Low Cost Debug Architecture using Lossy Compression for Silicon Debug

Ehab Anis and Nicola Nicolici
Department of Electrical and Computer Engineering
McMaster University, Hamilton, ON L8S 4K1, Canada
Email: anise @mcmaster.ca, nicola@ece.mcmaster.ca

Abstract

The size of on-chip trace buffers used for at-speed sili-
con debug limits the observation window in any debug ses-
sion. Whenever the debug experiment can be repeated, we
propose a novel architecture for at-speed silicon debug that
enables a methodology where the designer can iteratively
zoom only in the intervals containing erroneous samples.
When compared to increasing the size of the trace buffer, the
proposed architecture has a small impact on silicon area,
while significantly reducing the number of debug sessions.

1. Introduction

For system-on-a-chip (SOC) designs, verification is a
major contributing factor to the implementation cycle. As
a consequence, significant work has been done in the area
of pre-silicon verification, where design errors (or bugs) are
caught through formal methods or extensive functional sim-
ulation [14]. The growing SOC complexity combined with
the difficulty to accurately model integrated circuits (ICs),
makes the pre-silicon verification methods inadequate to
guarantee a product without errors before analyzing the first
silicon. Furthermore, many electrical problems (e.g., leak-
age or drive fights) cannot be screened without the usage of
the fabricated IC [11]. Consequently, due to the escalating
mask costs it is imperative that the undetected functional
and electrical bugs are fixed as soon as the first silicon is
available. To achieve this challenge, silicon debug, which is
the process of finding, locating and identifying design bugs
in the post-silicon phase [2], is becoming a necessity.
1.1. Prior Work

To place the contribution of this paper in a larger context,
this subsection discusses the main directions in silicon de-
bug of digital ICs. Numerous physical probing techniques,
such as electron or ion beam techniques, have been used
extensively over the past few decades in IC failure analy-
sis [19]. To deal with multiple metal layers (common to
modern ICs), time resolved photoemission, that operates
through the silicon substrate, has emerged [6]. Physical
probing can also be used for screening electrical bugs, how-
ever, despite the recent advancements in this research field,

978-3-9810801-2-4/DATEQ07 © 2007 EDAA

the complexity of state-of-the-art devices requires a local-
ization step to precede the destructive IC failure analysis.
This step, which we call logic probing, correlates the simu-
lation data to what is observed in the silicon (either on the
input/outputs (I/Os) or on the internal signals, which are ob-
served as discussed in the following paragraphs) in order to
identify a subset of circuit nodes that need to be physically
probed [20]. In addition, because many design errors in ap-
plication specific integrated circuits (ASICs) are undetected
functional bugs, physical probing is of no use for identi-
fying them during the post-silicon phase. Moreover, logic
probing is also essential for debugging designs mapped to
field-programmable gate arrays (FPGAs). Therefore, due
to their importance for finding both functional and electri-
cal bugs, next we overview the logic probing techniques.
The debug of memories embedded in SOCs relies on
the built-in self-test (BIST) or direct memory access infras-
tructure, which are commonly available on-chip for manu-
facturing test and diagnosis. However, whenever the above
are not provided, as it is the case for small embedded mem-
ories (e.g., store buffers or instruction queues) methods that
rely on clock control and the internal scan chains need to be
employed [13]. The debug methods based on internal scan
chains have been used extensively for debugging complex
digital ICs [22]. In scan-based debug, the normal operation
of the circuit is captured after the occurrence of a specific
trigger event (or breakpoint). Subsequently the circuit state
is observed by transferring it to the debug software either
through the scan channels, if debugging on the automatic
test equipment (ATE), or through the JTAG interface [18],
when debugging in-field on the target application board.
One approach to reusing the scan logic for silicon de-
bug is to integrate a debug module, which, in addition to
controlling the breakpoints [21], it can start, stop, resume
or single-step the execution. This approach obviously pro-
vides high observability of circuit behavior, nonetheless it
is limited to the case when the input stimuli are not pro-
vided in real-time. An alternative approach that is applica-
ble to real-time input stimuli, relies on stopping the func-
tional test program when a failure is observed on an output
and subsequently, by re-running the debug experiment with

