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Abstract 
 
Modern digital signal processing applications have an 

increasing demand for computational power while 
needing to preserve low power dissipation and high 
flexibility. For many applications, the growth of 
algorithmic complexity is already faster than the growth 
of computational power provided by discrete general 
purpose processors  [1]. A typical approach to address 
this problem is the combination of a processor core with 
dedicated accelerators. Since changes in standards or 
algorithms can change the demands on the accelerators, 
an attractive alternative to highly customised VLSI-
macros is the use of reconfigurable embedded FPGAs 
(eFPGAs). First commercial products combining a 
general purpose processor core and an embedded FPGA 
recently emerged (e.g. Stretch S6000  [2], Menta eFPGA-
augmented CPUs  [3]). For many digital signal 
processing applications, a significantly improved 
efficiency in terms of power dissipation, throughput and 
chip area can be achieved by tailoring both the processor 
core and the reconfigurable accelerator to the given 
application domain  [4]. 

In this work, a methodology to design highly 
customisable eFPGA-architectures starting from a high 
level description is presented. The design framework 
elaborated during this work enables a physically 
optimised VLSI-design of the specified eFPGA and aims 
to support simulation of the according eFPGA-macros 
both on a functional and netlist-level by providing an 
elementary configuration tool based on the same high 
level description as the eFPGA-architecture. 

 
1. Introduction 

 
FPGAs are widely used as an attractive compromise 

between highly efficient physically optimised VLSI-
designs and software programmable processors. Due to 

their reconfigurability, FPGAs are highly flexible and 
allow for relatively short design cycles since no physical 
changes to the underlying hardware have to be made in 
case of a redesign. However, they offer lower physical 
implementation costs compared to software 
programmable processors, as the inherent parallelism of 
many algorithms can be exploited in contrast to sequential 
processor architectures. 

As a result, commercial FPGA-architectures have been 
optimised to suit a wide variety of applications from 
network related and digital signal processing to the 
realisation of soft core processors. For an embedded 
FPGA used as configurable accelerator, however, the 
requirements concerning the provided resources are often 
well defined and much narrower than for discrete “general 
purpose” FPGAs. Hence, eFPGAs can be optimised for a 
certain set of applications and thus achieve higher 
efficiency in terms of power dissipation, area and speed. 
First investigations on a reconfigurable ASIP with a 
reconfigurable accelerator based on a parametrisable 
eFPGA-architecture have shown significant 
improvements in energy- and area-efficiency  [5]. 

 
2. Parametrisable eFPGA-architecture 
 
2.1. Overview 
 

The eFPGA architecture presented here is based on a 
highly parametrisable architecture template targeting an 
arithmetic-oriented application domain. Figure 1 shows an 
overview of the complete architecture template with all 
relevant parameters. Some of them are described by a 
single value (e.g. the number of LEs in a row and 
column), while others require a more complex definition 
(e.g. the connectivity per switch point). In the following, 
the architectural components and the according 
parameters are discussed in detail. 
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Figure 1. eFPGA architecture template 

2.2. Cluster 
 

A typical characteristic of arithmetic datapaths is the 
organisation in function slices and bit slices. A function 
slice represents one of many consecutively processed 
elementary functions (e.g. n-bit addition, n-bit XOR-
operation etc.), while a bit slice represents all processing 
elements in the same column corresponding to the same 
bit value (e.g. bit 0 of two successive function slices). 
Figure 2 shows an according scheme of processing 
elements organised in function slices and bit slices. 

 
Figure 2. Typical arithmetic datapath scheme 

 
Most communication between function slices and bit 

slices is local, i.e. only between direct neighbours. In 
addition, operands are typically fed to the datapath using 
a broadcast scheme. 

The eFPGA-architecture reflects typical arithmetic 
datapath schemes by using two-dimensional clusters of 
logic elements with a distributed interconnect rather than 
one-dimensional clusters with a central connection box. 
The signals coming from the connection box are 
distributed to the logic elements in rows and columns 
according to the function slices and bit slices, such that all 
logic elements in a row or column share the same input 
signals using so-called broadcast lines. This reduces the 
number of signals that need to be provided by the 
connection box and hence reduces the significant 
overhead imposed by the configurable connection boxes. 
Figure 3 shows the organisation of logic elements in a 
cluster and the according global routing resources. The 
size of the cluster can be varied in the horizontal and 

vertical direction independently. Also, the number of 
broadcast lines per row and column can be changed in 
designs based on the template. Broadcast lines can be fed 
to the cluster from all four directions, and in the same 
way the outputs of the LEs at all four cluster borders can 
be fed to the connection box. The actual connectivity can 
be any set of the four possible data directions (north, east, 
south, west) for inputs and outputs independently. 
Between adjacent clusters, feedthrough stages are 
provided to use the broadcast lines of the neighbouring 
clusters as inputs for the current cluster, hence creating 
virtually larger clusters by cascading several of them. 

