

Abstract

We propose an interleaved memory organization sup-
porting multi-pattern parallel accesses in two-
dimensional (2D) addressing space. Our proposal tar-
gets computing systems with high memory bandwidth de-
mands such as vector processors, multimedia accelera-
tors, etc. We substantially extend prior research on inter-
leaved memory organizations introducing 2D-strided ac-
cesses along with additional parameters, which define a
large variety of 2D data patterns. The proposed scheme
guarantees minimum memory latency and efficient band-
width utilization for arbitrary configuration parameters
of the data pattern. We provide mathematical descriptions
and proofs of correctness for the proposed addressing
schemes. The design complexity and the critical paths are
evaluated using technology independent resource counts
and confirm the scalability of the proposal. Hardware
synthesis results for 90nm CMOS technology suggest that
throughputs in the range between 44 and 1182 Gbit/s can
be obtained at the cost of 26-212 Kgates for configura-
tions of 2x2 32-bit up to 8x8 64-bit memory modules.

Index Terms—Conflict-free access, high bandwidth,
multi-pattern access, parallel memories.

1. Introduction

The performance of modern SIMD machines and vec-
tor processors in particular, is highly dependent on the
ability of the memory subsystem to rapidly feed the proc-
essing units with data from the main memory storage.
Conventional cache memories proved to be reasonable
solutions for increasing memory bandwidth in general
purpose scalar systems, and significantly improve per-
formance of applications with linear data locality. Such
caches, however, fail to provide any performance benefits
to vector machines or to applications with spatial locality
such as multidimensional (e.g., 2D) matrix computations,
multimedia, etc. In SIMD processors, this memory per-
formance bottleneck is often prevented by interleaved
memory systems, also referred to as space-multiplexed
memories [1]. In these memory systems, parallel memory
modules are organized to access application specific data
patterns and to feed the processing units with data in a

concurrent manner. A module assignment function and a
module row address function (skewing schemes) ensure
conflict-free parallel data access [2]. An important pa-
rameter, constituting the data access pattern is the stride,
defined as the address distance between two adjacent data
pattern elements in the original data alignment. As indi-
cated in [3], no single skewing scheme exists allowing
conflict-free accesses for all constant strides at any loca-
tion in one dimensional interleaved memory organiza-
tions, let alone in two dimensional ones.

In this paper, we address the memory access problem
of multi-pattern data access in two-dimensional inter-
leaved memories. Our approach is to divide the problem
into six trivial sub-problems. We consider an exhaustive
set of pattern definition parameters and propose a per-
formance efficient, interleaved memory organization.
More specifically, the main contributions of the current
proposal are as follows:

• Extended set of 2D pattern access parameters – base
address; vertical and horizontal strides, group
lengths, and block sizes;

• Support for all possible 2D data patterns described
by the above parameters;

• Run-time programmability of the memory access
pattern;

• Independency of the data pattern size from the num-
ber of the interleaved memory modules;

• Arbitrary-strided accesses for a minimal number of
clock cycles;

• Modular implementation which can be easily simpli-
fied for a restricted subset of 2D data patterns;

• High design scalability confirmed by hardware syn-
thesis results.

Theoretical estimations of the design complexity sug-
gest that it is proportional to the square root of the number
of memory modules. This is confirmed by synthesis re-
sults for 90nm CMOS technology, which indicate that a
32-bit 2×2 organization requires 26 Kgates and a 64-bit
8×8 one – 212 Kgates. The critical path is proportional to
the logarithm of the number of memory modules, con-
firmed by the synthesized operating frequencies, which
vary from 377 MHz for 2x2 32-bit modules down to 310
MHz for 8x8 64-bit modules. The maximum throughput,

Memory Organization with Multi-Pattern Parallel Accesses

Arseni Vitkovski Georgi Kuzmanov, Georgi Gaydadjiev

ARCES – University of Bologna,
Viale Pepoli 3/2, 40123 Bologna, Italy

avitkovski@arces.unibo.it

CE/EEMCS – Delft University of Technology,
Mekelweg 4, 2628 CD Delft, the Netherlands

{G.K.Kuzmanov, G.N.Gaydadjiev}@tudelft.nl

978-3-9810801-3-1/DATE08 © 2008 EDAA

attainable by the synthesized 8x8 64-bit design, is
1182 Gbit/s.