different trigger points, it will scan the state before and after
the observed failure point. Thereafter, post-processing algo-
rithms, such as latch divergence analysis [4] or failure prop-
agation tracing [3], can be used to analyze the scan dumps
and identify the first failing state elements. This approach,
nevertheless, needs to stop the circuit execution after a fail-
ing point is identified, thus ignoring any further erroneous
behaviors. Because hard-to-detect functional bugs appear
in circuit states which may be exercised billions of cycles
apart [11], it is therefore desirable to continue the execution
after a failing point without halting. However, to complete
a scan dump while continuing the real-time execution, it is
necessary to double buffer the state elements in the scan
chain, which will likely lead to unacceptable area penalty
[12]. A complementary approach to scan is to monitor only
a subset of internal signals that are dumped in real-time
in a trace buffer. While scan-based debug concepts have
emerged from the manufacturing test research, trace buffer-
based debug, which is discussed next, has been influenced
by software debugging used in embedded systems [16].
Real-time systems centered around embedded proces-
sors or micro-controllers and have been traditionally de-
bugged using in-circuit emulator (ICE) devices. ICEs are
constructed using bond-out chips, which connect internal
nodes to additional device I/Os in order to make them visi-
ble off-chip to external instruments. The limitation of using
ICEs for state-of-the-art SOC devices lies not only in the
increasing gap between the on-chip and off-chip frequen-
cies, but also in a large footprint of the bound-out chips
caused by the additional I/Os used only for debug. As a
consequence, for SOC designs (both FPGA and ASIC im-
plementations) there has been a trend toward placing the
instrumentation on-chip, thus enabling at-speed sampling
through embedded logic analysis [10, 17]. The sampled
data is subsequently sent via a low bandwidth interface from
the internal debug module to the external debug software
for post-processing. The trace buffer-based debug meth-
ods can be broadly classified as: special-purpose (i.e.., spe-
cific to embedded processors) [8, 9] or generic (i.e., appli-
cable to any type of custom SOCs) [1, 15]; with centralized
tracing where one trace buffer is used per SOC (with dif-
ferent interconnect topologies between the embedded cores
and the trace buffer) [1, 8, 9] or distributed sampling with
trace buffers allocated to individual cores [15]. Regardless
wether they are special-purpose, generic, centralized or dis-
tributed, the distinguished benefit of the trace buffer-based
methods is the ability to do in-field at-speed debug, which
is also suitable for analyzing the no-trouble-found parts [5].

1.2. Motivation and Objective

Given the in-field use and at-speed sampling advantages
of trace buffer-based debug methods, an obvious question
is what kind of drawbacks are limiting their use? The func-
tional bugs that are hard-to-detect will manifest themselves

only several times over a large execution time [11]. There-
fore, to accelerate the identification of the root of a problem,
one would like to correlate the few different failing obser-
vations that occur while running a long debug experiment.
To achieve this, the observation window of an experiment
needs to be extended, however, given the limited on-chip
area available for trace buffers, the number of debug ses-
sions (i.e., the number of times the same experiment is re-
run with different trigger points that initiate on-chip sam-
pling) may increase significantly. Therefore, the answer to
the above question lies in the trade-off between the trace-
buffer area and the number of debug sessions for a given
observation window. The trace-buffer area is determined
by its width, which constrains the number of signals to be
probed, and its depth, which limits the number of samples
to be stored. To extract as much data as possible from a
given debug session, without increasing the on-chip area,
compression for the width and depth of the trace buffer can
be employed. This idea has been explored in different ways
for both special-purpose and generic scenarios.

On the one hand, for the special-purpose case (e.g.,
[8]) the compression solutions are well established [10, 16].
The key idea for width compression is to probe a subset
of signals from which the state of the embedded processor
can be reconstructed as accurately as possible (e.g., pipeline
status signals or indirect branch signals). The depth com-
pression is accomplished by eliminating the redundant tem-
poral information on data or address busses (e.g., through
differential compression) or by setting up filters through-
out the observation window that enable selective sampling
in time, which helps avoid trace buffer overflows. On the
other hand, for the generic case the compression solutions
are currently emerging. For example, width compression
can be achieved by automatically analyzing the design and
identifying a subset of essential signals, which, after be-
ing captured on-chip, will be “inflated” off-line using the
knowledge of the design [1]. Motivated by the fact that, to
the best of our knowledge, there are no methods (reported in
the public domain) for depth compression applicable to any
design, it is the aim of this paper to investigate this problem.

