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Abstract

Due to increasing concern about various errors, cur-
rent processors adopt error protection mechanisms. Espe-
cially, protecting L2/L3 caches incur as much as 12.5% area
overhead due to error correcting codes. Considering large
L2/L3 caches of current processors, the area overhead is
very high. This paper proposes an area-efficient error pro-
tection scheme for L2/L3 caches. First, it selectively applies
ECC (Error Correcting Code) to only dirty cache lines and
other clean cache lines are protected using simple parity
check codes. Second, the dirty cache lines are periodically
cleaned by exploiting the generational behavior of cache
lines. Experimental results show that the cleaning technique
effectively reduces the number of dirty cache lines per cy-
cle. The ECCs of this reduced number of dirty cache lines
can be maintained in a small storage. Our proposed scheme
is shown to reduce the area overhead of a 1MB L2 cache for
error protection by 59% for SPEC2000 benchmarks run-
ning on a typical four-issue superscalar processor.

1. Introduction

With technology scaling, supply voltages are reducing
together with threshold voltages for fast transistor switch-
ing. At the same time, pipeline is becoming deeper to in-
crease clock frequency. However, reduced supply voltages,
high clock frequencies, and low capacitive values of circuits
make them more susceptible to soft errors [1, 2, 3]. Soft er-
rors are incurred due to excessive charge carriers mainly
by external alpha particles and neutrons. Memory structures
are vulnerable to the soft errors since these can change the
values stored in them [1, 4, 5]. Especially, caches are good
victims for these soft errors since most of modern proces-
sors adopt large caches for improving performance.

Consequently, several error detection and correc-
tion schemes have been used for improving the reliabil-
ity of the memory system [4, 5]. Simple one is parity
check code that can detect any odd number of bit er-

rors. More powerful one is error correcting code (ECC)
that can detect and correct bit errors at the cost of in-
creased complexity and area. For example, in Itanium pro-
cessor [5], TLBs and L1 caches use parity codes while
L2 and L3 unified caches are protected by ECC such
as SECDED (Single Error Correction Double Error De-
tection). Power4 system [4] also uses parity check code
for the L1 caches and ECC for the L2 cache. Both sys-
tems use write-through L1 caches and write-back L2/L3
caches so that L1 caches can be protected using par-
ity check code. Consequently, ECC protecting L2/L3
caches incurs large area overhead. For example, every 64
bits of data requires 8 bits for ECC in Itanium processor.
The area overhead in bits in this case is 12.5%, which cor-
responds to 128KB in a 1MB L2 cache. This area would be
used for other purposes if we could reduce the area over-
head for ECC protection.

In this paper, we propose a novel scheme that can pro-
vide lower area overhead for error protecting L2 caches.
Our scheme consists of three techniques. First, it uses
ECC protection for dirty cache lines. Clean (not modi-
fied) cache lines are protected using parity check code
since non-corrupted data can be found from the next
level of the memory hierarchy. This significantly re-
duces cache lines that require ECC protection. Second,
to reduce dirty cache lines further, we employ clean-
ing of the dirty cache lines by periodically writing
them back to the main memory by exploiting genera-
tional behavior of cache lines. Our experimental results
show that the percentage of dirty cache lines can be re-
duced by more than 50% on the average without increas-
ing traffic to the main memory much. Finally, the reduced
dirty cache lines by our cleaning technique can be main-
tained in a much smaller storage than the one of the con-
ventional cache architecture. Our scheme is shown to re-
duce the area overhead due to ECC in a 1MB L2 cache by
59% with less than 1% performance loss when SPEC2000
benchmarks are run on a typical 4-issue superscalar proces-
sor.

The rest of the paper is organized as follows. The next
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section discusses related work and Section 3 explains our
non-uniform error protection, dirty cache line cleaning, and
our ECC storage architecture in detail. Experimental setup
is detailed in Section 4 and experimental results are dis-
cussed in Section 5. Finally, Section 6 concludes the pa-
per with future work.

2. Related Work

Kim et al. [9] propose area-efficient error protection
techniques for on-chip L1 caches. Their idea is based on the
observation that small portion of data cache space is fre-
quently accessed for most of the execution time. They do
not provide error protection for all cache lines but only for
frequently accessed cache lines using separate error protec-
tion circuits, thereby reducing the area overhead for the er-
ror protection compared to conventional error check for all
cache lines. In contrast, our scheme provides error protec-
tion for all cache lines in the context of larger L2/L3 caches.