The reminder of the paper is organized as follows: in
Section 2, some related work and necessary theoretical
background is provided. The proposed memory access
scheme is described in Section 3. Its hardware implemen-
tation and complexity evaluation are presented in Section
4. The experimental results are reported in Section 5. Fi-
nally, Section 6 concludes the paper.

2. Related work and theoretical basis

Our goal is to develop a memory hierarchy with dy-
namically adjustable regular 2D access patterns, which
would improve the data throughput between the main
memory and processing units. We target highly data-
parallel applications with regular data patterns, such as
audio/video compression (ADPCM, G721, GSM,
MPEG4, JPEG) or scientific vector calculations.

Related work: A number of solutions for conflict-free
parallel memory access have been proposed in the litera-
ture. Vector processor designers have developed memory
systems that are capable to deliver data at the required
bandwidth to high pipeline numbers, e.g. [4], [7]. Various
solutions have been proposed for optimal alignment of
data in multiple parallel memory models [3], [5], [6], [7],
[8]. Module assignment and row address functions have
been used in different interleaved memories to improve
their performance. In graphical visualization systems,
researches have been investigating various data patterns,
such as rectangles, horizontal and vertical lines, forward
and backward diagonals [5], [9]. Other researches explore
memory scheduling of DRAM chips by addressing local-
ity characteristics within the 3D (bank, row, column)
memory structure [10].

The above mentioned works lack architectural flexibil-
ity as the data access pattern is defined once at design
time and cannot be changed at a later stage. Moreover, in
previous work a number of restrictions on the access pat-
tern parameters are applied [3], [5], [6], narrowing the
application domain and increasing the programming ef-
forts required. Our design is essentially an extension and
generalization of the solution proposed in [6] preserving
all its design advantages. Contrary to related work, our
proposal provides a complete analysis of the pattern ac-
cess parameters. As a result, we suggest design problem
partitioning into six subtasks that cover arbitrary combi-
nations and dimensions of the considered access pattern
parameters.

Data pattern parameters: In interleaved memory or-
ganizations, the data distribution among the parallel
memory modules is determined by a module assignment
function m. A data element with a linear address a is as-
signed to a memory module according to m(a). A row
address function A determines the physical address of data
element a inside a memory module. Fig. 1 illustrates the

data pattern parameters we consider, namely: W∈ℕ - data
word width in bytes; Aw ∈ℕ - row address width in bits;

b′(vb,hb)∈[0,ℕ] - linear base address of the accessed
block with 2D constituents vb and hb; VS,HS∈ℕ - verti-
cal and horizontal strides (in words); VGL,HGL∈ℕ - re-
spective group lengths (in words); VBL,HBL∈ℕ - respec-
tive block lengths (in groups); M×N∈ℕ - the memory
dimensions; VD×HD∈ℕ - size of the matrix of memory
modules; (i,j) - vertical/horizontal group indices; (k,l) -
respective indices of the elements inside a group. Fig. 1
depicts an example of a data pattern of six groups of size
VGL×HGL=2×4 and strides (VS,HS)=(4,5).

Fig. 1. Considered memory access pattern.

Theoretical basis: We first need to translate the linear
base address b′ into a 2D-address),(hbvb :

hbNvbb +⋅=′ ,  Nbvb /′= , Nbhb mod′= (1)

Furthermore, any data element inside an accessed data
block has the following 2D address (va,ha):

haNvaa +⋅=′ ,
kiakVSivbva ,=+⋅+= , ljalHSjhbha ,=+⋅+= (2)

where i∈[0,VBL-1], k∈[0,VGL-1]; j∈[0,HBL-1],
l∈[0,HGL-1]. Equation (2) suggests that the 2D address is
completely separable, i.e. its vertical and horizontal con-
stituents are not correlated. Moreover, they are identical.
Therefore, in the following discussion we shall skip the
direction prefixes ‘V’ and ‘H’ in the parameters notations.