2. Proposed Iterative Debug Framework

The method proposed in this paper is applicable to the
case where the debug data is known a-priori and a determin-
istic execution of input data will always produce the same
output data. This is the case when debugging on an ATE and
it is also common on a target application board where stim-
uli are applied synchronously (e.g., audio/video decoder)
and the expected responses can be computed using a refer-
ence behavioral model of the circuit under debug (CUD).
This debugging method is also referred to as cyclic debug-
ging or deterministic replay in the software engineering lit-
erature and having an experimental testbed that supports it
is a pre-requisite for the iterative debug flow described next.

CUD

User Defined
Logic
Embedded
Cores

Figure 1. The Iterative Debug Flow

The basic intuition of our approach can be explained as
follows. In cyclic debugging, by re-running the same exper-
iment deterministically, the use of different debug module
configurations (such as deciding to start sampling at dis-
tinct times in different debug sessions) can facilitate the re-
construction of the circuit behavior over a long observation
window. The straightforward way of achieving this is re-
sume sampling in a new debug session from the same point
in time where the previous debug session has stopped. How-
ever, if the trace buffer on the chip is small and the targeted
observation window is long, this will lead to unnecessarily
large number of debug sessions. Therefore, we propose to
run the first debug session in a compressed mode and learn
from it which intervals in the observation window are error-
free. This can be achieved through lossy compression by
mapping intervals onto signatures. The targeted observa-
tion window and the size of the on-chip trace buffer will de-
termine the compression level. As shown in Figure 1 (where
(¢); means step j in debug session %), the debug software
will prepare and load the CUD configuration data ((1)1) for
the first debug session. Then, the debug experiment is run
on-chip and the compressed intervals (i.e., signatures) will
be sampled into the trace buffer ((1)2, note the hardware
required to achieve this will be discussed in the following
section). Then the trace buffer content will be offloaded to
the debug software ((1)3), where the failing signatures (and
hence intervals) will be identified ((1)4). If a signature is
error-free, then, in the remaining debug sessions, the inter-
val whose sequence of samples maps onto the respective
signature, will be skipped and no samples will be extracted
from it. In the following debug session the same steps are
completed ((2)1, (2)2, (2)3 and (2)4). Note, however, using
the failing information from the preceding debug session the
user can set up the CUD configuration such that he zooms-in
only into the failing intervals. This process is repeated iter-
atively in the succeeding debug sessions until all the failing
intervals are extracted. The benefits stem from the fact that
we can observe the failing behaviors within a long observa-
tion window without wasting any debug sessions for sam-
pling the error-free intervals. The debug architecture that
facilitates this iterative debug flow is described next.

[cTRLword0) | 2* [CTRLwords 1) |

[RiG-pinter0)]| [TRIG-pointercs-1) | | [Misresps | | [miskeen |
[Seg-size(0) ‘ 1 °re [Seg-size(S-1) ” I Sp_en l] l
[CTRL

l Event-count l Seg.-en

Event
Detector

Trigger
Signals

Event
Sequencer

Trace Buffer CTRL ‘

EEET

Debug [

Data M
I (IS Trace Buffer Serializer
? :

Figure 2. The Embedded Debug Module

3. Debug Architecture for Lossy Compression

This section describes the distinguishing features of the
proposed debug architecture. We start by explaining the
common features in an embedded debug module. This is
followed by the hardware modifications required to support
the iterative debug flow based on lossy compression.

3.1. Embedded Debug Module

As shown in Figure 2, at the core of a debug module
used for embedded logic analysis is an event detector. Its
purpose is to monitor a group of trigger signals so it can
determine when the data signals will be sampled in the
trace buffer. In our implementation triggering can be done
based on bitwise, reduction, comparison and logical oper-
ations between the trigger signals. Three levels of opera-
tors can be combined and the operations can be performed
between two trigger signals selected by the control word
(CTRL — word). Since the event detector contains many
levels of logic, if necessary, its speed can be improved to
support higher sampling frequencies by pipelining it. To en-
able sequential event detection, based on the configuration
of the control words and the Event — count field (which
specifies the number of trigger events), the event detector
is interfaced to an event sequencer. When the segmented
mode flag (Seg — en) is enabled, the trace buffer is divided
into multiple S segments. Note, however, in this mode a
CTRL — word, as well as a segment size (Seg — size),
needs to be supplied (as part of the CUD configuration data
provided for a debug session) for each of the S segments.
After the trace buffer is filled with samples, its content is
serialized and sent back to the off-chip debugger software
via a low-bandwidth interface such as JTAG. If the stream
mode is enabled (St — en) the debug data will be streamed
as it is sampled (provided that the trace buffer has one read
and one write port). This will increase the number of sam-
ples acquired in one debug session, nonetheless the trace
buffer will eventually become full, since the bandwidth for
streaming is limited.

