
Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems∗

Hui Cheng, Steve Goddard
Department of Computer Science and Engineering

University of Nebraska — Lincoln
Lincoln, NE 68588-0115

{hcheng, goddard}@cse.unl.edu

Abstract

Much research has focused on power conservation for the
processor, while power conservation for I/O devices has re-
ceived little attention. In this paper, we analyze the prob-
lem of online energy-aware I/O scheduling for hard real-
time systems based on the preemptive periodic task model.
We propose an online energy-aware I/O device schedul-
ing algorithm: Energy-efficient Device Scheduling (EEDS).
The EEDS algorithm utilizes device slack to perform device
power state transitions to save energy, without jeopardizing
temporal correctness. An evaluation of the approach shows
that it yields significant energy savings with respect to no
Dynamic Power Management (DPM) techniques.

1. Introduction
Power management is important to extend the limited bat-

tery life of portable embedded systems. In the past decade,
much research work has been conducted on low-power de-
sign methodologies for real-time embedded systems. For
hard real-time systems, the research has focused primarily
on reducing the power consumption of the processor. The re-
search on power conservation technologies for I/O devices,
though important, has received little attention.

In practice, embedded systems are usually intended for a
specific application. Such systems tend to be I/O intensive,
and many of them require real-time guarantees during oper-
ation [7]. Therefore, aggressive energy conservation tech-
niques are needed to save energy in I/O devices for real-time
embedded systems.

Power management techniques can be viewed as being
static or dynamic. Static power management techniques are
carried out at design time whereas Dynamic Power Man-
agement (DPM) techniques are applied at run-time based
on workload variation. Although static techniques can save
significant energy, they are relatively inflexible to adapt to
changes in the operating environment. DPM at the operating

∗Supported, in part, by grants from the National Science Foundation
(CNS-0409382, and CCF-0429149).

system (OS) level, on the other hand, has gained importance
due to its flexibility and ease of use [7]. The focus of this
paper, therefore, is to investigate I/O-based DPM techniques
for real-time embedded systems.

Most I/O-based DPM techniques save energy by resource
shutdown. That is, identifying time intervals where I/O de-
vices are not being used and switching these devices to low-
power modes during these periods. Saving energy for I/O
devices in hard real-time systems incurs the following chal-
lenges: (1) Power state transitions incur significant time
and power penalties for I/O devices. Therefore, devices
should be put in low-power states as long as possible but
still guarantee system temporal correctness; (2) Each task
may use multiple devices. Power state transitions should
be made per-device. Some procrastination scheduling tech-
niques [2, 4], used in CPU-based DPM, are not suitable for
I/O devices, because these techniques consider the CPU as
the only shared device.

There have been efforts [5, 6, 7, 8] in developing energy-
efficient device scheduling algorithms that reduce I/O device
energy consumption for real-time systems. Among them,
[5, 6, 7] can only support non-preemptive task scheduling.
The only known published energy-aware algorithm for pre-
emptive schedules, Maximum Device Overlap (MDO), is an
offline method proposed by the same authors in [8]. A de-
ficiency of the offline method is that it is hard to adapt to
changes in the operating environment, such as dynamic task
join/leave or early job completion.

In this paper, we propose an online energy-aware I/O de-
vice scheduling algorithm, Energy-efficient Device Schedul-
ing (EEDS), for hard real-time systems based on the pre-
emptive periodic task model. This algorithm uses preemp-
tive Earliest Deadline First (EDF) [3] to schedule jobs. As
with [8], EEDS performs inter-task device scheduling rather
than intra-task device scheduling. That is, the scheduler does
not put devices to sleep while tasks that require them are
being executed, even though there are no pending I/O re-
quests at that time. Intra-task device scheduling is generally
not advisable for hard real-time systems. To the best of our

1

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



knowledge, EEDS is the first online energy-efficient device
scheduling algorithm for hard real-time systems.

The rest of this paper is organized as follows. The prob-
lem of energy-aware I/O device scheduling is analyzed in
Section 2. Section 3 describes the proposed algorithms. Sec-
tion 4 describes how we evaluated our system and presents
the results. Section 5 presents our conclusions and describes
future work.