The stride parameter S, can be represented as [3]:
sS 2⋅= σ ∈ℕ, (3)

where 12 +⋅= kσ , k∀ ∈ℕ and s∈[0,ℕ]. Consequently,
S is odd when s=0, and even for s∈ℕ. Consider the fol-
lowing theorems.

Theorem 1: No single skewing scheme can be found
that allows conflict-free access for all the constant strides
and group lengths when the data pattern can be unrestrict-
edly placed. The theorem is valid for arbitrary number of

memory modules, when at least two data elements are
accessed concurrently1.

Proof: Let m(a) be the module assignment function
and lSjBaid +⋅+= the first accessed data element. Then,
the next accessed data element is:





−=−+=⋅++=
−<+=++⋅+=

+

+

.1,)1(
;1,11

1

1

GLliflSaSjBa
GLlifalSjBa

idid

idid

The two elements can not be accessed conflict-free if
there are stride S and group length GL such that
m(aid)=m(aid+1) □

Theorem 2: All odd strides can be accessed conflict-
free with the low-order interleaved scheme if the number
of memory modules is a power of two: D=2d, d ∈ℕ [11].

Theorem 3: Let stride S΄=2s, group length GL=2gl ,
and number of memory modules along one dimension
D=2d , where s,gl,d∈ℕ. Also let ds ≥ which means that
the strides have less than one access per row. Then:

  DDaGLaam ds mod
2

)(











⋅+= −

 (4)

allows conflict-free accesses to D memory modules.
Proof: We find a period P of function (4). If function

m(a) maps address a to its module address for a stride S΄
and group length GL, then m(a)=m(a+P·S΄), ∀ a . Let us
transform (4) as follows:

  =











 ′⋅+⋅+′⋅+= − DDSPaGLSPaam ds mod

2
)()()(

  DGLSP
Da

GLa ds mod)(
2

/








+′⋅+



⋅+= −

According to the properties of the modulo operation,
this equality holds when (P·(S΄+GL)) mod D=0, which
corresponds to the following set of periods:









⋅=⋅
⋅=′⋅

⋅=+′⋅

,
;

;)(

3

2

1

DzGLP
DySP

DxGLSP
 ⇒









⋅=
′⋅=

+′⋅=

,
;

;)(

3

2

1

GLDzP
SDyP

GLSDxP

where x,y,z∈ℕ and x,y,z:P∈ℕ. Thus, the minimum pe-
riod is:),(min GLDGCDDP = , where GCD is greatest
common divisor.

Now, we find number of accesses performed to the dis-
tinct memory modules. Harper and Jump showed in [12]
that for a basic skewing storage scheme the number of
distinct modules referenced during a vector access is

),min(DPA =′ . For our case GL=2gl, gl∈ℕ and the num-
ber of distinct modules is:

() .),,(min,
),(

min),min(DDGLDLCMD
GLDGCD

GLDDGLPA ==






 ⋅=⋅=

Thus, any vector of length D, having the form of Fig. 1
and (2), inside the sequence of module addresses gener-

1 This theorem follows Theorem 1 from [1] but in our case it is gen-

eralized since it considers the group length together with the stride.

ated by m(a) has exactly D distinct addresses. This is the
definition of a conflict-free access. □

Theorem 4: Let stride S΄=2s, group length GL=2gl,
and number of memory modules along one dimension
D=2d, where s,gl,d ∈ℕ. Also let s<d which means that
the strides have at least one access per row. Then

DS
D
aGLaam mod)mod()(′












⋅+= (5)

allows conflict-free parallel accesses to D modules.
Proof: Identically to Theorem 3 we find a period P

based on)()(SPamam ′⋅+= , ∀a.
.mod)mod()(DS

D
SPaGLSPaam ′












 ′⋅+

⋅+⋅+=

Using properties of the modulo operation, we derive:
