Sessionl N =221
Level 0 M=512
SPS, = 4096 S=4

50y ST $2N\ 83
Level 1 Session2 Session3
SPS, =32
Level 2 S0 51 450 o 53 50y siN¥ s2 53 50 W S1 % 52 s3
SPS, =1

Session4 Session5 Session6

Figure 3. An lllustrative Debug Example

3.2. MISR-Based Lossy Compression

Our proposed solution relies on a multiple input signa-
ture register (MISR) (commonly used in BIST), which is
placed at the input of the trace buffer. This MISR performs
lossy compression on the selected debug data signals with
a compression level determined by the samples per signa-
ture (M IS R—S PS) parameter, whenever the MISR enable
MISR — en is enabled. At the beginning of a debug ses-
sion, the MISR counter (which is placed in the controller of
the debug module) is initialized to zero. After the trigger
condition occurs, the MISR counter starts counting and it
resets back to zero each time it reaches MISR — SPS, at
which point the signature is written in the trace buffer. The
number of signatures stored in each segment is determined
by Seg — size. After the first debug session, in order to start
sampling at the beginning of an interval of interest, a trigger
pointer (I'RIG — pointer) is used for each segment. The
value of this trigger pointer is pre-computed off-line (based
on the failing information from the previous debug level)
and it is also passed as part of the CUD configuration data
at the beginning of each debug session. When all the failing
intervals of length smaller than the segment size have been
identified, the compression does not need to be performed
any more and M ISR — en is deactivated.

Due to space limitations we cannot elaborate on all the
steps, algorithms and equations used to update the CUD
configuration data from one debug session to another. As
a consequence, we use Figure 3 and the following example
to show how the features described in this section can be
used for the proposed iterative debug flow.

Example 1 We assume the trace buffer has S = 4 seg-
ments and its depth is M = 512 locations, and the tar-
geted observation window is N = 22! samples. We start
with an initial debug session that compresses the entire
observation window with the compression level given by
SPSo = N/M = 4096 (SPS; is the number of samples
per signature at debug level i). Debug level 0 has only one
debug session, in which the trace buffer is unsegmented.
After the initial debug session, each of the eight failing
signatures covers 4096 samples, which, for this particular
case, is greater than the size of the trace buffer (512 loca-
tions). Therefore, we will have an intermediate debug level
1, which will further ’filter-out” the error free intervals.

For all the subsequent debug sessions, the memory segments
are used in such way that instead of expanding one failing
signature per debug session, S failing signatures are ex-
panded. SPSy can be calculated as SPSy[(M/S) = 32.
The trigger pointers in each debug session are calculated
based on the SPS of the current debug level and the start-
ing point of the failing signatures from the previous debug
level. In the last debug level 2, no compression will be ap-
plied (SPSy = 1). To better utilize the available memory,
before running any session in debug level 2, the debugger
software will check if any neighboring signatures from level
1 can be merged such that more than one signature can be
expanded into one segment in debug level 2. In Figure 3,
two of the failing signatures from session 2 at debug level 1
can be expanded in one segment in debug level 2. Therefore,
since the number of erroneous intervals is only 12 (it equals
the number of segments with failing samples in the last de-
bug level) the number of debug sessions for the proposed
approach is 6. In the sequential debug case (i.e., no com-
pression), the total number of sessions to collect data over
the same observation window would be N/M = 4096.

If the number of failing samples is high then the pro-
posed method will unlikely bring any benefits because iter-
atively we will have to zoom in a large number of intervals.
However, for low error rates, which would be a realistic as-
sumption when searching for hard-to-detect bugs that occur
spuriously in large observation windows [11], the reduction
in the number of debug sessions is considerable as shown in
the experimental section.

