
Design flow for embedded FPGAs
based on a flexible architecture template

B. Neumann, T. von Sydow, H. Blume, T. G. Noll
Chair of Electrical Engineering and Computer Systems

RWTH Aachen University
Schinkelstr. 2, 52062 Aachen, Germany

email: {neumann, sydow, blume, tgn}@eecs.rwth-aachen.de

Abstract

Modern digital signal processing applications have an

increasing demand for computational power while
needing to preserve low power dissipation and high
flexibility. For many applications, the growth of
algorithmic complexity is already faster than the growth
of computational power provided by discrete general
purpose processors [1]. A typical approach to address
this problem is the combination of a processor core with
dedicated accelerators. Since changes in standards or
algorithms can change the demands on the accelerators,
an attractive alternative to highly customised VLSI-
macros is the use of reconfigurable embedded FPGAs
(eFPGAs). First commercial products combining a
general purpose processor core and an embedded FPGA
recently emerged (e.g. Stretch S6000 [2], Menta eFPGA-
augmented CPUs [3]). For many digital signal
processing applications, a significantly improved
efficiency in terms of power dissipation, throughput and
chip area can be achieved by tailoring both the processor
core and the reconfigurable accelerator to the given
application domain [4].

In this work, a methodology to design highly
customisable eFPGA-architectures starting from a high
level description is presented. The design framework
elaborated during this work enables a physically
optimised VLSI-design of the specified eFPGA and aims
to support simulation of the according eFPGA-macros
both on a functional and netlist-level by providing an
elementary configuration tool based on the same high
level description as the eFPGA-architecture.

1. Introduction

FPGAs are widely used as an attractive compromise

between highly efficient physically optimised VLSI-
designs and software programmable processors. Due to

their reconfigurability, FPGAs are highly flexible and
allow for relatively short design cycles since no physical
changes to the underlying hardware have to be made in
case of a redesign. However, they offer lower physical
implementation costs compared to software
programmable processors, as the inherent parallelism of
many algorithms can be exploited in contrast to sequential
processor architectures.

As a result, commercial FPGA-architectures have been
optimised to suit a wide variety of applications from
network related and digital signal processing to the
realisation of soft core processors. For an embedded
FPGA used as configurable accelerator, however, the
requirements concerning the provided resources are often
well defined and much narrower than for discrete “general
purpose” FPGAs. Hence, eFPGAs can be optimised for a
certain set of applications and thus achieve higher
efficiency in terms of power dissipation, area and speed.
First investigations on a reconfigurable ASIP with a
reconfigurable accelerator based on a parametrisable
eFPGA-architecture have shown significant
improvements in energy- and area-efficiency [5].

2. Parametrisable eFPGA-architecture

2.1. Overview

The eFPGA architecture presented here is based on a
highly parametrisable architecture template targeting an
arithmetic-oriented application domain. Figure 1 shows an
overview of the complete architecture template with all
relevant parameters. Some of them are described by a
single value (e.g. the number of LEs in a row and
column), while others require a more complex definition
(e.g. the connectivity per switch point). In the following,
the architectural components and the according
parameters are discussed in detail.

978-3-9810801-3-1/DATE08 © 2008 EDAA

Figure 1. eFPGA architecture template

2.2. Cluster

A typical characteristic of arithmetic datapaths is the
organisation in function slices and bit slices. A function
slice represents one of many consecutively processed
elementary functions (e.g. n-bit addition, n-bit XOR-
operation etc.), while a bit slice represents all processing
elements in the same column corresponding to the same
bit value (e.g. bit 0 of two successive function slices).
Figure 2 shows an according scheme of processing
elements organised in function slices and bit slices.

Figure 2. Typical arithmetic datapath scheme

Most communication between function slices and bit

slices is local, i.e. only between direct neighbours. In
addition, operands are typically fed to the datapath using
a broadcast scheme.