 
Figure 3. Cluster architecture 
 
2.3. Logic elements 
 
The local connectivity between the logic elements is 
provided by dedicated routing blocks (DRB) located in 
the logic element (see Figure 4). Each DRB is a set of 
multiplexers used to connect broadcast signals or local 
signals to the core logic of the logic element. The actual 
connectivity can be defined in the architecture template 
by stating all sources connected to the DRBs with their 
offset to the actual LE as illustrated in Figure 4. The 
functionality of the core logic itself is specified by a list 
of elementary boolean functions that the LE can process 
(e.g. full addition, gated full addition etc.). Registers can 
be inserted per logic element or with a reduced density, 
e.g. every second LE-row. 
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Figure 4. Local connectivity of logic element 
 
2.4. Configuration memories 
 

To reduce the overhead of the memory cells (typically 
SRAMs) used to store the configuration of the FPGAs 
logic and routing resources, the present architecture 
template allows for sharing the configuration bits and 
thus configuring several adjacent elements identically as 
illustrated in Figure 5. This scheme is applied to the logic 
elements as well as to the interconnect resources, where 
adjacent switch points or connection points can share a 
single SRAM block. The degree of SRAM sharing can be 
adjusted in the architecture template in reasonable limits. 

 
Figure 5. Shared SRAMs for logic elements 
 
2.5. Routing switch 
 

The routing switch of an FPGA is a set of switch 
points that are located at crossing points of horizontal and 
vertical routing tracks. The number of switch points 
available as well as their connectivity determines the 
flexibility of the complete routing switch. It was shown 
that it is not necessary to provide a fully populated 
routing switch to achieve a good amount of flexibility  [6]. 
The architecture template presented here is very flexible 
concerning the definition of available routing resources. 
The number of routing tracks in horizontal and vertical 
direction can be chosen independently. Each switch point 
is defined by its position in the matrix of crossing lines as 
well as the connectivity inside the switch point. Different 
switch points can have different flexibility. In addition, 
the segmentation of the interconnect can be adjusted by 
assigning each routing track a certain segment length 
(corresponding to the number of routing switches that are 
bypassed before the line connects to the next routing 
switch). Figure 6 shows the architecture and the main 

parameters of the routing switch used in the architecture 
template. 

 
Figure 6. Parametrisable routing switch 
 
2.6. Connection box 
 

Finally, the architecture template offers a highly 
flexible description of the connection box similar to the 
routing switch definition. Three types of routing channels 
are supported: fully connected, periodic connectivity and 
unconnected. Fully connected tracks offer full population 
of the connection box, i.e. each track can connect to each 
according broadcast line of a cluster. However, they have 
the highest implementation costs. Unconnected tracks can 
be implemented for fast signal routing, as the capacitive 
load of these wires can be kept very low. Periodic tracks 
use a special connection type best suited for arithmetic 
datapaths, where signals on a bus are typically ordered by 
the weight of their bits. Accordingly, periodic routing 
channels have a window of connection points that 
“slides” across the tracks with a given “velocity”. The 
connection box defined in the architecture template can 
be composed of any mix of tracks with different channel 
widths and sliding window specifications. The 
architecture of the connection box and the according 
parameters are illustrated in Figure 7 

 
Figure 7. Parametrisable connection box 
 
3. Design flow 
 

As many of the architectural features in the presented 
eFPGA are unique and not common in standard FPGAs, 
there is currently no tool support available. Most research 
conducted in the field of (e)FPGA-architectures is based 
on the VPR design flow  [7] which can only be used to 



model standard island style FPGA-architectures with 
LUT-based logic elements and a small choice of routing 
switch architectures. Hence, an important goal of this 
work is the creation of a self-contained design 
methodology to design application domain specific 
eFPGAs and the according basic tool support. Figure 8 
shows the overall design flow applied here. 