3.3. The Addition of Spatial Compression

The Sp — en flag shown in Figure 2 is used to enable
spatial compression. In this case width compression can be
employed before the MISR by using an X OR network in
which multiple channels of debug data are compressed into
a single one. This feature can be used in all the debug levels
except the last one, where no compression is performed and
the debug module selects only one channel at a time. Note,
while both the spatial compressor and the MISR may run
into the aliasing problem it is unlikely that all the erroneous
samples caused by a particular bug will lead fault-less sig-
natures in all the possible intervals of occurrence.

3.4. Combining Streaming and Compression

An interesting observation is that if the length of the
observation window is large and if the failing signatures are
sparse, then there is plenty of idle time in between any two
trigger points in the trace buffer. Therefore, an additional
architectural feature (St — en flag in Figure 2) enables the
streaming of the samples stored in the trace buffer through
the JTAG port while the debug experiment is still running on
the CUD. The basic principle can be explained as follows.

We define the streaming distance as the minimum dis-
tance between two trigger points that can be mapped onto

the first segment of the trace buffer, without overflowing it
when the stream mode is enabled. The streaming distance
is calculated based on the on-chip sampling frequency, the
off-chip serial interface frequency and the trace buffer seg-
ment size. While streaming out the contents of the first
segment, another trigger pointer that satisfies the streaming
distance can be uploaded to the debug module. The process
of streaming out the first segment contents and uploading
a new trigger pointer for the same segment is repeated un-
til the last S — 1 signatures in the current debug level are
reached. Subsequently, after offloading the content of the
trace buffer to the debugger software, the above steps are re-
peated iteratively until all the failing intervals are detected.

4. Experimental Results

This section discusses the experiments concerning the
area investment and compression benefits of the iterative de-
bug flow presented in this paper. It should be noted, the
proposed solution has not been implemented into an ASIC.
Nonetheless, the area results have been estimated using a
180nm ASIC standard cell library. The rest of the exper-
iments have been done using the data available from the
FPGA prototyping of an MP3 audio decoder [7] or using
random data, as explained later in this section.

4.1. Area of the Proposed Debug Module

Table 1 shows the area of the debug module (without
the trace buffer) in terms of 2 input NAND (NAND?2) gates.
The results shown are for different number of variable-sized
segments (S = 2, S = 4 and S = 8) for the following
cases: no compression and no high speed sampling features;
no spatial compression (Ch = 1) and spatial compression
with different number of channels (Ch = 2, Ch = 4 and
Ch = 8) where streaming compression is enabled and high
speed sampling is facilitated by pipelining the event detec-
tor. The results from the table refer only to the logic area
and do not account for the trace buffer. To ensure that the
debug module can be shared between multiple logic cores
on the SOC, we connect 8 different groups of signals to the
same debug module. In addition, it is important to have
as many features as possible in the control word (such as
compare against a constant or mix several types of logic or
relational operators), the control word (which is stored for
each segment) will grow in size. Should all these features be
removed, the area of the debug module can be significantly
reduced, nevertheless the debug capabilities will be severely
limited, which we do not consider to be a good motivation.

The different variants of the proposed architecture are
obviously larger than the debug architecture that does not

No Streaming Streaming
Error % No Spatial | Spatial | No Spatial | Spatial
0.164 Tseq/Tprop 45.0 59.7 76.2 111.6
1.590 Tseq/Tprop 6.8 8.7 12.3 18.0
6.143 Tseq/Tprop 2.4 3.1 4.6 6.9

Segments No Compression

Number | Compression | Ch=1 | Ch=2 | Ch=4 | Ch=38
S=2 2318 4585 4649 4725 4880
S=4 3333 6169 6234 6314 6468
S=38 5359 9044 9108 9188 9343

Table 1. Area in NAND2 Equivalents

Table 2. Reduction in Debug Execution Time

for MP3 (N = 22!, M =512,S =4,Ch = 2)
have any compression or high-speed features. What is inter-
esting to note, however, as the number of channels used for
spatial compression increases, the added area becomes in-
significant. Nonetheless, as shown later in this section spa-
tial compression feature can further reduce the number of
debug sessions. It is essential to note also that the increase
in the logic area of the debug module has significantly less
penalty than scaling the trace buffer. For example, for 8
segments and 8 channels that are spatially compressed, the
added logic area for compression is still less than one fifth of
the size of an embedded memory of 4Kbytes implemented
in the same technology.

