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Abstract

This paper presents a novel architecture for on-chip
neural network training using particle swarm optimiza-
tion (PSO). PSO is an evolutionary optimization algorithm
with a growing field of applications which has been re-
cently used to train neural networks. The architecture ex-
ploits PSO algorithm to evolve network weights as well as
a method called layer partitioning to implement neural net-
works. In the proposed method, a neural network is parti-
tioned into groups of neurons and the groups are sequen-
tially mapped to available functional units. Thus, the archi-
tecture is reconfigurable for training and implementing dif-
ferent multilayer feedforward neural networks without the
need for modifying the architecture. The implementation is
intended for real-time applications regarding hardware cost
and speed. The results show that the proposed system pro-
vides a trade-off between resource requirements and speed.

1. Introduction

Artificial neural networks (ANNs) have been success-
fully used in a wide range of scientific and engineering ap-
plications [7,9,18]. ANNs consist of networks of simple el-
ements called neurons which communicate with each other
through weighted connections. By learning or training from
examples, a neural network (NN) is capable of exhibiting
intelligent behavior and modeling complex non-linear func-
tions which makes it proper to variable conditions. Training
is the process of gradually adjusting the weights of connec-
tions. Backpropagation algorithm is mainly used to train
ANNs for many applications [16, 17, 19]. Since this algo-
rithm is based on gradient descent which demands deriva-
tives, it is complex and prone to get trapped in local optima.
It also has a slow convergence rate and high resource re-
quirement on hardware.

Particle swarm optimization (PSO) [12] is one of the

evolutionary computation techniques based on swarm in-
telligence. PSO is a stochastic population-based search al-
gorithm. Recently, PSO algorithm has been employed for
training feedforward neural networks. In [1, 8, 14], the au-
thors have proven the speed and accuracy of using PSO to
determine neural network weights in comparison to other
methods. Furthermore, PSO requires fewer computations
than the other methods to obtain the same solution.

During the last two decades, hardware implementation
of ANNs has become more popular among researchers due
to the major limitations of software implementations. Im-
portantly, software implementations of ANNs which run se-
quentially are time-consuming and cannot benefit from in-
herent parallelism of ANNs [2, 15]. For using ANNs in
some real-time applications, hardware implementations of
ANNs to reach the necessary speed is indispensable. On
the other hand, hardware implementation has some draw-
backs in comparison to software realization such as lack of
flexibility and resource limitations. Thus, the idea of recon-
figurable ANNs is introduced to cope with these problems.

Extensive hardware implementations of NNs have been
reported in literature. Here, we discuss some recently pre-
sented reconfigurable implementations. Himavathi et al.
[10] have proposed a method to implement large neural net-
works in FPGAs with a low resource requirement and with-
out much compromise on the speed. However, the area cost
of the proposed architecture is directly proportional to the
largest layer (layer with the maximum number of neurons).
Hence, the architecture is not appropriate for the networks
which have a large layer. Li et al. [13] have presented a re-
configurable systolic approach. Their architecture is com-
posed of several processing units performing basic neural
computations. By changing the number of processing units,
different neural networks are implemented. Domingos et
al. [3] have designed an architecture for neural network
training. Although memory bandwidth puts obstacles to
scale the architecture, the reported performance is notable.
Nevertheless, available architectures generally make use of
backpropagation algorithm which can only achieve local so-

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



lutions, while evolutionary algorithms have the potential to
attain a global solution. To the best of our knowledge, none
of previous work has proposed an on-chip training approach
using PSO.

This paper proposes a reconfigurable architecture for on-
chip neural network training using PSO algorithm. The pro-
posed system is able to implement and train multi-layer per-
ceptron (MLP) neural networks without regard to the net-
work size. There are four neural network processing ele-
ments (PE) in the system performing NN computation. An
NN is partitioned into at most four neurons and then it is
mapped to PEs in order to deal with different neural net-
works. In addition, a PSO hardware core which has low
resource requirement is exploited to train network weights.
Section 2 gives an overview of PSO algorithm and the prob-
lem of NN training. The architecture of a neuron PE is pre-
sented in Section 3. The proposed system is described in
Section 4. Section 5 explains the implementation results
followed by concluding remarks in Section 6.

2. Particle Swarm Optimization

2.1. Particle Swarm Optimizer Algorithm

The PSO utilizes social interaction between agents to op-
timize a problem. In PSO, a potential solution, called a par-
ticle, represents a point in the search space. Each particle
flies through the solution space of problem to search for the
global optimum according to its own and social historical
experiences. A particle consists of five components. The
first component, x, is a vector that contains the current lo-
cation in the solution space. fitness is the quality of the
solution represented by the vector x. v is a vector that con-
tains the velocity for each vector of x. fitnessp is the fit-
ness value of the best solution encountered by a particular
particle. Finally, pbest is a copy of x for the location of the
best solution encountered by a particular particle. Each par-
ticle is also aware of gbest, the particle reporting the current
best fitness, and fitnessg , the fitness value of the gbest.