 
Figure 8. Design flow 
 

The architecture template described above was 
formulated as a high level description using MATLAB. 
Based on this architecture description, three main steps 
are supported by the design flow. First, a layout generator 
creates a VLSI-layout of the specified eFPGA based on a 
small set of handcrafted, physically optimised basic cells 
such as the multiplexers for the DRB or the switch points 
of the routing switch. Several studies concerning this part 
of the design flow have been published before  [8] [9]. 

While the first automatically generated eFPGA-layouts 
still needed to be configured manually (i.e. each SRAM 
cell had to be configured with the proper value), an 
automatic bitstream generator supporting the complete 
architecture template is currently under construction. The 
configuration bitstream is used to conduct netlist 
simulations based on layout-extracted netlists. To verify 
the functionality of the eFPGA-macro, a VHDL-generator 
creates a functional description that can be simulated 
using common simulation tools like ModelSim. The 
output of the configurator is based on a netlist that 
describes the signal flow graph mapped to the eFPGA. 
Currently, the netlist description is still complex, as each 
logic element and each routing resource has to be 
described here. However, for arithmetic datapaths this 
netlist is highly regular which reduces the effort to 
generate it manually. Currently, a very time-consuming 
and error-prone work is the generation of the 
configuration bits and the routing of signals between the 
logic elements. The placement process is less complex 
due to the regularity of the examples considered here (i.e. 
arithmetic datapaths). Consequently, a future step will be 
the implementation of a routing tool supporting the 
parametrisable architecture. 

Similar approaches to automatic (e)FPGA design have 
been proposed e.g. with GILES  [10] or PYTHAGOR 
 [11]. However, those design flows have significant 
constraints regarding the FPGA-architectures (e.g. only 
island style FPGAs are supported) and the physical 
implementation style. As an example, using standard cell 
implementations (e.g. proposed by PYTHAGOR) leads to 
unfavourable physical implementation costs concerning 
area, performance and power dissipation. The first results 
presented here are based on a completely functional co-
design of a routing switch layout, the according VHDL-
model and the configuration bitstream based on a given 
netlist. 

 
3.1. Layout generator 
 

The layout generator is based on a prior work on 
automated VLSI-design of regular datapaths  [12]. This 
so-called datapath generator uses a textual description of 
a signal flow graph (SFG) and a small set of hand 
designed layout cells to generate a layout. Since the 
textual SFG description can be parameterised, the 
datapath generator allows for a very flexible implemen-
tation process, e.g. when parameters like word lengths are 
changed in the SFG. Starting from the MATLAB-based 
high level description of the eFPGA architecture a 
datapath generator suited SFG description is 
automatically generated. Due to the highly modular 
design style, the eFPGA-macro can be ported to different 
CMOS-technologies with small effort, since only few 
hand designed layout cells are required. 

After the layout is generated, standard netlist 
extraction and simulation tools can be used to characterise 
the eFPGA macro in terms of area, timing and power 
dissipation. 

 
3.2. VHDL-generator 
 

Based on the architecture description, a VHDL-model 
of the eFPGA is created automatically. It incorporates the 
functional description of the basic configurable elements 
like routing switch points or logic elements and combines 
them according to the architectural parameters. The 
VHDL-model of the eFPGA is used to verify the 
functionality defined by the netlist using existing 
simulation tools. It is also useful to test the eFPGA macro 
created by the layout generator for correctness by co-
simulation of the layout-extracted netlist and the 
functional VHDL-model. 

 
3.3. Configurator 
 

To enable simulations of the eFPGA-macro (on 
functional as well as on netlist level), all configuration 



bits have to be set properly. Due to the very large number 
of configuration bits, it is necessary to have an automated 
way of creating the bitstream from the mapped netlist. 
Existing bitstream generators like DAGGER  [13] lack the 
support for highly parametrisable (e)FPGA architectures 
as the one described here. 

The configurator elaborated as part of the design 
methodology presented here creates configuration 
bitstreams based on the netlist and the architecture 
specifications. It also uses the information from the layout 
generator to determine the actual position of all blocks to 
be configured in the macro. The configuration bitstream 
is composed of elementary configuration table entries that 
must be provided for the basic eFPGA elements like 
routing switch points or logic elements. The elementary 
tables can be created with small effort, as only few bits 
are required to configure these basic elements. The 
bitstream is then concatenated according to the position 
of the elements in the overall macro. 