2. Problem description
Modern I/O devices usually have at least two power

modes: active and sleep. I/O operations can be only per-
formed on a device in active state, and a transition delay
is incurred to switch a device between power modes. In a
real-time system, in order to guarantee that jobs will meet
their deadlines, a device cannot be put in sleep mode without
knowing when it will be requested by a job, but, the precise
time at which an application requests the operating system
for a device is usually not known. Even without knowing the
exact time at which requests are made, we can safely assume
that devices are requested within the time of execution of the
job making the request. As a result, our method is based on
inter-task device scheduling.

Given a periodic task set with deadlines equal to peri-
ods, τ = {T1, T2, ...Tn}, let task Ti be specified by the
three tuple (P (Ti),W (Ti), Dev(Ti)) where, P (Ti) is the
period, W (Ti) is the Worst Case Execution Time (WCET),
Dev(Ti) = {λ1, λ2, ..., λm} is the set of required devices
for the task Ti. Let i be the index of Ti. We refer to the
jth job of a task Ti as Ji,j . The release time of Ji,j is de-
noted by R(Ji,j). We let Dev(Ji,j) denote the set of devices
that are required by Ji,j . Throughout this paper, we have
Dev(Ji,j)=Dev(Ti).

The priorities of all jobs are based on EDF. For any two
jobs, the job with the earlier deadline has a higher priority. If
two jobs have equivalent deadlines, the job with the earlier
release time has a higher priority. In case that both deadline
and release times are equal, the job belonging to the task
with a smaller index has the higher priority. In this way, the
priority of any job is unique. The priority of a job Ji,j is
denoted by Pr(Ji,j).

Associated with a device λi are the following parameters:
the transition time from the sleep state to the active state rep-
resented by twu(λi); the transition time from the active state
to the sleep state represented by tsd(λi); the energy con-
sumed per unit time in the active/sleep state represented by
Pa(λi)/Ps(λi) respectively; the energy consumed per unit
time during the transition from the active state to the sleep
state represented by Psd(λi); and the energy consumed per
unit time during the transition from the sleep state to the ac-
tive state represented by Pwu(λi). We assume that for any
device, the state switch can only be performed when the de-
vice is in a stable state, i.e. the sleep state or the active state.

1 Preprocessing:
2 Compute break-even time BE(λk) (1 ≤ k ≤ m) for each device.
3 Schedule jobs at time t when a job is put in the ready queue or is

completed
4 // A job can join the ready queue when all needed devices are active.
5 Jrun ← the job with the highest EDF priority in the ready queue.
6 Dispatch Jrun;
7 Perform device state transitions at time t when a job is released,

completed or the timer to reactivate a device is reached.
8 If (t: ∃λk, λk /∈ Dev(Jrun) && λk = active

&& DS(λk, t) > BE(λk))
9 λk ← sleep;

10 // Up(λk) is the timer set to reactivate λk .
11 Up(λk)← t+DS(λk, t)− twu(λk);
12 End If
13 // Device slack may increase; update Up(λk) for sleeping devices

// in this case. see Section 3.1 for detailed discussion.
14 If (t: ∃λk, λk = sleep&& t+DS(λk, t)−twu(λk) > Up(λk))
15 Up(λk)← t+DS(λk, t)− twu(λk);
16 End If
17 // Reactivate λk when the timer is reached.
18 If (t: ∃λk, λk = sleep && Up(λk) = t)
19 λk ← active;
20 End If
21 End

Figure 1. The EEDS algorithm.

3. Algorithm
As discussed in Section 2, an energy-aware I/O device

scheduler needs to identify and even create idle intervals
where I/O devices can be put in the sleep mode while not
violating temporal correctness. For example, if all pend-
ing jobs requiring device λk during time interval [t, t′] can
start/resume their executions as late as t′ without causing
any job to miss its deadline, then λk can sleep during [t, t′]
to save energy. Before we explain our approach in more de-
tail, we first introduce several definitions.