The eFPGA-architecture reflects typical arithmetic
datapath schemes by using two-dimensional clusters of
logic elements with a distributed interconnect rather than
one-dimensional clusters with a central connection box.
The signals coming from the connection box are
distributed to the logic elements in rows and columns
according to the function slices and bit slices, such that all
logic elements in a row or column share the same input
signals using so-called broadcast lines. This reduces the
number of signals that need to be provided by the
connection box and hence reduces the significant
overhead imposed by the configurable connection boxes.
Figure 3 shows the organisation of logic elements in a
cluster and the according global routing resources. The
size of the cluster can be varied in the horizontal and

vertical direction independently. Also, the number of
broadcast lines per row and column can be changed in
designs based on the template. Broadcast lines can be fed
to the cluster from all four directions, and in the same
way the outputs of the LEs at all four cluster borders can
be fed to the connection box. The actual connectivity can
be any set of the four possible data directions (north, east,
south, west) for inputs and outputs independently.
Between adjacent clusters, feedthrough stages are
provided to use the broadcast lines of the neighbouring
clusters as inputs for the current cluster, hence creating
virtually larger clusters by cascading several of them.

Figure 3. Cluster architecture

2.3. Logic elements

The local connectivity between the logic elements is
provided by dedicated routing blocks (DRB) located in
the logic element (see Figure 4). Each DRB is a set of
multiplexers used to connect broadcast signals or local
signals to the core logic of the logic element. The actual
connectivity can be defined in the architecture template
by stating all sources connected to the DRBs with their
offset to the actual LE as illustrated in Figure 4. The
functionality of the core logic itself is specified by a list
of elementary boolean functions that the LE can process
(e.g. full addition, gated full addition etc.). Registers can
be inserted per logic element or with a reduced density,
e.g. every second LE-row.

X

Y

0,0

1,-1 -1,-1

-1,10,11,1

1,0 -1,0

2,-1

2,1

2,0

0,-1

cluster broadcast line

core logic

dedicated routing
block (DRB)

broadcast
lines

local
connections

Figure 4. Local connectivity of logic element

2.4. Configuration memories

To reduce the overhead of the memory cells (typically
SRAMs) used to store the configuration of the FPGAs
logic and routing resources, the present architecture
template allows for sharing the configuration bits and
thus configuring several adjacent elements identically as
illustrated in Figure 5. This scheme is applied to the logic
elements as well as to the interconnect resources, where
adjacent switch points or connection points can share a
single SRAM block. The degree of SRAM sharing can be
adjusted in the architecture template in reasonable limits.

Figure 5. Shared SRAMs for logic elements

2.5. Routing switch

The routing switch of an FPGA is a set of switch
points that are located at crossing points of horizontal and
vertical routing tracks. The number of switch points
available as well as their connectivity determines the
flexibility of the complete routing switch. It was shown
that it is not necessary to provide a fully populated
routing switch to achieve a good amount of flexibility [6].
The architecture template presented here is very flexible
concerning the definition of available routing resources.
The number of routing tracks in horizontal and vertical
direction can be chosen independently. Each switch point
is defined by its position in the matrix of crossing lines as
well as the connectivity inside the switch point. Different
switch points can have different flexibility. In addition,
the segmentation of the interconnect can be adjusted by
assigning each routing track a certain segment length
(corresponding to the number of routing switches that are
bypassed before the line connects to the next routing
switch). Figure 6 shows the architecture and the main

parameters of the routing switch used in the architecture
template.

