGL
D
BL ⋅



<⋅



  ds < . (15) 

Again, the memory access repeats the sequence (8), 
and the module assignment function is borrowed from [3]:  
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The amount of read/write accesses to the complete data 
pattern is described by (9). 

Case V. Initial conditions:  
gls GLsGCDS 2&}0;1)2,(|2{ =≠=⋅= σσ , ds ≥ . (17) 

The data pattern access is element-wise, that allows the 
complete utilization of the memory modules. The module 
assignment function has the following representation: 

  DDaGLaam ds mod
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, (18) 

The sequence of indices (i, k) is not important in this 
case since all memory modules are accessed conflict-free 
(Theorem 3). The amount of read/write accesses to the 
complete data pattern is: 





 ⋅=

D
BLGLt . (19) 

Case VI. Initial conditions:  
gls GLsGCDS 2&}0;1)2,(|2{ =≠=⋅= σσ , ds < . (20) 

An access to the data pattern is performed element-
wise, identical to case III. The module assignment func-
tion has the following representation: 
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The sequence of indices (i, k) is not important again 
since all memory modules are accessed conflict-free 
(Theorem 4). The number of the read/write accesses to the 
complete data pattern is described by (19). 

3.2 Row address function and access latencies 

The row address function determines the linear address 
inside a memory module. In spite of having six different 
representations of the module assignment function, there 
is only one row address function. The row address func-
tion is separable and it is described as follows: 
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The total number of read/write accesses is described by 
the following best- and the worst case equations: 
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The best case memory latency corresponds to the cases 
V-VI, while the worst case memory latency corresponds 
to the cases I-IV. Our primary design goal in all six cases, 
described in section 3.1, is to provide minimum possible 
latencies for the particular initial conditions. 

4. Design implementation and complexity 
evaluation 

In order to evaluate our scheme, we have verified it us-
ing a MatLab model, implemented it in VHDL and per-
formed technology independent complexity evaluation. A 
completed RTL design was synthesized using Synopsys 
tools. Structurally, the interleaved memory consists of an 
address generation part, a data routing part, and a matrix 
of memory modules (see Fig. 3). The pattern parameters 
are stored in programmable Special Purpose Registers 
(SPRs). The address part is split in identical vertical and 
horizontal sides and includes the following blocks: mode 
select, address generator, set of row address generators, 
module assignment and address shuffle. The data routing 
part consists of a number of de-shuffle units. The critical 
path (highlighted on Fig. 3) comprises the address genera-
tor, the module assignment, and the decoding part of the 
shuffle block.  

Mode select unit. This unit sets the address generation 
logic to a mode, corresponding to the six cases of the 
problem partitioning (section 3.1). The pattern parameters 
S, GL and BL are loaded from the SPRs. The hardware 
complexity is constant. 

Address generator. The address generator produces 
the vertical and horizontal constituents of the 2D ad-
dresses according to (2). Data pattern parameters are 
loaded from the SPRs and an address mode is loaded from 

the mode select unit. The address generator consists of 
two double parallel counters (cases I-IV) and one simple 
parallel counter (cases V-VI), that generate sequences of 
paired indices (i, k) or (j, l) (Section 3.1).The complexity 
of this block is O(wA·D). The critical path comprises a 
double counter, a multiplexer, a multiplier and an adder. 
The critical path complexity is O(log D). 
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Fig. 3. Parallel memory controller block diagram. 

Row address generator. This unit translates verti-
cal/horizontal constituents of 2D addresses into physical 
linear addresses inside the memory modules (called row 
address) according to (22). Since (22) is separable, verti-
cal blocks are connected to upper address bits, and hori-
zontal blocks - to lower bits. No additional logic is needed 
to implement this block. 