Definition 3.1. Job slack. The job slack of a job Ji,j is
the available time for Ji,j to suspend its execution without
causing any job to miss its deadline. The job slack of Ji,j

at time t is denoted by JS(Ji,j , t). The computation of job
slack is given in Section 3.1.

Obviously, only unfinished jobs need to be considered.
The following definition identifies the current job of a task.

Definition 3.2. Current job. Let CurJob(Ti, t) denote the
current job of task Ti at time t. Suppose job Ji,j is the last
released job of task Ti at time t. The current job of Ti is
Ji,j if Ji,j is not finished at or before time t; otherwise the
current job of Ti is Ji,j+1.

With EEDS, each device is associated with a device slack,
which represents the available time for a device to sleep. The
device slack is defined as follows.

Definition 3.3. Device slack. The device slack is the length
of time that a device λk can be inactive1 without causing any

1inactive means that a device is either in the sleep mode or is in the
middle of a power mode transition.

2



job to miss its deadline. We let DS(λk, t) denote the device
slack for a device λk at time t. With the definition of job
slack and current job, DS(λk, t) can be given by

DS(λk, t) = min(JS(CurJob(Ti, t), t)) (1)

where Ti is any task that requires λk.

Because of the energy penalty associated with the power
state transition, a device needs to be put in the sleep mode
long enough to save energy. Break-even time represents the
minimum inactivity time required to compensate for the cost
of entering and exiting the idle state. The computation of
break-even time can be found in [1]. It is clear that if a
device is idle for less than the break-even time, it is not worth
performing the state switch. Therefore, our approach makes
decisions of device state transition based on the break-even
time rather than device state transition delay.

Algorithm EEDS (Figure 1) sketches the general idea of
our approach. The scheduler keeps track of device slack for
each device. Once a device is not required by the current
running job and the device slack is larger than the break-
even time, the scheduler puts the device in the sleep mode to
save energy. At the same time, a timer is set to reactivate the
device in the future. In case that the device slack for a sleep-
ing device is increased, the timer is updated accordingly. We
will discuss it at the end of Section 3.1. All released but un-
finished jobs are put in the waiting queue if needed devices
are not active. Other jobs are put in the ready queue and
scheduled according to the EDF algorithm. In case that a
new task joins the system during runtime, all sleeping de-
vices are reactivated and the device slack of each device is
updated.

3.1. Computing the job slack
The job slack of a job comes from two sources. The first

source is the run-time. The concept of run-time comes from
known techniques [2, 9], denoting the time budget allocated
to each job. Generally this time budget is larger than the ac-
tual need of the job. Therefore, over-provisioned run-time
can be used to prolong job slack. Figure 3(a) shows an ex-
ample of this kind of job slack. We will discuss it in detail
shortly.

The straightforward run-time assigned to a job Ji,j is its
WCET, i.e., W (Ji,j). However, since the system utilization
U is generally less than 1, the initial run-time can be fur-
ther extended to W (Ji,j)/U , without overloading the sys-
tem. The run-time of a job has a priority and a deadline
which are set equal to the job’s priority and deadline for the
purpose of computing job slack. Recall that in Section 2, we
described rules to assign each job an unique priority to break
the tie when two jobs have the same deadline.

When a job Ji,j is released, the associated initial run-
time is inserted into a run-time list (RT-list), in which run-
times are sorted by their priorities with the highest priority

1 At any time t:
2 If (t: a new job Ji,j arrives)
3 Insert to RT (W (Ji,j)/U, Pr(Ji,j));
4 End If
5 rt0 ← rt0 − 1;
6 If (rt0 = 0);
7 Remove from RT (rt0);
8 rt0 ← the head of RT-list;
9 End If

10 End

Figure 2. The algorithm to update run-time list.

run-time at the head of the RT-list. The running job always
consumes the run-time from the head of the RT-list when it
executes. When the CPU is idle, the run-time is consumed
in the same way. If the run-time at the head of the RT-list is
depleted, the item is removed and the next run-time becomes
the head.