Figure 6. Parametrisable routing switch

2.6. Connection box

Finally, the architecture template offers a highly
flexible description of the connection box similar to the
routing switch definition. Three types of routing channels
are supported: fully connected, periodic connectivity and
unconnected. Fully connected tracks offer full population
of the connection box, i.e. each track can connect to each
according broadcast line of a cluster. However, they have
the highest implementation costs. Unconnected tracks can
be implemented for fast signal routing, as the capacitive
load of these wires can be kept very low. Periodic tracks
use a special connection type best suited for arithmetic
datapaths, where signals on a bus are typically ordered by
the weight of their bits. Accordingly, periodic routing
channels have a window of connection points that
“slides” across the tracks with a given “velocity”. The
connection box defined in the architecture template can
be composed of any mix of tracks with different channel
widths and sliding window specifications. The
architecture of the connection box and the according
parameters are illustrated in Figure 7

Figure 7. Parametrisable connection box

3. Design flow

As many of the architectural features in the presented
eFPGA are unique and not common in standard FPGAs,
there is currently no tool support available. Most research
conducted in the field of (e)FPGA-architectures is based
on the VPR design flow [7] which can only be used to

model standard island style FPGA-architectures with
LUT-based logic elements and a small choice of routing
switch architectures. Hence, an important goal of this
work is the creation of a self-contained design
methodology to design application domain specific
eFPGAs and the according basic tool support. Figure 8
shows the overall design flow applied here.

Figure 8. Design flow

The architecture template described above was
formulated as a high level description using MATLAB.
Based on this architecture description, three main steps
are supported by the design flow. First, a layout generator
creates a VLSI-layout of the specified eFPGA based on a
small set of handcrafted, physically optimised basic cells
such as the multiplexers for the DRB or the switch points
of the routing switch. Several studies concerning this part
of the design flow have been published before [8] [9].

While the first automatically generated eFPGA-layouts
still needed to be configured manually (i.e. each SRAM
cell had to be configured with the proper value), an
automatic bitstream generator supporting the complete
architecture template is currently under construction. The
configuration bitstream is used to conduct netlist
simulations based on layout-extracted netlists. To verify
the functionality of the eFPGA-macro, a VHDL-generator
creates a functional description that can be simulated
using common simulation tools like ModelSim. The
output of the configurator is based on a netlist that
describes the signal flow graph mapped to the eFPGA.
Currently, the netlist description is still complex, as each
logic element and each routing resource has to be
described here. However, for arithmetic datapaths this
netlist is highly regular which reduces the effort to
generate it manually. Currently, a very time-consuming
and error-prone work is the generation of the
configuration bits and the routing of signals between the
logic elements. The placement process is less complex
due to the regularity of the examples considered here (i.e.
arithmetic datapaths). Consequently, a future step will be
the implementation of a routing tool supporting the
parametrisable architecture.

Similar approaches to automatic (e)FPGA design have
been proposed e.g. with GILES [10] or PYTHAGOR
 [11]. However, those design flows have significant
constraints regarding the FPGA-architectures (e.g. only
island style FPGAs are supported) and the physical
implementation style. As an example, using standard cell
implementations (e.g. proposed by PYTHAGOR) leads to
unfavourable physical implementation costs concerning
area, performance and power dissipation. The first results
presented here are based on a completely functional co-
design of a routing switch layout, the according VHDL-
model and the configuration bitstream based on a given
netlist.

3.1. Layout generator

The layout generator is based on a prior work on
automated VLSI-design of regular datapaths [12]. This
so-called datapath generator uses a textual description of
a signal flow graph (SFG) and a small set of hand
designed layout cells to generate a layout. Since the
textual SFG description can be parameterised, the
datapath generator allows for a very flexible implemen-
tation process, e.g. when parameters like word lengths are
changed in the SFG. Starting from the MATLAB-based
high level description of the eFPGA architecture a
datapath generator suited SFG description is
automatically generated. Due to the highly modular
design style, the eFPGA-macro can be ported to different
CMOS-technologies with small effort, since only few
hand designed layout cells are required.

After the layout is generated, standard netlist
extraction and simulation tools can be used to characterise
the eFPGA macro in terms of area, timing and power
dissipation.

3.2. VHDL-generator

Based on the architecture description, a VHDL-model
of the eFPGA is created automatically. It incorporates the
functional description of the basic configurable elements
like routing switch points or logic elements and combines
them according to the architectural parameters. The
VHDL-model of the eFPGA is used to verify the
functionality defined by the netlist using existing
simulation tools. It is also useful to test the eFPGA macro
created by the layout generator for correctness by co-
simulation of the layout-extracted netlist and the
functional VHDL-model.