Module assignment unit. This unit transforms verti-
cal/horizontal constituents of 2 addresses into memory 
module addresses inside the memory modules matrix ac-
cording to (7), (14), (16), (18), and (21). Data pattern pa-
rameters are read from SPRs and an address mode is 
loaded from the mode select block. The equations are 
implemented in parallel and their outputs are multiplexed 
according to the address mode as depicted on Fig. 2. The 
complexity is O(log D). The critical path comprises a 
masking unit, two shifters, an adder, and a multiplexer. It 
is mostly influenced by the adder of width log D and it is 
O(log(log D)). 

Shuffle unit. The shuffle unit is used to reorder data 
according to the module assignment function. It consists 
of a parallel set of de-multiplexers and output OR-gates. 
The complexity of the shuffle unit is O(wA·D) and the 
critical path does not depend on D or wA. 

De-shuffle unit. The de-shuffle unit reorders data back 
to the initial sequence. It consists of a set of multiplexers 
and its complexity is O(wA·D). 

5. Synthesis results and analysis 

RTL simulation proved the functional correctness of 
the implemented design. The length of the data stream 
depends on the input parameters and is computed using 



 

equations (9), (12) or (19). Its width depends on the size 
of the matrix of memory modules VD×HD and data word 
width W. 

Our technology independent complexity estimation in-
dicated that the logic complexity is O(wA·D) (while the 
complexity of the matrix of memory modules is O(D2)) 
since all address transformations are implemented per 
vertical and horizontal constituencies rather than per sepa-
rate memory module. The critical path complexity is 
O(log D), i.e. it is weakly sensitive to the size of the 
memory matrix. In fact, the throughput is directly propor-
tional to the matrix size VD×HD, and inversely – to the 
critical path, i.e. DDWthroughput log2⋅∝ . 

Table I. Synthesis results with 10-bit row address width for 
90nm CMOS technology. 

Matrix 
size 

Complexity 
(KGates) 

Frequency 
(MHz) 

Throughput 
(Gbits/sec) 

 W=4 W=8 W=4 W=8 W=4 W=8 
2×2 25.34 26.73 377 371 44.94 88.45 
2×4 33.81 39.11 341 336 81.30 160.21 
2×8 58.48 70.19 314 321 149.72 306.12 
4×4 46.60 53.27 336 333 160.21 317.57 
4×8 88.07 101.57 321 314 306.12 598.90 
8×8 176.83 211.06 313 310 597.00 1182.55 

 
The synthesis was performed for an ASIC 90nm 

CMOS technology. The results for six different matrix 
sizes, word widths W of 4 and 8 Bytes, and 10-bit ad-
dresses are presented in Table I. In fact, data word width 
of 8 Bytes corresponds to utilization of two concurrently 
coupled 32-bit wide memory modules. The presented 
synthesis results confirm the linear increase of the design 
complexity and the quadratic increase of the throughput, 
derived from our theoretical estimations. As it was ex-
pected, the critical path is proportional to the logarithm of 
the matrix size and the design complexity linearly de-
pends on the matrix size. This fact gives an advantage of 
scaling the design according to a particular problem’s 
requirements with some minor degradation of speed. 
More extensive evaluation discussions on the proposed 
design and results from its physical implementation are 
presented in [12]. 

6. Conclusions 

We presented an interleaved memory organization for 
highly parallel computing systems such as vector proces-
sors and media accelerators. A major contribution of this 
work was the proposed partitioning of the memory access 
problem into six subtasks. This approach allowed a com-
plete design solution, which supports complex data access 
patterns for interleaved memory systems. More specifi-
cally, compared to related art, our design proposal intro-
duced the following new features: support of an extended 
set of 2D access pattern parameters; programmability of 
the access patterns via SPRs; arbitrary dimensions of the 

access pattern; design scalability. We proved theoretically 
that the design complexity scales proportionally to 
O(wA·D) and the critical path is proportional to O(log D). 
Our theoretical conclusions were confirmed by mathe-
matical modeling and by actual hardware synthesis for 
90nm CMOS technology. In the future, we plan to inte-
grate the design into a reconfigurable platform and per-
form experiments on real applications. 
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