Let the available run-time for a job Ji,j denote the sum of
all higher priority run-times in the RT-list and the run-time
associated with Ji,j itself. Note that a run-time is inserted
into the RT-list only when the associated job is released.
Therefore, the run-time associated with Ji,j is available for
only Ji,j before the release of Ji,j ; and is available for all
jobs with priorities no higher than Pr(Ji,j) when Ji,j is re-
leased.

In Section 3.2, we will prove that a job can suspend its
execution as long as the available run-time is larger than its
residual execution time, without causing any job to miss its
deadline. Therefore, the job slack that comes from the run-
time is the available run-time for the job minus the residual
execution time. Before proceeding with the discussion, we
introduce following notation.
• rti: the ith run-time in the RT-list, with rt0 represent-

ing the head of the RT-list.
• rt(Ji,j): the run-time associated with Ji,j .
• Pr(rti): the priority of the run-time rti.
• Re(Ji,j , t): the worst case residual execution time of

job Ji,j .
• Rr(Ji,j , t): the available run-time for job Ji,j , which

is given by
∑

Pr(rti)>Pr(Ji,j)

rti + rt(Ji,j).

With this notation, the algorithm to update RT-list is de-
scribed in Figure 2. The job slack coming from the run-time
is given by

JS(Ji,j , t) = Rr(Ji,j , t)−Re(Ji,j , t) (2)

The example shown in Figure 3(a) illustrates how run-
time contributes to job slack. Both jobs are released at time
0. The initial run-time for both jobs is 12 because U = 0.5.
The job slack for J2,1 is the sum of available run-time minus
the residual execution time of J2,1, which is 12+12−6 = 18
according to Equation (2).

However, there is another source of job slack. A job can
only start execution when it is released. So if the current

3



��

���

1T

2T

� � � � ��� �� �� �� ���� �� ��

1,1J

1,2J

��	
����

�� �� ��

kλ

(a) Job slack coming from the run-time

��

���

1T

2T

� � � � ��� �� �� �� ���� �� ��

1,1J

1,2J

��	
����


�� �� ��

kλ

(b) Job slack coming from the latest eligible time.

Figure 3. Job slack examples. T1 = {20, 6, ∅}; T2 = {30, 6, {λk}}. That is, λk ∈ Dev(T2). (a) J1,1 and J2,1

both are released at time 0; (b) J1,1 is released at time 0 and J2,1 is released at time 14.

time t is less than the job release time R(Ji,j), then the time
interval [t, R(Ji,j)] can be seen as job slack. Furthermore, a
job is assigned an initial run-time of W (Ji,j)/U , which will
produce at least W (Ji,j)× (1/U − 1) unused run-time (free
run-time or slack). Therefore, it is known that a job can start
its execution as late as R(Ji,j)+W (Ji,j)×(1/U−1), which
is called its latest eligible time and is defined as follows

Definition 3.4. Latest eligible time. The latest eligible time
for a job Ji,j is given by

LT (Ji,j) = R(Ji,j) +W (Ji,j)× (1/U − 1) (3)

A job can become eligible for execution as late as its latest
eligible time without causing any job to miss its deadline.
The job slack coming from the latest eligible time is given
by

JS(Ji,j , t) = LT (Ji,j)− t (4)

Finally, considering both Equation (2) and Equation (4),
the job slack of a job Ji,j is given by

JS(Ji,j , t) = max(LT (Ji,j)− t, Rr(Ji,j , t)−Re(Ji,j , t)) (5)

Figure 3(b) shows an example of the job slack coming
from the latest eligible time. J1,1 is released at 0 and J2,1 is
released at 14. At time 0, the job slack of J2,1 coming from
run-time is 18 according to Equation (2). However, the job
slack coming from its latest eligible time is 20 according to
Equation (4). Therefore, the job slack of J2,1 is the larger of
the two, which is 20.

It can be seen that the job slack can be reduced at most
1 per system unit; and is increased only when a new job is
released. According to Equation (1), the device slack can
also be increased when a new job is released. Therefore, the
timer set to reactivate a sleeping device needs to be updated
in this case, as described in Figure 1 (line 13-16).