3.3. Configurator

To enable simulations of the eFPGA-macro (on
functional as well as on netlist level), all configuration

bits have to be set properly. Due to the very large number
of configuration bits, it is necessary to have an automated
way of creating the bitstream from the mapped netlist.
Existing bitstream generators like DAGGER [13] lack the
support for highly parametrisable (e)FPGA architectures
as the one described here.

The configurator elaborated as part of the design
methodology presented here creates configuration
bitstreams based on the netlist and the architecture
specifications. It also uses the information from the layout
generator to determine the actual position of all blocks to
be configured in the macro. The configuration bitstream
is composed of elementary configuration table entries that
must be provided for the basic eFPGA elements like
routing switch points or logic elements. The elementary
tables can be created with small effort, as only few bits
are required to configure these basic elements. The
bitstream is then concatenated according to the position
of the elements in the overall macro.

4. Design example

4.1. Routings Switch

As a first step in verifying the proposed design
methodology, a routing switch generator comprising all
elements of the design flow was implemented based on
the architecture described in paragraph 2.5. As an
example, a routing switch with 32 tracks both in
horizontal and vertical direction was specified in the
according architecture description. Switch points with
different flexibility are provided as exemplary basic
components for the routing switch. As the MATLAB-
based description is on an abstract level, the architecture
specification for the complete routing switch can be
created within few minutes. Figure 9 illustrates the syntax
describing the architecture.

Three global parameters describe the channel widths
(rs.trk_h, rs_trk_v) and the use of configuration sharing
(shd_srams.rs). Each switch point is defined by a set of
potential signal routes according to their input and output
directions (north, east, south, west). From the flexibility
required by each switch point, the routing switch
generator extracts a set of basic layout cells that need to
be designed for the VLSI-implementation. The design of
the according switch point macros and the SRAM-cell
required for the configuration storage takes some hours
for a skilled designer.

Figure 9 Code segment and acc. architecture

The layout generator automatically determines the
optimum placement of the basic cells for a given aspect
ratio of the routing switch. It also calculates the optimum
aspect ratios of the configuration blocks that are required
per set of switch points sharing the same configuration.
The automatic layout generation of the complete routing
switch by the layout generator takes less than 20 minutes
on a Sun UltraSPARC III (1GHz, 4GB RAM). Con-
sequently, redesigns of the routing switch e.g. to analyse
the influence of different parameters on the area, timing
and power dissipation can be conducted very quickly.

A simple netlist describing the connections to be
provided by the routing switch was used to automatically
generate the configuration bitstream with more than 200
bits and the testbench for ModelSim (functional
simulation) and Cadence Spectre (netlist simulation).
Figure 10 shows an exemplary implementation of the
specified routing switch in a 90nm CMOS-technology.

Figure 10 VLSI-layout of a routing switch

4.2. Exemplary mapping of an FIR-filter

To verify the efficiency of the overall eFPGA-archi-
tecture, an exemplary datapath was mapped to a complete
eFPGA by hand. The routing switch and the according
configuration bits were generated automatically as
described above. The other components (logic elements
etc.) were designed with the according basic cell layouts
and configured by hand. Using this semi-automatic

approach, it was possible to map a 4-tap FIR-filter to the
eFPGA with reasonable effort. To rank the efficiency of
the architecture, the datapath was also mapped to a
commercial FPGA (Altera Cyclone). Figure 11 shows the
according results in the design space in terms of
mW/MOPS and MOPS/mm2 based on a diagram taken
from [8]. The grey areas represent the regions in the
design space for different hardware architectures that
were determined based on actual implementations. The
efficiency of the optimised eFPGA-architecture is about
an order of magnitude better compared to the commercial
FPGA. In contrast to the work described in [8], where
only basic functions like a multiplication could be
mapped to the eFPGA, the mapping of a more complex
example was enabled by the automated design flow
described here.