The heart of PSO algorithm is the process by which v is
modified, forcing the particles to search through the most
promising areas of the solution space. PSO concept con-
sists of velocity changes of each particle toward its pbest
and gbest locations. The modified velocity and location of
each individual particle can be calculated using the follow-
ing formulas:

vk+1
id = w · vk

id + c1 · r1 · (pbestid − xk
id)

+ c2 · r2 · (gbestd − xk
id) (1)

xk+1
id = xk

id + vk+1
id (2)

where xk
id is the current location of the particle i at the

iteration k, which has vk+1
id as the velocity and satisfies

Vmin ≤ vk+1
id ≤ Vmax. Besides, there are five parameters:

w is the inertia weight factor, c1 and c2 are acceleration con-
stants, and r1 and r2 are uniform random numbers between
0 and 1.

2.2. Problem Description of NN Training

In NN training, the main goal is to obtain a set of weights
that minimizes mean squared error. In order to address the
problem of neural network training to PSO, we represent
each set of weights and biases of a network by a single par-
ticle. Thus, each particle is a string of continuous-valued
numbers encoding a candidate solution for weights and bi-
ases of all neurons in the network. The length of a particle
depends on the network intended to train. A pool of par-
ticles is considered as a swarm (population) for PSO. By
repetitively updating particles of the swarm, the most suited
network weights are gradually determined. Different stop-
ping criteria may be used. One criterion is to update the
particles until the error between actual and target outputs is
lower than a given threshold. Stopping the training process
after a given period without any improvement in training is
the next criterion. Another criterion is training the network
for a given iteration.

3. Neuron Architecture

In digital implementation of neural networks, the numer-
ical precision of data determines a tradeoff between cost
and performance. Higher precision for fixed-point repre-
sentation leads to larger resource requirement, and so higher
cost. While less precision causes more quantization errors
that may prevent neural networks from learning. Regard-
ing limited resources available on an FPGA, floating-point
implementation is not area-efficient. According to [11], the
minimum required fixed-point precision for weights is 16
bits. In order to adapt the proposed hardware for a wide
range of applications, the weights and biases of the network
are represented with 23 bits (1 bit for sign, 7 bits for integer
part, and 15 bits for fraction part). Since the range of the
sigmoid function is [−1.0;+1.0], 17 bits for sigmoid LUT
output data (2 bits for sign and integer part, and 15 bits for
fractional part) are assigned [4].

As shown in Figure 1, the internal structure of a neu-
ron is composed of different functional blocks which are
combined to form the hardware implemented neuron. In
fact, computations of MLP neurons require a multiply-and-
accumulate (MAC) unit plus a sigmoid calculation unit. In
the figure, MUL performs multiplication of neuron input
and neuron weight which are 17-bit and 23-bit signed
numbers. ADD performs the addition of the result of multi-
plication and accumulation register. Accumulation register
is used to store the partial sum of the products of weights
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Figure 1. Architecture of a neuron processing
element.

and inputs. The multiplication and addition operations are
repeated with the appropriate values depending on the num-
ber of neuron inputs. After addition of the bias and accu-
mulation register, the result is saturated and converted to a
2’s-complement 10-bit data by using saturation unit and the
saturated accumulation result is applied to a sigmoid calcu-
lation unit.

Here bipolar sigmoid function is used as the activation
function. Sigmoid function saturates for large inputs includ-
ing over +8 or under -8, which implies that bit-width for the
integer part of sigmoid input can be selected as 4 bits. The
bit-width for the fractional part of the sigmoid input can
be selected 6 bits which provides sufficient precision [4].
Sigmoid unit produces the value for the activation function
regarding to the address from the output of the saturation
unit. The sigmoid unit is implemented as a lookup table to
utilize the built-in RAM available in FPGA. The output of
the sigmoid unit is written to one of the register files contin-
gent on controlling signals in order to use as neuron input
for the next layer.

In this architecture, two register files are embedded in
each neuron with the purpose of accelerating neural net-
work computations. In computations of each layer of the
neural network, one register file provides neuron input
values for neurons, while another register file stores the out-

put result (neuron output) of its including neuron. Since
the neuron outputs of the neurons in the current layer are
used as the neuron inputs for the next layer, the two reg-
ister files will exchange their tasks for performing the com-
putation of the next layer using controlling signals. Finally,
neuron output is selected from newly-computed sigmoid
output and previously stored values in the register files. The
controlling signals of all the units are obtained by decoding
the command input of the neuron.