3.2. Schedulability
Theorem 3.1. A set of periodic tasks T = T1;T2;T3; . . . Tn,
with deadlines equal to their periods, can be feasibly sched-
uled on a single processor with EEDS if and only if

n∑

i=1

W (Ti)

P (Ti)
≤ 1 (6)

However, the following lemmas are required before we
can actually prove Theorem 3.1.

Lemma 3.2. With the EEDS algorithm, the run-time avail-
able to a job Ji,j is depleted at or before its deadline.

Proof: We first show that any run-time must be depleted
at or before its own deadline. Suppose the claim is false.
Let t be the first time that a run-time rtk is not depleted at
its deadline. Let t0 be the last instance before t at which
there is no run-time with the priority higher than or equal to
Pr(rtk) in the RT-list. Since there is no run-time before the
system start time 0, t0 is well defined. Recall that the run-
time is always consumed with the highest priority run-time
first, the sum of generated run-times with priorities higher
than or equal to Pr(rtk) must be greater than the run-time
consumed in [t0, t]. Therefore,

∑n

i=1b(t− t0)/P (Ti)c ×W (Ti)/U > t− t0

=⇒
∑n

i=1 W (Ti)/P (Ti) > U =⇒ U > U (7)

Which is a contradiction. Therefore, a run-time is depleted
at or before its deadline.

Since any run-time available to a job Ji,j has earlier or
equal deadlines, they are all depleted at D(Ji,j).

Lemma 3.3. With the EEDS algorithm, there is always
available run-time for any released and unfinished job Ji,j

if U ≤ 1. That is, Rr(Ji,j , t) > 0 if Re(Ji,j , t) > 0 and
t ≥ R(Ji,j).

Proof: Suppose the claim is false. Let t be the first time
that there is no available run-time for any pending job. Let
Ji,j be the job with the highest priority.

Let rt(Ji,j) be the run-time associated with Ji,j . It is
easy to see that rt(Ji,j) = 0 at time t, while rt(Ji,j) =
W (Ji,j)/U at time R(Ji,j). Therefore, there must be a time
instance t′ ∈ (R(Ji,j), t] at which rt(Ji,j) < Re(Ji,j , t

′).
Let t′ be the first of such time instances, it follows that

4



Device[1] Pa, Ps, Pwu(Psd)2 twu(tsd)
Realtek Ethernet Chip 0.19, 0.085, 0.125(W ) 10(ms)
MaxStream wireless module 0.75, 0.005, 0.1(W ) 40(ms)
IBM Microdrive 1.3, 0.1, 0.5(W ) 12(ms)
SST Flash SST39LF020 0.125, 0.001, 0.05(W ) 1(ms)
SimpleTech Flash Card 0.225, 0.02, 0.1(W ) 2(ms)
Fujitsu 2300AT Hard disk 2.3, 1.0, 1.5(W ) 20(ms)

Table 1. Device Specifications.

rt(Ji,j) = Re(Ji,j , t
′ − 1) at time t′ − 1. Since rt(Ji,j)

is consumed during [t′ − 1, t′], it must be the at head of RT-
list at time t′ − 1. Let Jexec be the job that executes during
[t′ − 1, t′], then Jexec can only be one of following three
cases:

1. Jexec is Ji,j . In this case, Re(Ji,j , t
′ − 1) =

Re(Ji,j , t
′) − 1. Therefore, rt(Ji,j) = Re(Ji,j , t

′) at
time t′. It contradicts our assumption of t′.

2. Jexec is a lower priority job or the CPU is idle.
Since rt(Ji,j) is at the head of RT-list and rt(Ji,j) =
Re(Ji,j , t

′ − 1) at time t′ − 1, the job slack of Ji,j is
0 at time t′ − 1. It follows all devices needed by Ji,j

are active at t′ − 1. Thus Ji,j is in the ready queue
at time t′ − 1. The execution of Jexec contradicts the
scheduling rule of EEDS algorithm.

3. Jexec is a higher priority job. In this case, the execution
of Jexec consumes the run-time with a lower priority.
This contradicts the assumption that Ji,j is the first job
with no available run-time.