′











 ′⋅+⋅+=

=′











⋅+

=′⋅

.mod)mod(

mod)mod(

;0mod)(

DS
D

SP
D
aGLa

DS
D
aGLa

DSP

The first equation gives the set of periods SDxP ′⋅= ,

x∈ℕ: P∈ℕ. Substitute P in the second equation:

=′











 ′

⋅
′

⋅+⋅+= DS
D
S

S
Dx

D
aGLaam mod)mod()(

.mod)mod(DSxGL
D
aGLa ′







 ⋅+



⋅+=

Using the same property of modulo operator we obtain:
(x·GL) mod S΄=0 ⇒ GLSyx ′⋅= , where y∈ℕ: x∈ℕ.
Substituting x provides the set of periods P :

GL
Dy

S
D

GL
Sy

S
DxP ⋅=

′
⋅

′
⋅=

′
⋅= , y ∈ℕ: P ∈ℕ.

This set of periods is identical to the one from the proof of
Theorem 3. Therefore, the minimum period equals to

),(min GLDGCDDP = and, as follows from the same
proof, the number of distinct addresses equals to D. Thus,
the module assignment function (5) is conflict-free. □

Theorem 5: If a vector is to be accessed with even
stride S=σ · 2s, where GCD (σ,2)=1, s ∈ℕ, s ≠ 0, and its
elements are arranged in memory according to the storage
scheme for a stride S΄=2s, the accesses are conflict-free.

Proof: The proof is similar to [3] with the only differ-
ence that, we examine the sequence of groups of module
addresses instead of the sequence of single addresses. □

3. Proposed memory access scheme

Since no single scheme exists for all strides and group
lengths (Theorem 1), we propose to partition the problem
in a number of cases. This reduces the problem to a set of
trivial sub-problems (see Fig. 2). The initial problem par-
titioning is done based on the stride oddness. Theorem 2
suggests that odd strides can be accessed conflict-free

using a basic skewing scheme [1], [6]. Furthermore, all
odd and even strides are divided into six subgroups.

3.1 Module assignment function

We partition the design problem, imposed by the mul-
tiplicity of access patterns, into trivial subtasks. A module
assignment function is devised for each of six different
cases with respect to particular initial conditions:

BL
D

GLGL
D
BL ⋅



<⋅



BL

D
GLGL

D
BL ⋅



<⋅



 BL

D
GLGL

D
BL ⋅



≥⋅





Fig. 2. Problem partition.

Case I. Initial conditions:
}0;1)2,(|2{ ==⋅= sGCDS s σσ , .BL

D
GL

GL
D
BL

⋅



<⋅



 (6)

The inequality guarantees that the number of accesses
required for the complete pattern is minimal. When
BL>D, more than one access are required to reed/write a
whole group of data. If D–(BL mod D)>0, then the re-
maining memory modules stay unused. This case repre-
sents a conventional interleaved scheme with stride access
which can be implemented conflict-free according to
Theorem 2. Thus, the module assignment function is:

Daam mod)(= , (7)

The indices iterate according to the following sequence:

(i,k) = ((0,0);(1,0);…;(VBL-1,0);
 (0,1);(1,1);…;(VBL-1,1);
 …;
 (0,VGL-1);(1,VGL-1);…;(VBL-1,VGL-1)).

(8)

The number of read/write accesses for the complete
data pattern is equal to:

GL
D
BLt ⋅



= . (9)

Case II. Initial conditions:
}0;1)2,(|2{ ==⋅= sGCDS s σσ ,

}0;1)2,(|2{ ≠=⋅= sGCDS s σσ & glGL 2≠ ,

BL
D

GLGL
D
BL ⋅



≥⋅



 .

(10)

An access to the data pattern is performed group-wise.
When GL>D, multiple accesses are required to reed/write
a complete group. If D-(GL mod D)>0, there are unused
memory modules. The inequality again guarantees mini-
mal number of accesses cycles. It has been shown in [6]
that any separate group inside the block can be accessed
conflict-free.