 
4. Design example 
 
4.1. Routings Switch 
 

As a first step in verifying the proposed design 
methodology, a routing switch generator comprising all 
elements of the design flow was implemented based on 
the architecture described in paragraph  2.5. As an 
example, a routing switch with 32 tracks both in 
horizontal and vertical direction was specified in the 
according architecture description. Switch points with 
different flexibility are provided as exemplary basic 
components for the routing switch. As the MATLAB-
based description is on an abstract level, the architecture 
specification for the complete routing switch can be 
created within few minutes. Figure 9 illustrates the syntax 
describing the architecture. 

Three global parameters describe the channel widths 
(rs.trk_h, rs_trk_v) and the use of configuration sharing 
(shd_srams.rs). Each switch point is defined by a set of 
potential signal routes according to their input and output 
directions (north, east, south, west). From the flexibility 
required by each switch point, the routing switch 
generator extracts a set of basic layout cells that need to 
be designed for the VLSI-implementation. The design of 
the according switch point macros and the SRAM-cell 
required for the configuration storage takes some hours 
for a skilled designer. 

 
Figure 9 Code segment and acc. architecture 
 

The layout generator automatically determines the 
optimum placement of the basic cells for a given aspect 
ratio of the routing switch. It also calculates the optimum 
aspect ratios of the configuration blocks that are required 
per set of switch points sharing the same configuration. 
The automatic layout generation of the complete routing 
switch by the layout generator takes less than 20 minutes 
on a Sun UltraSPARC III (1GHz, 4GB RAM). Con-
sequently, redesigns of the routing switch e.g. to analyse 
the influence of different parameters on the area, timing 
and power dissipation can be conducted very quickly. 

A simple netlist describing the connections to be 
provided by the routing switch was used to automatically 
generate the configuration bitstream with more than 200 
bits and the testbench for ModelSim (functional 
simulation) and Cadence Spectre (netlist simulation). 
Figure 10 shows an exemplary implementation of the 
specified routing switch in a 90nm CMOS-technology. 

 
Figure 10 VLSI-layout of a routing switch 
 
4.2. Exemplary mapping of an FIR-filter 
 

To verify the efficiency of the overall eFPGA-archi-
tecture, an exemplary datapath was mapped to a complete 
eFPGA by hand. The routing switch and the according 
configuration bits were generated automatically as 
described above. The other components (logic elements 
etc.) were designed with the according basic cell layouts 
and configured by hand. Using this semi-automatic 



approach, it was possible to map a 4-tap FIR-filter to the 
eFPGA with reasonable effort. To rank the efficiency of 
the architecture, the datapath was also mapped to a 
commercial FPGA (Altera Cyclone). Figure 11 shows the 
according results in the design space in terms of 
mW/MOPS and MOPS/mm2 based on a diagram taken 
from  [8]. The grey areas represent the regions in the 
design space for different hardware architectures that 
were determined based on actual implementations. The 
efficiency of the optimised eFPGA-architecture is about 
an order of magnitude better compared to the commercial 
FPGA. In contrast to the work described in  [8], where 
only basic functions like a multiplication could be 
mapped to the eFPGA, the mapping of a more complex 
example was enabled by the automated design flow 
described here. 

 
Figure 11 FIR-filter on eFPGA: design space 
 
5. Conclusion 
 

The design methodology presented in this paper is an 
important step for the evaluation of embedded FPGAs 
that are optimised for a certain application domain. By 
using a common, highly flexible architecture template, the 
eFPGA-architecture can be tailored to a given application 
domain systematically. The self-contained design 
methodology presented here enables the VLSI-design as 
well as basic tools for verification and simulation. Hence, 
the complexity of mapping exemplary datapaths to the 
eFPGA is reduced significantly compared to previous 
work. Using the simulation results based on actual VLSI-
layouts of the eFPGA, a high-level model of the 
architecture is currently evolving that allows for a 
systematic analysis of the dependencies between eFPGA-
architecture, mapped datapaths and the according 
efficiency. The exemplary result for an FIR-filter 
demonstrates the optimisation potential of FPGA-archi-
tectures when tailored for a given application domain. 
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