Thus each case leads to a contradiction. That completes
our proof of Lemma 3.3.

Proof of Theorem 3.1:
For the proof of necessity of the Theorem, we need to

show that the EEDS scheduler cannot find a schedule if U >
1. The proof is trivial and is omitted here.

For sufficiency, suppose the claim is false. Let Ji,j be
the first job that misses its deadline at D(Ji,j). According
to Lemma 3.3, the available run-time to Ji,j at time D(Ji,j)
must be larger than 0. However, this contradicts Lemma 3.2
because the run-time available to Ji,j should be depleted at
D(Ji,j). That completes our proof.

4 Evaluation
We evaluated the EEDS algorithms using an event-driven

simulator. This approach is consistent with evaluation ap-
proaches adopted by other researchers for energy-aware I/O
scheduling [5, 7, 6]. To better evaluate EEDS, we compared
EEDS with the MDO algorithm for each simulation. MDO
is an offline method proposed in [8]. The MDO algorithm
uses a real-time scheduling algorithm, e.g., EDF, to generate

2Most vendors report only a single switching time and energy overhead.
We used this time for twu, tsd and this energy overhead for Pwu, Psd.

a feasible real-time job schedule, and then iteratively swaps
job segments to reduce energy consumption in device power
state transitions. After the heuristic-based job schedule is
generated, the device schedule is extracted. That is, device
power state transition actions and times are recorded prior
to runtime and used at runtime. Although MDO can achieve
nearly optimal energy savings (when job execution times are
equal to their WCETs), the computation overhead of MDO
can be huge and cannot be used as an online method. It is
reported in [8] that the computational complexity of MDO
algorithm is O(pH2), where p is the number of devices used
and H is the hyperperiod of task set.

The devices used in experiments are listed in Table 1.
The data were obtained from data sheets provided by the
manufacturer. The sources of the data can be found in [1].
We evaluated the energy savings by the normalized energy
savings, which is the amount of device energy saved under
a DPM algorithm relative to the case when no DPM tech-
nique is used, wherein all devices remain in the active state
over the entire simulation. The normalized energy savings is
computed using Equation (8).

Normalized Energy Savings = 1−
Energy with DPM

Energy with No DPM
(8)

Task sets were randomly generated in all experiments.
Each generated task set contained 1 ∼ 8 tasks. Each task
required a random number (0 ∼ 2) of devices from Table 1.
The periods of tasks were randomly chosen in the range of
[50, 2000]. Task WCETs were randomly selected such that
the system utilization U ≤ 1. We repeated each experiment
500 times and present the mean value.

We compared the scheduling overhead of EEDS with re-
spect to EDF in our simulations. The relative scheduling
overhead was used to evaluate the scheduling overhead of
EEDS, which is given by

relative scheduling overhead =
sched overhead with EEDS

sched overhead with EDF
− 1

The mean value of the relative scheduling overhead of EEDS
is 5.2%. Considering that the scheduling overhead of EDF
is very low, a relative overhead of 5.2% is very affordable.

4.1. Average energy savings
The first experiment measured the overall performance

of EEDS. The best/worst case execution time ratio was set
to 1. Figure 4 shows the mean normalized energy saving for
EEDS and MDO under different system utilizations.

On average, MDO performs slightly better than EEDS.
This is consistent with our expectations. The reason comes
from the fact that this experiment assumed the runtime job
execution is exactly as computed with MDO at the offline
phase, i.e., job execution times were equal to their WCETs
and job arrival times were known at the offline phase. In this
case, MDO saves more energy by swapping job segments to

5



0 0−0.1 0.1−0.2 0.2−0.3 0.3−0.4 0.4−0.5 0.5−0.6 0.6−0.7 0.7−0.8 0.8−0.9 0.9−1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System utilization

N
or

m
ili

ze
d 

E
ne

rg
y 

S
av

in
g

Mean energy saving under different system utilizations

EEDS
MDO

Figure 4. Normalized energy savings with var-
ious system utilizations.

reduce energy consumption in device power state transitions.
Therefore, MDO performs nearly optimal in this case.