To enhance the reliability of the data cache, Zhang et al.
propose in-cache replication [10]. To replicate data cache
blocks, they use a dead block prediction technique proposed
for reducing the leakage energy of caches [12]. By replicat-
ing active cache blocks in dead cache blocks, they try to en-
hance reliability of the caches.

Lee et al. propose eager writeback for avoiding perfor-
mance loss due to clustered bus traffic in a write back cache
by writing back dirty cache lines before they are replaced
[7]. Li et al. use parity codes for clean cache lines and ECC
for dirty cache lines for L1 data cache, and write back the
dirty cache lines periodically since parity codes are more
energy-efficient than ECC [11]. Their scheme, however,
does not provide area reduction.

3. Area-efficient Error Protection

Conventional error protection schemes apply uniform er-
ror protection to all cache lines, assuming each cache line
has the same probability of errors [4, 5]. Parity check codes
are employed in the L1 instruction cache since instructions
are not modified. Processors can find non-corrupted instruc-
tion data from the next level of the memory hierarchy in
cases of errors. In contrast, L1 data cache can employ one
of two schemes. In the first scheme, the data cache is pro-
tected with ECC since data can be modified by store in-
structions. In the second scheme, the data cache is protected
with parity codes by employing a write-through policy us-
ing a write buffer, and L2/L3 caches are protected with ECC
as in POWER 4 system and Itanium processor [4, 5]. The
write buffer reduces data traffic to L2 cache by combin-
ing multiple write backs into single one [6]. We adopt the
second scheme as our baseline error protection for caches

Figure 1. Percentage of dirty cache lines per cy-
cle in a 1MB 4-way L2 cache.

since many modern processors adopt a write-through L1
data cache and write-back L2 cache.

Since the instruction and data caches are protected with
simple parity codes, we focus on the L2 cache employing
more expensive ECC in this paper.

3.1. Non-uniform Error Protection

We apply non-uniform error protection to cache lines.
This is based on the observation that not all cache lines are
dirty. Figure 1 shows percentage of dirty cache lines of a
unified L2 cache per cycle when SPEC2000 benchmarks
are run on a typical 4-issue superscalar processor. Refer to
Section 4 for experimental setup. The L2 cache has 4-way
set-associative 1MB with 64B cache lines. So it has a to-
tal of 16384 cache lines. It is observed from the figure that
there are a large percentage of clean cache lines except for
four benchmarks. The percentage of dirty cache lines is, on
the average, 51.6% across all the benchmarks. Thus, it is in-
efficient to use the same ECC for all cache lines. Instead,
we use parity check codes for clean cache lines and ECC
for dirty cache lines. Every 64 bits data requires 1 bit parity
check code as in Itanium processor. With our non-uniform
error protection, we need 16KB parity check codes for all
the L2 cache lines and around 64KB ECC for dirty cache
lines, saving 48KB = 128KB - (64KB + 16KB) area. Now,
we focus on dirty cache lines constituting about half of the
all cache lines.

3.2. Cleaning Dirty Cache Lines

We would reduce dirty cache lines further if we could
make them clean. One way is to write dirty cache lines back
to the main memory as in the write-through cache. How-
ever, this will significantly increase the memory traffic to
the main memory if we prematurely write dirty cache lines
back to the memory that will be modified soon. Increased
memory traffic to the main memory consumes the band-



Figure 2. Cleaning logic for the 4-way associative
L2 cache. The additional components are shaded.

width of off-chip memory bus, resulting in increased en-
ergy consumption and performance degradation. Therefore,
we need a technique that can reduce dirty cache lines with-
out increasing writes back to the main memory.

It is reported in [12] that cache lines are frequently ac-
cessed after they are brought in from the main memory and
then see a period of dead time before evicted. During the
dead period, the cache lines are never used, so they can be
turned off to reduce leakage power. In a similar way we
can think that cache lines will not be modified during the
dead period before their eviction. Then, we can make them
clean earlier when they are detected to be dead. They will be
evicted from the cache after the dead period but this will not
incur write backs to the main memory since they are already
clean. Therefore, we could reduce dirty cache lines per cy-
cle without increasing memory traffic to the main mem-
ory much if the dead time detection would be accurate. We
can write back the dirty cache lines before their dead pe-
riod when it is expected there will be no more write oper-
ations to the dirty cache lines, further reducing dirty cache
lines per cycle.