4.2. MP3 Decoder Experiments

An MP3 decoder has been implemented and prototyped
on an FPGA board. It was investigated how functional er-
rors in the RTL code, can be detected using the proposed
methodology. Table 2 shows the reduction ratios in terms
of the debug execution time for the entire observation win-
dow, where Teq and T}y are the debug execution times
for the sequential (i.e., no compression) and the proposed
debug methods respectively. To compute the debug execu-
tion time we need to consider not only the number of the
debug sessions, but also the on-chip sampling time and the
communication time (needed for off-loading the trace buffer
content to the debugger software through the JTAG inter-
face) for each of the debug sessions. On the one hand, the
communication time is determined by the JTAG frequency
and the capacity of the trace buffer and therefore it is con-
stant for all the debug sessions. On the other hand, for the
proposed method the on-chip sampling time is dependent
on how many on-chip clock cycles elapse from the trigger
event until the trace buffer is filled only with failing inter-
vals, which are of interest in the current debug session (e.g.,
in Figure 3 the on-chip sampling time for debug session 3
will be larger than for debug session 2). Therefore, this time
varies from one debug session to another and it is dependent
on the distribution of the failing samples in the observation
window. It should be noted that the debugger software does
not incur any additional latency because the processing of
debug data can be done at the same time while the debug ex-
periments are running on-chip and/or the data is transferred
to/from the debugger software.

The data reported in Table 2 is for probing the data
busses after the stereo decoder module in the MP3 decoder’s
pipe [7] for 3 different functional bugs affecting only sev-
eral stereo modes. The error choices are motivated by the
fact that only a few music frames throughout an entire song

Error % | Burst length | 64 128 256 | 512
1.553 Tseq/Tprop | 7.1 | 119 | 183 26
2.324 Tseq/Tprop 5 8.3 13 18.4
3.077 Tseq/Tprop | 3.9 | 6.5 10.1 | 144
3.831 Tseq/Tprop | 3.2 | 5.3 8.3 11.8

Table 3. Reduction in Debug Execution Time

versus Error % of Random Data for Different

Burst Lengths with N = 227, M = 2048, 5 =4
will use a specific stereo mode, thus justifying the condi-
tion that the bugs are very difficult to find and they manifest
themselves only spuriously over very long observation win-
dows (the error rates are .16%, 1.59% and 6.14% respec-
tively). In this particular case, the observation window rep-
resents 1820 MP3 frames (there are 1152 samples per MP3
frame), which gives N = 22!, The spatial compression is
applied on both music channels of the MP3 decoder and,
as clearly shown in Table 2, streaming can bring substantial
improvements. The significant reduction in the debug exe-
cution time when using streaming is due to the fact that by
using the proposed iterative debug flow, by sampling only
the failing intervals from the previous debug level we can
use the time in between two intervals to stream out samples
that have been sampled in the same debug session.

4.3. Random Data Experiments

To show the sensitivity of the results on the distribution
of failing samples, Table 3 shows the reduction in debug ex-
ecution time for different sets of random data experiments
that have distinct error distributions. The random data ex-
periments assume N = 227, M = 2048, S = 4, and that
no spatial compression and no streaming compression are
enabled. The burst length represents the number of erro-
neous samples that occur consecutively and all the bursts
are randomly distributed over the entire observation win-
dow. As it can be clearly observed from the table, when
the burst length increases, the reduction ratios grow. This is
because when the burst length is approaching the segment
size, for a given error percentage, the number of uncom-
pressed debug sessions (the last level of debug) are reduced
(also the number of debug sessions in the intermediate lev-
els are indirectly reduced as less failing signatures need to
be processed). Finally, as expected, as the error percentage
increases, the reduction ratios decrease for the same burst
length since more debug sessions will be necessary to de-
tect the erroneous intervals.

5. Conclusion

This paper has shown how lossy compression can be
used for developing a new debug architecture and an iter-
ative debug flow that enable an increase in the observation
window while supporting the existing depth or width com-
pression techniques for at-speed silicon debug of generic
digital ICs . The proposed solution can be used as an aid
to the existing methods for trace buffer-based debug, when-
ever cyclic debugging is permitted.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171
(18]

[19]

[20]

[21]

[22]

M. Abramovici and Y.-C. Hsu. A New Approach to Silicon De-
bug. In IEEE International Silicon Debug and Diagnosis Workshop
(SDD), November 2005.