4. Hardware Implementation of the on-Chip
Training Approach

4.1. Training Methodology

We propose an on-chip training approach for feed-
forward MLP neural networks. In this paper, PSO algo-
rithm has been employed to evolve a set of weights for a
given network. After achieving desired weights, the system
is capable of acting as hardware-based neural network real-
ization. It can be seen from Figure 2 that the architecture
consists of four major units incorporating together. These
units are PSO core, weight temporary storage, neuron map-
ping besides NN computation, and output error calculation.

4.2. PSO Core

A hardware particle swarm optimization core has been
designed and implemented to update the particles. This unit
accomplishes all processes which are related to particles
and consists of diverse computational blocks. It also con-
tains some memory blocks used to keep vectors and values
of PSO such as particle location, particle velocity, and pbest
vectors. The internal structure of the core can be found
in [5,6]. Location vectors of particles (weights) are updated
using this core. Updated weights besides the particle ad-
dress are forwarded to weight temporary storage unit. The
core was designed to attain the throughput of one weight
per clock.

4.3. Weight Temporary Storage

This unit consists of two memory blocks, a memory con-
trol block, and routing logics. The unit acts as a medium
between the weight evolution unit (PSO core) and the neu-
ron mapping unit. Memory blocks are used to temporarily
hold received weights in order to feed the network. Having
two memory blocks makes it possible for the architecture
to operate in parallel and significantly improves the per-
formance. While the PSO core is updating the next train-
ing set of weights, it also writes the updated weights to
one of the memory blocks. As the network is being com-
puted, neuron mapping unit reads from another memory
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Figure 2. Block diagram of the neural network training architecture.

block which holds the previously computed weights. Each
weight memory block has four memory banks. Thus, all
neuron PEs are able to read their respective weights con-
currently. Weight memory control block is responsible for
writing received weights to the appropriate memory block
and memory banks. Moreover, it computes read and write
addresses according to the status signals received from the
adjacent units and places the correct set of weights to neu-
ron PEs.

4.4. Neuron Mapping and NN Computation

The realization of a multilayer network involves the im-
plementation of all the neurons and all layers of the net-
work. The more neurons and the more layers, the more
hardware cost it requires. Although computation of the neu-
rons in a layer can be performed in a parallel manner, com-
putation of layers is performed sequentially as the output of
each layer is the input to the next layer. Indeed, implement-
ing the single largest layer (i.e., layer with maximum neu-
rons) provides a good method for hardware implementation
of ANN with low resource requirement. However, there
are some complex and large networks needing a great num-
ber of neurons per layer. Realizing a hardware approach
that embraces these large networks (i.e., network with many

neurons in a layer) demands a considerable hardware cost.
In addition, even if a myriad of neuron PEs are provided in
hardware, a few of them are exploited to compute conven-
tional networks. An architecture which is adaptable to dif-
ferent networks is presented to realize multilayer networks
with minimum resource requirement. Therefore, MLP neu-
ral networks with different number of layers and a vari-
ety number of neurons per layer can be trained and imple-
mented.

The concept of layer partitioning is proposed herein
which enables the system to cope with networks of any
number of neurons with the same hardware. Layer par-
titioning denotes the partitioning of layers and repeatedly
mapping of subsets of neurons in a layer to the available
functional blocks. Therefore, the layer partitioning leads to
both a meaningful hardware cost reduction and a scalable
architecture being reconfigurable for any networks.

In the architecture, four neuron PEs as the functional
blocks are employed to perform network computations.
Hence, a group of neurons in a layer is mapped to four
neuron PEs and after storing the results, the next subset is
mapped. The mappings are repeated until computation of
all neurons in the layer is performed. Then, these steps are
repeated until all layers are computed. For instance, con-
sider a 3-9-2 network and four neuron PEs. The first layer



has three neurons, so all three neurons are mapped to the
neuron PEs. The next layer containing nine neurons is par-
titioned into three subsets, two subsets of four neurons and
a subset of one neuron. This layer is mapped in three map-
ping steps. Finally, the last layer is mapped.

The neuron mapping and control unit, which resembles
a state machine, directs the execution of the steps of the
layer partitioning. To do so, the unit reads neural network
specification register which holds number of layers in net-
work as well as number of neurons in each layer. Also, the
unit reads from weight memory and training data memory
(which holds the training set) and places proper weights,
inputs, addresses and command signals to PEs and fitness
evaluation unit.