The module assignment function is the same as for
case I (see (7)), but the sequence of indices is different:

(i,k) = ((0,0);(0,1);…;(0,VGL-1);
 (1,0);(1,1);…;(1,VGL-1);
 …;
 (VBL-1,0);(VBL-1,1);…;(VBL-1,VGL-1)).

(11)

The number of the read/write accesses is:

BL
D

GLt ⋅



= . (12)

Case III. Initial conditions:
gls GLsGCDS 2&}0;1)2,(|2{ ≠≠=⋅= σσ ,

BL
D

GLGL
D
BL ⋅



<⋅



 ,

ds ≥ .

(13)

In this case, the indices iterate as in (8), but we employ
the module assignment function proposed in [3]:

  D
Da

aam ds mod
2

)(











+= −

. (14)

In fact, all initial conditions for this case exactly repeat
the ones used in [3]. The number of read/write accesses to
the complete data pattern is described by (9).

Case IV. Initial conditions:
gls GLsGCDS 2&}0;1)2,(|2{ ≠≠=⋅= σσ ,

,BL
D

GLGL
D
BL ⋅



<⋅



 ds < . (15)

Again, the memory access repeats the sequence (8),
and the module assignment function is borrowed from [3]:

DS
D
aaam modmod)(







 ′



+= . (16)

The amount of read/write accesses to the complete data
pattern is described by (9).

Case V. Initial conditions:
gls GLsGCDS 2&}0;1)2,(|2{ =≠=⋅= σσ , ds ≥ . (17)

The data pattern access is element-wise, that allows the
complete utilization of the memory modules. The module
assignment function has the following representation:

  DDaGLaam ds mod
2

)(











⋅+= −

, (18)

The sequence of indices (i, k) is not important in this
case since all memory modules are accessed conflict-free
(Theorem 3). The amount of read/write accesses to the
complete data pattern is:





 ⋅=

D
BLGLt . (19)

Case VI. Initial conditions:
gls GLsGCDS 2&}0;1)2,(|2{ =≠=⋅= σσ , ds < . (20)

An access to the data pattern is performed element-
wise, identical to case III. The module assignment func-
tion has the following representation:

,mod)mod()(DS
D
aGLaam ′












⋅+= (21)

The sequence of indices (i, k) is not important again
since all memory modules are accessed conflict-free
(Theorem 4). The number of the read/write accesses to the
complete data pattern is described by (19).

3.2 Row address function and access latencies

The row address function determines the linear address
inside a memory module. In spite of having six different
representations of the module assignment function, there
is only one row address function. The row address func-
tion is separable and it is described as follows:





+






⋅



=

HD
ha

HD
N

VD
vahavaA),(. (22)

The total number of read/write accesses is described by
the following best- and the worst case equations:





 ⋅×



 ⋅=

HD
HBLHGL

VD
VBLVGLt best

m
, (23)

×











⋅=

VD
VBLVGLVBLVGLt worst

m
),max(),min(

.),max(),min(











⋅×

HD
HBLHGLHBLHGL

(24)

The best case memory latency corresponds to the cases
V-VI, while the worst case memory latency corresponds
to the cases I-IV. Our primary design goal in all six cases,
described in section 3.1, is to provide minimum possible
latencies for the particular initial conditions.

4. Design implementation and complexity
evaluation

In order to evaluate our scheme, we have verified it us-
ing a MatLab model, implemented it in VHDL and per-
formed technology independent complexity evaluation. A
completed RTL design was synthesized using Synopsys
tools. Structurally, the interleaved memory consists of an
address generation part, a data routing part, and a matrix
of memory modules (see Fig. 3). The pattern parameters
are stored in programmable Special Purpose Registers
(SPRs). The address part is split in identical vertical and
horizontal sides and includes the following blocks: mode
select, address generator, set of row address generators,
module assignment and address shuffle. The data routing
part consists of a number of de-shuffle units. The critical
path (highlighted on Fig. 3) comprises the address genera-
tor, the module assignment, and the decoding part of the
shuffle block.