M. Abramovici, E. J. Marinissen, M. Ricchetti, and B. West. Sug-
gested Terminology Standard for Silicon Debug and Diagnosis. In
IEEE International Silicon Debug and Diagnosis Workshop (SDD),
November 2005.

O. Caty, P. Dahlgren, and I. Bayraktaroglu. Microprocessor Silicon
Debug Based on Failure Propagation Tracing. In Proceedings IEEE
International Test Conference (ITC), pages 284-293, October 2005.
P. Dahlgren, P. Dickinson, and I. Parulkar. Latch Divergency in Mi-
croprocessor Failure Analysis. In Proceedings IEEE International
Test Conference (ITC), pages 755-763, October 2003.

S. Davidson. Understanding NTF Components from the Field. In
Proceedings IEEE International Test Conference (ITC), pages 333—
342, October 2005.

R. Desplats, F. Beaudoin, P. Perdu, N. Natara, T. Lundquist, and
K. Shah;. Fault Localization Using Time Resolved Photon Emis-
sion and STIL Waveforms. In Proceedings IEEE International Test
Conference (ITC), pages 254-263, October 2003.

S. Hacker. MP3: The Definitive Guide. O’Reilly & Associates, Inc.,
Mar. 2000.

A. Hopkins and K. McDonald-Maier. Debug Support Strategy for
Systems-on-Chips with Multiple Processor Cores. IEEE Transac-
tions on Computers, 55(2):174—184, February 2006.

Y. Huang and W.-T. Cheng. Using Embedded Infrastructure IP for
SOC Post-Silicon Verification. In Proceedings ACM/IEEE Design
Automation Conference (DAC), pages 674-677, June 2003.

IEEE Industry Standards and Technology Organization. The Nexus
5001 Forum Standard for a Global Embedded Processor Debug In-
terface. http://www.nexus5001.org, 2003.

D. Josephson. The Manic Depression of Microprocessor Debug . In
Proceedings IEEE International Test Conference (ITC), pages 657
— 663, October 2002.

D. Josephson and B. Gottlieb. The Crazy Mixed up World of Sili-
con Debug. In Proceedings IEEE Custom Integrated Circuits Con-
ference (CICC), pages 665 — 670, October 2004.

Y.-J. Kwon, B. Mathew, and H. Hao. FakeFault: A Silicon Debug
Software Tool for Microprocessor Embedded Memory Arrays. In
Proceedings IEEE International Test Conference (ITC), pages 727—
732, October 1998.

W. K. Lam. Hardware Design Verification: Simulation and Formal
Method-Based Approaches. Prentice Hall, 2005.

R. Leatherman and N. Stollon. An Embedded Debugging Architec-
ture for SOCs. IEEE Potentials, 24(1):12—16, February 2005.

C. MacNamee and D. Heffernan. Emerging On-chip Debugging
Techniques for Real-Time Embedded Systems. IEE Computing &
Control Engineering Journal, 11(6):295-303, December 2000.

K. Morris. On-Chip Debugging - Built-in Logic Analyzers on your
FPGA. Journal of FPGA and Structured ASIC, 2(3), January 2004.
K. Parker. The Boundary-Scan Handbook : Analog and Digital.
Kluwer Academic Publishers, 2nd edition, 1998.

J. Solden and R. Anderson. IC Failure Analysis: Techniques and
Tools for Quality and Reliability Improvement. Proceedings of the
IEEE, 81(5):703-715, May 1993.

D. Vallett. IC Failure Analysis: The Importance of Test and Di-
agnostics. IEEE Design and Test of Computers, 14(4):76-82, July
1997.

B. Vermeulen, M. Urfianto, and S. Goel. Automatic Genera-
tion of Breakpoint Hardware for Silicon Debug. In Proceedings
ACMY/IEEE Design Automation Conference (DAC), pages 514-517,
June 2004.

B. Vermeulen, T. Waayers, and S. K. Goel. Core-Based Scan Archi-
tecture for Silicon Debug. In Proceedings IEEE International Test
Conference (ITC), pages 638 — 647, October 2002.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