Figure 11 FIR-filter on eFPGA: design space

5. Conclusion

The design methodology presented in this paper is an
important step for the evaluation of embedded FPGAs
that are optimised for a certain application domain. By
using a common, highly flexible architecture template, the
eFPGA-architecture can be tailored to a given application
domain systematically. The self-contained design
methodology presented here enables the VLSI-design as
well as basic tools for verification and simulation. Hence,
the complexity of mapping exemplary datapaths to the
eFPGA is reduced significantly compared to previous
work. Using the simulation results based on actual VLSI-
layouts of the eFPGA, a high-level model of the
architecture is currently evolving that allows for a
systematic analysis of the dependencies between eFPGA-
architecture, mapped datapaths and the according
efficiency. The exemplary result for an FIR-filter
demonstrates the optimisation potential of FPGA-archi-
tectures when tailored for a given application domain.

6. Acknowledgements

This work is funded by the German Research
Foundation (DFG) as part of the DFG Priority Program
1148 (Reconfigurable Computing Systems).

References

[1] J. Hausner: “Integrated Circuits for Next Generation

Wireless Systems”, Proceedings of the European Solid-
State Circuits Conference (ESSCIRC) 2001, pp. 26-29

[2] Stretch S6000 (website), http://www.stretchinc.com
[3] MENTA eFPGA-augmented RISC CPUs (website),

http://www.menta.fr/efpga_cpu.html
[4] A. Ye and J. Rose, “Using Bus-Based Connections to

Improve Field-Programmable Gate Array Density
Implementing Datapath Circuits”, in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Vol. 14,
No. 5, pp. 462-473, May 2006.

[5] T. von Sydow, M. Korb, B. Neumann, H. Blume and
T. G. Noll, “Modelling and Quantitative Analysis of
Coupling Mechanisms of Programmable Processor Cores
and Arithmetic Oriented eFPGA-macros”, in Proc.
Reconfigurable Computing and FPGA's 2006
(ReConFig '06), pp. 252-261, 2006.

[6] G. Lemieux and D. Lewis, “Design of Interconnection
Networks for Programmable Logic” Kluwer Academic
Publishers, 2004.

[7] V. Betz, J. Rose and A. Marquardt, “Architecture and CAD
for Deep-Submicron FPGAs” in Kluwer International
Series in Engineering and Computer Science, 1999.

[8] T. von Sydow, B. Neumann, H. Blume and T. G. Noll,
“Quantitative Analysis of embedded FPGA Architectures
for Arithmetic”, in Proc. Application Specific Systems,
Architectures and Processors Conference 2006
(ASAP ’06), pp. 125-131, 2006.

[9] B. Neumann, T. von Sydow, H. Blume and T. G. Noll,
“Design and quantitative analysis of parametrisable
eFPGA-architectures for arithmetic“ in Advances in Radio
Science, Vol. 4, pp. 251-259, 2006.

[10] I. Kuon, A. Egier and J. Rose, “Design, Layout and
Verification of an FPGA using Automated Tools”, in Proc.
2005 ACM/SIGDA 13th international symposium on Field
programmable gate arrays, pp. 215–226, 2005.

[11] A. Danilin, M. Bennebroek and S. Sawitzki, “A novel
toolset for the development of FPGA-like reconfigurable
logic”, in Proc. FPL 2005, pp. 640-643, 2005.

[12] O. Weiss, M. Gansen and T. G. Noll, “A flexible Datapath
Generator for Physical Oriented Design” in Proc. European
Solid-State Circuits Conference 2001 (ESSCIRC ‘01),
pp. 408-411, 2001.

[13] K. Siozios et. al. “DAGGER: A Novel Generic Metho-
dology for FPGA Bitstream Generation and its Software
Tool Implementation”, in Proc. Parallel and Distributed
Processing Symposium 2005 (IPDPS ‘05), p. 165b, 2005.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