Mode select unit. This unit sets the address generation
logic to a mode, corresponding to the six cases of the
problem partitioning (section 3.1). The pattern parameters
S, GL and BL are loaded from the SPRs. The hardware
complexity is constant.

Address generator. The address generator produces
the vertical and horizontal constituents of the 2D ad-
dresses according to (2). Data pattern parameters are
loaded from the SPRs and an address mode is loaded from

the mode select unit. The address generator consists of
two double parallel counters (cases I-IV) and one simple
parallel counter (cases V-VI), that generate sequences of
paired indices (i, k) or (j, l) (Section 3.1).The complexity
of this block is O(wA·D). The critical path comprises a
double counter, a multiplexer, a multiplier and an adder.
The critical path complexity is O(log D).

S
hu

ffl
e

S
pe

ci
al

 P
ur

po
se

 R
eg

is
te

rs
 (S

P
R

s)

C
R

IT
IC

AL
 P

AT
H

Fig. 3. Parallel memory controller block diagram.

Row address generator. This unit translates verti-
cal/horizontal constituents of 2D addresses into physical
linear addresses inside the memory modules (called row
address) according to (22). Since (22) is separable, verti-
cal blocks are connected to upper address bits, and hori-
zontal blocks - to lower bits. No additional logic is needed
to implement this block.

Module assignment unit. This unit transforms verti-
cal/horizontal constituents of 2 addresses into memory
module addresses inside the memory modules matrix ac-
cording to (7), (14), (16), (18), and (21). Data pattern pa-
rameters are read from SPRs and an address mode is
loaded from the mode select block. The equations are
implemented in parallel and their outputs are multiplexed
according to the address mode as depicted on Fig. 2. The
complexity is O(log D). The critical path comprises a
masking unit, two shifters, an adder, and a multiplexer. It
is mostly influenced by the adder of width log D and it is
O(log(log D)).

Shuffle unit. The shuffle unit is used to reorder data
according to the module assignment function. It consists
of a parallel set of de-multiplexers and output OR-gates.
The complexity of the shuffle unit is O(wA·D) and the
critical path does not depend on D or wA.

De-shuffle unit. The de-shuffle unit reorders data back
to the initial sequence. It consists of a set of multiplexers
and its complexity is O(wA·D).

5. Synthesis results and analysis

RTL simulation proved the functional correctness of
the implemented design. The length of the data stream
depends on the input parameters and is computed using

equations (9), (12) or (19). Its width depends on the size
of the matrix of memory modules VD×HD and data word
width W.

Our technology independent complexity estimation in-
dicated that the logic complexity is O(wA·D) (while the
complexity of the matrix of memory modules is O(D2))
since all address transformations are implemented per
vertical and horizontal constituencies rather than per sepa-
rate memory module. The critical path complexity is
O(log D), i.e. it is weakly sensitive to the size of the
memory matrix. In fact, the throughput is directly propor-
tional to the matrix size VD×HD, and inversely – to the
critical path, i.e. DDWthroughput log2⋅∝ .

Table I. Synthesis results with 10-bit row address width for
90nm CMOS technology.

Matrix
size

Complexity
(KGates)

Frequency
(MHz)

Throughput
(Gbits/sec)

 W=4 W=8 W=4 W=8 W=4 W=8
2×2 25.34 26.73 377 371 44.94 88.45
2×4 33.81 39.11 341 336 81.30 160.21
2×8 58.48 70.19 314 321 149.72 306.12
4×4 46.60 53.27 336 333 160.21 317.57
4×8 88.07 101.57 321 314 306.12 598.90
8×8 176.83 211.06 313 310 597.00 1182.55

The synthesis was performed for an ASIC 90nm

CMOS technology. The results for six different matrix
sizes, word widths W of 4 and 8 Bytes, and 10-bit ad-
dresses are presented in Table I. In fact, data word width
of 8 Bytes corresponds to utilization of two concurrently
coupled 32-bit wide memory modules. The presented
synthesis results confirm the linear increase of the design
complexity and the quadratic increase of the throughput,
derived from our theoretical estimations. As it was ex-
pected, the critical path is proportional to the logarithm of
the matrix size and the design complexity linearly de-
pends on the matrix size. This fact gives an advantage of
scaling the design according to a particular problem’s
requirements with some minor degradation of speed.
More extensive evaluation discussions on the proposed
design and results from its physical implementation are
presented in [12].