Figure 2 shows our implementation of cleaning logic for
the L2 cache that has 4-way associative 1MB. Each way in
conventional L2 cache architecture has an ECC-bits array
while our L2 cache architecture requires a parity-bits array
for each cache way and one ECC array for all cache ways.
Each cache line is augmented with a written bit. The writ-
ten bit is reset to zero when new data are brought in to the
cache line and is set to one when it is modified more than
one time, while the dirty bit is set to one when it is modi-
fied once. Thus, when the written bit is one, the dirty bit is
also one. After some predefined interval has passed since a
cache line is brought in from the main memory, it is writ-
ten back to the main memory if its written bit is zero but its
dirty bit is one since this indicates that the corresponding
cache line is not likely to be further modified in the near fu-
ture. Cache line cleaning is performed by the cleaning logic
that includes a cycle counter and a latch storing the next

cache set number. The cleaning logic checks cache lines
belonging to the cache set number stored in the latch af-
ter predefined cycles, e.g. 1000 cycles, have passed whether
their written bits are zero and dirty bits are one. If so, the
cache lines are written back to the main memory and their
dirty bits are reset to zero. Note that if this is a premature
write back, this increases memory traffic to the main mem-
ory but does not results in incorrect memory access. Oth-
erwise, the written bits are reset to zero. The next set num-
ber in the latch is increased by one to indicate the next cache
set that will be checked after another predefined cycles have
passed. When both L1 caches and the cleaning logic request
an access to the L2 cache, the L1 caches are given a prior-
ity since their requests are more performance-critical. Note
that even though we assume our own cycle counter in our
implementation, many processors have various cycle coun-
ters for operating systems and performance counting [8].
The area overhead due to the written bits is 16K bits and
the latch is 12 bits wide since there are 4K cache sets in our
1MB 4-way L2 cache with 64B cache lines. The finite state
machine for the cleaning logic is simple; it checks and re-
sets the written and dirty bits of the cache lines in each pre-
defined cycles. So most of area overhead comes from the
written bits.

3.3. ECC storage

So far, we have focused on reducing dirty cache lines.
Then, how can we exploit these reduced dirty cache lines
for low area error protection? All cache lines, regardless of
clean or dirty, are protected using parity codes in the L2
cache in our case. The ECCs of the dirty cache lines are
stored in an ECC array, which is much smaller than the ECC
storage in the conventional cache architecture. Our scheme
guarantees that all dirty cache lines find their correspond-
ing ECCs in the ECC array. Figure 2 also shows our ECC
array structure. Our scheme has one parity array for each
cache way and one ECC array for all cache ways while con-
ventional cache architecture needs an ECC array for each
cache way. Therefore, all cache lines belonging to the same
set (4 lines in a 4-way associative cache) share an ECC en-
try, thereby we can reduce the storage required for the ECC
protection by four times.

L2 reads are performed as in the conventional error pro-
tection. If the cache line accessed is clean, parity code is
used. Otherwise, ECC is used for error detection and correc-
tion. We focus on L2 writes since reads do not make cache
lines dirty. We can categorize memory writes into two cases
in the context of L2 cache. First, there is no dirty cache line
in the cache set accessed by the current write request. We
update the corresponding ECC entry with the new ECC data
of the current write. Second, there is a dirty cache line in the
accessed cache set before the current write. We need to allo-



Parameter Configuration

Issue window 64-entry RUU 32-entry LSQ
decode and issue rate 4 instructions per cycle

Functional 4 INT add, 1 INT mult/div
units 1 FP add, 1 FP mult/div

L1 instruction cache 32KB 4-way, 32B line, 1-cycle
L1 data cache 32KB 4-way, 32B line, 1-cycle

L2 cache unified 1MB, 4-way, 64B line, 10-cycle
Main memory 8B-wide, 100-cycle

Branch prediction 2-level , 2K BTB
Instruction TLB 64-entry, 4-way

Data TLB 128-entry, 4-way

Table 1. Baseline processor configuration

Figure 3. Percentage of dirty cache lines per cy-
cle for different cleaning intervals in floating-point
benchmarks.