With more flexibility and much less overhead, EEDS per-
forms comparable to MDO. As shown in Figure 4, MDO has
additional average energy savings of less than 1.53% over
EEDS for all system utilizations. And when the system uti-
lization is less than 80%, EEDS performs almost the same
as MDO (the additional energy saving is less than 1%).

4.2. Reclaiming unused WCETs to save energy
In practice, job actual execution times can be less than

their WCETs. Unused WCETs can be reclaimed to save en-
ergy under EEDS. In this experiment, we evaluate the ability
of EEDS to save energy by utilizing the slack coming from
unused WCETs. Recall that in our method to compute job
slack, unused WCETs are kept in the RT-list and can be used
to increase the job slack of lower priority jobs.

Figure 5 shows the normalized energy savings for EEDS
and MDO with increasing best/worst case execution time
ratios. In this experiment, the actual execution time of a
job was randomly generated between the best case execu-
tion time and the worst case execution time. The worst case
system utilization is set between 90% and 100%. As shown
in Figure 5, EEDS saves more energy when the ratio of the
best/worst case execution time is smaller, showing that it can
dynamically reclaim unused WCETs to save energy.

As an offline scheduling method, MDO computed device
schedules at the offline phase and applied at runtime, making
it unable to effectively adapt to changes at the runtime. As
shown in Figure 5, MDO saves less energy than EEDS when
the best/worst case execution time is less than 90%.

5 Conclusion
EEDS is a hard real-time scheduling algorithm for con-

serving energy in device subsystems. This algorithm sup-
ports the preemptive scheduling of periodic tasks. As an on-
line scheduling algorithm, EEDS is flexible enough to adapt
to changes in the operating environment, and still achieves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Best Case Execution Time / Worst Case Execution Time

N
or

m
ili

ze
d 

E
ne

rg
y 

S
av

in
g

Mean energy saving under different BCET/WCET ratios

EEDS
MDO

Figure 5. Normalized energy savings for vari-
ous ratios of the BCET/WCET.

significant energy savings. Although not addressed in this
paper, our work can be applied to the sporadic task model
without any modification.

The problem of finding a feasible schedule that consumes
minimum I/O device energy is NP-hard. EEDS is not a
panacea for all systems. Instead, this work provides the
foundation for a family of general, online energy saving al-
gorithms that can be applied to systems with hard temporal
constraints. In the EEDS algorithm, we do not address the
issue of resource sharing and blocking. We plan to integrate
resource accessing policies with EEDS in future work.

References
[1] Cheng, H., Goddard, S., “Online Energy-Aware I/O Device

Scheduling Algorithms”,Technical Report, 2005
[2] Jejurikar., R. and Gupta, R., “Dynamic Slack Reclama-

tion with Procrastination Scheduling in Real-Time Embedded
Systems”, DAC 2005.

[3] Liu and Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment”, Journal of the
ACM, 20(1), January, 1973.

[4] Niu., L and Quan., G., “Reducing both dynamic and leak-
age energy consumption for hard real-time systems”, CASE,
2004.

[5] Swaminathan, V., Chakrabarty, K., and Iyengar, S.S., “Dy-
namic I/O Power Management for Hard Real-time Systems”
CODES, 2001.

[6] Swaminathan, V., Chakrabarty, K., “Pruning-based energy-
optimal device scheduling for hard real-time systems”,
CODES, 2002.

[7] Swaminathan, V., and Chakrabarty, K., “Energy-conscious,
deterministic I/O device scheduling in hard real-time sys-
tems”, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits & Systems, vol 22, pages 847–858, July 2003.

[8] Swaminathan, V., and Chakrabarty, K., “Pruning-based,
Energy-optimal, Deterministic I/O Device Scheduling for
Hard Real-Time Systems”, ACM Transactions on Embeded
Computing Systems, 4(1):141-167, February 2005.

[9] Zhang, F., Chanson, S., “Processor Voltage Schedul-
ing for Real-Time Tasks with Non-Preemptible Sec-
tions”,RTSS,2002.

6


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