6. Conclusions

We presented an interleaved memory organization for
highly parallel computing systems such as vector proces-
sors and media accelerators. A major contribution of this
work was the proposed partitioning of the memory access
problem into six subtasks. This approach allowed a com-
plete design solution, which supports complex data access
patterns for interleaved memory systems. More specifi-
cally, compared to related art, our design proposal intro-
duced the following new features: support of an extended
set of 2D access pattern parameters; programmability of
the access patterns via SPRs; arbitrary dimensions of the

access pattern; design scalability. We proved theoretically
that the design complexity scales proportionally to
O(wA·D) and the critical path is proportional to O(log D).
Our theoretical conclusions were confirmed by mathe-
matical modeling and by actual hardware synthesis for
90nm CMOS technology. In the future, we plan to inte-
grate the design into a reconfigurable platform and per-
form experiments on real applications.

Acknowledgements

This research was partially supported by the Dutch
Technology Foundation STW, applied science division of
NWO and the Technology Program of the Dutch Ministry
of Economic Affairs (project DCS.7533); European Com-
mission FP6 (projects SARC and MORPHEUS); and
European Doctorate in Information Technology (EDITH).

References

[1] E. Aho, J. Vanne, and T.D. Hamalainen, “Parallel Mem-
ory Architecture for Arbitrary Stride Accesses,” Design
and Diagnostics of Elect. Circ. and Syst., pp. 63 – 68,
April 18-21, 2006.

[2] J. Takala and T. Jarvinen, “Stride permutation access in
interleaved memory systems,” in Domain-Specific Multi-
proc. – Syst., Architect., Modeling, and Simul., pp. 63-84,
Mercel Dekker, New York, NY, USA, 2004.

[3] D.T. Harper III, D.A. Linebarger, “Conflict-Free Vector
Access Using a Dynamic Storage Scheme,” IEEE Trans.
on Comp., vol. 40, no. 3, pp. 276-283, March 1991.

[4] P. Budnik and P.J. Kuck, “The organization and use of
parallel memories,” IEEE Trans. on Comp., vol. 20, no.
12, pp. 1566-1569, 1971.

[5] J.W. Park, “An efficient buffer memory system for subar-
ray access,” IEEE Trans. on Parallel and Distrib. Syst.,
vol. 12, no. 3, pp. 316-335, 2001.

[6] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “Mul-
timedia rectangular addressable memory,” IEEE Trans. on
Multimedia, vol. 8, no. 2, pp. 315-322, 2006.

[7] D.H. Lawrie, “Access and alignment of data in an array
processor,” IEEE Trans. on Comput., vol. C-24, no. 12,
pp. 1145-1155, 1975.

[8] A. Seznec and R. Espasa, “Conflict free accesses to
strided vectors on a banked cache,” IEEE Trans. on
Comp., vol. 54, pp. 913 - 916, 2005.

[9] J. Lee, C. Park, and S. Ha, “Memory access pattern analy-
sis and stream cache design for multimedia applications,”
Proc. of the ASP-DAC 2003 – Design Automation Conf.,
pp. 22-27, 2003.

[10] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D.
Owens, “Memory access scheduling,” Proc. of the 27th
Int. Symp. on Comp. Arch., pp. 128-138, 2000.

[11] M. Valero, T. Lang, M. Peiron, E. Ayguade, “Conflict-
free access for streams in multimodule memories,” IEEE
Trans on Comp., vol. 44, no. 5, pp. 634-646, 1995.

[12] A. Vitkovski, “Architecture and implementation of the 2D
memory with multi-pattern parallel accesses”, tech. rep.,
no. CE-TR-2007-03, CE/EEMCS, TUDelft.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