4.5. Output Error Calculation

Fitness evaluation unit calculates fitness value of each
particle and writes it to the fitness value memory block. Fit-
ness value is considered as the cumulative error of network
output(s) for the entire training set. Every neuron PE cal-
culates its output and passes it to fitness evaluation block.
The block reads the desired output from target output mem-
ory and calculates the difference (error) between the target
output and actual output of the neural network. Finally, all
errors are summed up and forwarded to the fitness value
memory block.

5. Results

Implementation details of the proposed neural network
training architecture are presented in this section. The sys-
tem has been implemented on a Xilinx Virtex2P FPGA
(chip xc2vp7-5fg456). These FPGAs contains embedded
18×18 Multipliers which perform accumulate functions as
well as multiply operations. All blocks are developed using
synthesizable Verilog hardware description language. Four
different neural networks are trained in which each has var-
ious numbers of layers and neurons in order to measure the
performance of the architecture and show the adaptability of
the architecture to different networks. According to [8], the
PSO algorithm uses parameter values w = 0.8, c1 = c2 = 2
in all of the networks, and the swarm size is 25. During the
run of the algorithm, a maximum velocity Vmax = 2 was
applied for every component of the velocity vector. In this
design, the maximum operating frequency is 75 MHz. The
hardware cost of the proposed architecture is summarized
in Table 1.

It is worth noting that due to use of layer partitioning
method, the hardware area of the architecture for different
networks is constant and only the required memory bits for
some units (PSO core and weight temporary storage) are
variable. As shown, the total resource requirement of the

architecture is fewer than 2200 slices, so it is possible to add
more neuron PEs to the design to speed up the computation
time of complex networks.

After training the network, the architecture is able to re-
configure as a neural network realization. Table 2 shows
the results of the proposed architecture for different neural
networks. The first column shows the network structure.
The second column represents the performance of the ar-
chitecture for executing trained networks in terms of con-
nections per second (CPS). It also shows the speed of the
architecture for network training in terms of connection up-
dates per second (CUPS) . While PSO core is updating the
next training set of weights, neural PEs can perform the net-
work computations using the weights stored in weight tem-
porary storage. Thus, network training and weight updating
phases are performed concurrently, reducing training time
considerably.

Table 2 also makes a comparison between the proposed
design and other designs which have been implemented on
Xilinx FPGAs and benefit from higher frequency. DOM [3]
and LI [13] have used backpropagation algorithm for net-
work training and HIM [10] has not implemented any on-
chip training method. Our design takes advantage of 23-bit
fixed point precision and four low cost neural PEs running
at 75 MHz. Although our architecture has lower perfor-
mance in some cases, it has higher precision and less area
cost. To gain higher performance for computational inten-
sive networks, more neuron PEs can be added to the archi-
tecture. Using a more powerful FPGA is another way to
achieve higher frequency.

6. Conclusions

A method to realize large neural networks on available
hardware has been proposed which leads to a scalable and
fast architecture with low area cost. Moreover, an on-chip
approach for neural network training using PSO algorithm
has been described. The proposed system provides a way
to implement and train various networks without increasing
the area cost of the architecture. The results prove the ad-
vantages of the system for real-time applications. Adding
more PEs to the architecture is our future step to improve
the computational power.
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Table 1. Resource Requirements of the NN Training Approach Using PSO in Xilinx Virtex2P
Unit Slices Slice Flip Flops 4-input LUTs BRAMs 18×18 MULTs
PSO Core 757 605 1,073 6* 10
Four Neuron PEs 1020 796 1716 4 8
Neuron Mapping and Control 248 129 425 0 0
Weight Temporary Storage 183 148 325 8 0
Fitness Evaluation 136 112 242 0 0
* The reported memory blocks are for 8-5-5-5-5-3 network. Required memory bits are dependent on both

neural network structure and training data.

Table 2. Performance Results for Four Different Networks
Network Proposed Architecture Architectures in Literature (Fixed Point)
Structure Performance Name Performance Precision and Freq. PEs

2-2-1 32 MCPS - 32 MCUPS DOM [3] 21.4 MCPS - 8.6 MCUPS 16 bits at 100 MHz 12
25-20-10 204 MCPS - 204 MCUPS DOM [3] 630 MCPS - 226 MCUPS 16 bits at 100 MHz 12
25-10-10 154 MCPS - 154 MCUPS LI [13] Not Reported - 432 MCUPS 16 bits at 100 MHz 10

8-5-5-5-5-3 112 MCPS - 112 MCUPS HIM [10] 35 MCPS - Not Reported 17 bits at 73 MHz 5
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