cate an entry in the ECC array for the current write. This re-
sults in an eviction of the ECC data for the dirty cache line
already in the cache set, which must be written back to the
main memory since we can no longer provide ECC protec-
tion for the cache line. Then, how can we identify the cor-
responding cache line in the L2 cache to the evicted ECC?
The cache line with its dirty bit 1 is the corresponding cache
line to the evicted ECC since at most one cache line among
an L2 cache set can be dirty in our case. In our scheme,
write backs from the L2 cache happen in three cases: evic-
tion from the ECC array, dirty line cleaning, and dirty cache
line replacement.

4. Experimental Setup

We modified SimpleScalar version 3 tool suite [14] for
this study. Our baseline processor models an out-of-order
four-issue processor. Table 1 summarizes the simulation pa-
rameters of this processor. Since SimpleScalar models write
back L1 cache, we modified SimpleScalar to support write-
through L1 cache by implementing a write buffer that has

Figure 4. Percentage of dirty cache lines for
different cleaning intervals per cycle in integer
benchmarks.

fully associative 16 entries. Our simulations have been per-
formed with a subset of SPEC2000 benchmarks using pre-
compiled binaries obtained from [13]. These were compiled
with DEC C V5.9-008, Compaq C++ V6.2-024, and Com-
paq FORTRAN V5.3-915 compilers using high optimiza-
tion level. Seven programs from each of floating-point and
integer benchmarks are randomly chosen for our evaluation.
All the benchmarks are fast-forwarded for one billion in-
structions to avoid initial start-up effects and then simulated
for one billion committed instructions. For all simulations,
the reference input sets are used.

5. Experimental Results

5.1. Cleaning Results

For dirty cache line cleaning, we have experimented var-
ious cleaning intervals from 64K processor cycles to 4M cy-
cles by increasing four times. For example, 1M cleaning in-
terval means that each cache line is checked for every one
million processor cycles to see its written bit is zero and
dirty bit is one. Intuitively, smaller cleaning interval indi-
cates aggressive write backs of dirty cache lines while larger
interval is conservative. We need to find out the best clean-
ing interval that can minimize dirty cache lines per cycle
and, at the same time, additional write backs by prematurely
cleaning dirty cache lines that will be modified soon.

Figure 3 and Figure 4 shows percentages of dirty cache
lines per cycle for different cleaning intervals in floating-
point and integer benchmarks, respectively. As expected,
smaller cleaning intervals linearly reduce the percentage of
dirty cache lines. The applu, swim, mgrid, equake, and mcf
show little reduction with 4M interval. In other benchmarks,
4M interval shows small reduction in the percentage of dirty
cache lines. If we want around 2K dirty cache lines, 256K is
the appropriate interval on the average. For 4K dirty cache
lines, 1M interval is a good choice.



Figure 5. Percentages of write back traffic out of
all loads/stores for floating-point benchmarks.

However, it should be noted that smaller cleaning inter-
val increases number of write backs due to its aggressive-
ness. Increased write backs mean more activity in the bus
and main memory, which results in more energy consump-
tion and performance loss. Thus, it is important to find out a
cleaning interval that provides largest reduction in the num-
ber of dirty cache lines and does not increase memory traffic
to the main memory as much. Figure 5 and Figure 6 presents
results for the memory traffic due to write backs from the
L2 cache for floating-point and integer benchmarks, respec-
tively. The %write back in the figures are the percentage
of write backs out of all loads/stores. We also show the re-
sults without dirty cache line cleaning (org in the figures).
Overall, 1M cleaning interval approaches the results of the
org. The percentages of write backs are 1.13% and 1.08%
for 1M interval and org, respectively, in the floating-point
benchmarks. These percentages are 1.16% and 1.12%, re-
spectively, for the integer benchmarks. Thus, our cleaning
technique using written bit is effective for detecting dead
cache lines that will not be used any more before evicted.

5.2. Performance Results

To experiment our new ECC technique, we determined
to use 32KB ECC array from the observations seen before.
Since each ECC entry is 8 bytes, there are 4K ECC entries
in total, which is the same as the number of sets in the L2
cache of our baseline processor. Each L2 tag and status bits
are protected by a 1-bit parity code as in Itanium processor
[5]. Thus, our approach has a total of 54KB area overhead
for error protection: 16KB for parity codes in the data array,
2KB for written bits, 2KB parity bits for the tag array, 2KB
parity bits for the status bits, and 32KB for the ECC array,
compared to 132KB in the conventional ECC protected L2
cache: 128KB for the data array and 4KB for the tag array
and status bits. This is 59% reduction in area overhead.

Our goal is to have around 4K dirty cache lines per cy-
cle in the L2 cache. We use the profiled information to stat-

Figure 6. Percentages of write back traffic out of
all loads/stores for floating-point integer bench-
marks.

ically determine the best cleaning interval for all the bench-
marks. We use 1M cleaning interval since it gives around
4K dirty cache lines per cycle from Figure 3 and 4 and there
is little change in write back traffic beyond 1M cleaning in-
terval. Note that, however, each benchmark will have differ-
ent cleaning interval for best results.

Figure 7 shows the percentage of dirty cache lines in the
L2 cache when we applied dirty line cleaning and a smaller
ECC storage. In all the benchmarks, the percentage of dirty
cache lines is lower than 25% and in Figure 3 and 4. This
means that additional write backs due to ECC entry evic-
tion make more L2 cache lines clean. Let us look at the four
benchmarks in detail: apsi, mesa, gap, and parser. These
benchmarks include a large percentage of dirty cache lines
as can be observed from Figure 1. In Figure 7, most of those
dirty cache lines are removed. This indicates that our dirty
cache line cleaning is effective even in those benchmarks
with a large percentage of dirty cache lines.

Figure 8 shows the percentages of write backs out of
all loads/stores. Each bar in the figure is partitioned into
three portions: Clean-WB for write backs due to our dirty
cache line cleaning, WB for normal write backs due to cache
misses, and ECC-WB for write backs due to ECC entry evic-
tion. Clean-WB and WB constitute little portion of the total
write backs. ECC-WB consists of most of the write back
traffic on the average for most of the benchmarks; ECC-
WB is more dominant due to a large number of ECC entry
eviction. The average percentages of write backs are 1.20%
and 1.19% for the floating-point and integer benchmarks,
respectively. These percentages are 1.08% and 1.12% in the
original configuration. Thus, memory traffic increase due to
additional write backs is small in our scheme.

We also measured performance loss in terms of IPC due
to increased write back traffic from the L2 cache. We mod-
ified SimpleScalar to include additional write back traffic
due to our scheme. We assumed split transaction bus for the
off-chip memory bus. It is observed that the increased mem-
ory traffic does not have a big impact on performance. Per-



Figure 7. Percentage of dirty cache lines per cy-
cle for our approach.

formance loss is 0.14% and 0.65% on the average for the
floating-point and integer benchmarks, respectively.

6. Conclusions

Current trends of reduced supply voltage, high frequen-
cies and low capacitive values of circuits make them more
vulnerable to soft errors. Especially, cache memories are
more susceptible to soft errors due to their large transistor
counts. Consequently, modern processors such as Power4
and Itanium processors adopt an error protection mecha-
nism for cache memories. Protecting cache memory using
ECC requires as much as 12.5% area overhead. Consider-
ing large L2/L3 caches in current processors, the area over-
head for error protection is very high.

For area-efficient error protection for caches, we propose
a novel scheme that combines dirty cache line cleaning and
non-uniform error protection using a new ECC storage ar-
chitecture. Clean cache lines are protected using less ex-
pensive parity codes in terms of bits, while dirty cache lines
are ECC protected. To reduce dirty cache lines and thereby
area overhead for error protection, our approach employs a
dirty cache line cleaning technique that writes dirty cache
lines back to the main memory when they are expected to
not be modified further in the near future by exploiting the
generational behavior of cache lines. The ECCs of reduced
dirty cache lines can be maintained in a smaller ECC ar-
ray than the one in the conventional cache architecture. Ex-
perimental results show that our scheme effectively reduces
the area overhead by 59% and increase in memory traffic
due to write backs is small, resulting in less than 1% perfor-
mance loss.
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