
optiMap: A Tool for Automated Generation of NoC Architectures
using Multi-Port Routers for FPGAs

Balasubramanian Sethuraman, Ranga Vemuri
{sethurb, ranga}@ececs.uc.edu

Department of ECECS, University of Cincinnati, Cincinnati, OH 45221-0030, USA.

Abstract

Networks-on-Chip (NoC) way of system design has been
introduced to overcome the communication and the perfor-
mance bottlenecks of a bus based system design. Area is at
a premium in FPGAs. In this research, we propose to reduce
network area overhead by reducing the number of routers,
by making the router handle multiple logic cores. We imple-
ment an improved multi-local port router design with vari-
able number of local ports. In addition to substantial area
savings, we observe significant performance improvement.
We discuss the issues involved in the use of multi-local port
routers for NoC design in FPGAs. We observe an average
of 36% area savings (maximum of 47.5%) on XC2V P30
FPGA and significant performance gain (30% average com-
pared to single-local port version) with a multi-local port
router. Mapping of cores onto such a non-traditional NoC ar-
chitecture is a complex task. We present an algorithm which
optimally maps the cores based on the given set of objectives.
For the given task graph and the set of constraints, the algo-
rithm finds the optimal number of routers, configuration of
each router, optimal mesh topology and the final mapping.
We test the algorithm on a wide variety of benchmarks and
report the results.

1 Introduction
FPGAs are increasingly being used in applications with

low to medium volume than their ASIC counterparts, due to

shorter design cycles and reduced associated costs. Mod-

ern FPGAs [15] with embedded processors can be used for

System-on-Chip (SoC) designs. SoC designs are built as a

complex interconnection of various functional elements. In

the GigaBits era of SoC design, interconnection of cores us-

ing bus architectures present a communication bottleneck [7].

Also, they do not present a scalable solution to existing prob-

lems in the communication. Networks-on-Chip (NoC) has

been proposed as a new design paradigm to solve the commu-

nication bottlenecks [10, 3]. The main idea is to avoid shared-

bus and implement interconnection of various Intellectual

Property (IP) cores using on-chip packet-switched networks

[14]. NoCs provide a scalable and modular architecture and

help independent design of IP cores and its re-use. A detailed

survey of NoC is given in [8].

Motivation: In an FPGA, area is available at a premium and

hence the on-chip communication network should be as small

as possible. This ensures that the maximum area can be uti-

lized by the logic while maintaining the performance of the

on-chip network. Also, reduction in the logic blocks used in

FPGAs has a direct impact on the power consumption and the

timing [1]. The central component of an NoC architecture is

a router and hence it is prudent to make its area smaller. The

network area can be reduced as follows.

• Using a simple router supporting complete functionality,

without sacrificing the performance.

• Reducing the number of routers, without reducing the

number of communicating logic cores.

This paper proposes to use the second strategy by introduc-

ing multiple local ports (LP). We present a modified router

architecture and analyze the issues involved in the use of the

proposed approach for NoC design in FPGAs.

Mapping: Mapping of cores onto such complex multi-local

port routers presents a great challenge. It is no longer just

a simple nearest neighbor or shortest path finding algorithm.

Hence, we present an algorithm which maps the input task

graph optimally, minimizing the overall execution time. This

is an exhaustive search algorithm and is guaranteed to find

the optimal configuration and hence a formal proof is redun-

dant. For a given set of constraints and objectives, the algo-

rithm finds the optimum number of routers, the configuration

of each router, the optimum mesh topology and the the best

possible mapping of cores onto the NoC architecture. The al-

gorithm effectively automates the NoC design cycle by find-

ing the optimum mesh topology and the final mapping for

the given task communication graph. Ideas explained in this

research, though being restricted to FPGAs, can be extended

and applied to ASICs. To summarize, the contributions of the

paper are,

1. An architecture for a multi local port router capable of

handling multiple logic cores simultaneously, without

sacrificing the performance.

2. An algorithm to find the optimum mesh based NoC con-

figuration (using multiple local port routers) and the fi-

nal mapping, reducing the overall execution time.

The rest of the paper is organized as follows: Section 2

describes related work. The architecture overview, the mer-

its and issues involved in the proposed approach are given in

Section 3. We present a mapping algorithm for the proposed

architecture in Section 4. The experimental results for vari-

ous benchmarks are analyzed in Section 5. Section 6 presents

the conclusion and future work.

1

3-9810801-0-6/DATE06 © 2006 EDAA

2 Related Work

For reconfigurable computing platforms, several designs

have been reported to reduce the size of router [1, 2, 5]. The

authors present the smallest router called LiPaR [1] for FP-

GAs, with no sacrifice in the performance. It is a parallel

router capable of establishing connections between various

ports, simultaneously. Since, the connections can be estab-

lished without any clock penalty, we obtain this router [1] to

experiment our strategy. In the literature, we have different

mapping strategies for mesh networks [4, 6, 11]. In the above

works, the authors use shortest path routing (non XY routing

schemes) to minimize cost. In this context, the authors make

an over-simplistic assumption about the router design and its

capability and do not discuss the overheads involved in the

design. Router overheads cannot be ignored, as it affects the

final system performance.

To the best of our knowledge, this is the first work to pro-

pose a multi-local port router design for regular mesh net-

works with XY routing in FPGAs and an optimum mapping

onto regular mesh architectures having routers with multiple

local ports. We design the multi-local port router (referred

as multi-port router, interchangeably) and test the approach

based on the constraints for FPGAs.

3 Architecture

In an Network-on-Chip (NoC) design, systems are built

by integrating different design cores in a particular defined

fashion. The term Design Core refers to Intellectual Property

(IP) cores that are pre-built and verified for functionality, per-

formance and other constraints.

Topology: We choose the mesh topology in this research be-

cause of the following advantages.

• The two-dimensional mesh topology is reported to be

efficient in terms of area and power [4].

• Mesh topology is best suited for an FPGA because of

lesser routing overheads and reduced use of expensive

global wires.

• Due to pin limitations and memory restrictions in an

FPGA, IP cores have to be spread across the FPGA. In a

mesh style, cores can be distributed effectively comple-

menting the above requirement.

Routing and Flow Control: We use the XY routing and

store-and-forward flow control. XY routing is one of the ef-

ficient forms of routing for a mesh based NoC. It imposes

lesser overhead on the part of a router, as the decoding logic

for routing the packets is simple. Store-and-forward, though

having some buffer requirements, can result in increased

channel utilization and a simple router [1].

Modified Architecture: LiPaR router has an 8 bit header to

identify the X and Y coordinates of the NoC system. We

modify the router header and decoding scheme to enable the

router handle multiple logic cores, at the same time. A part

of the header is reserved to identify the local port number

(LID) (Figure 1(a)). The address part (A) stores the X and

the Y co-ordinates of the destination router.

Adapted Decoding Logic: XY routing scheme is followed till

data packet reaches the destination router. When the packet

reaches the destination router, the LID is used to identify

the local port to which the packet is addressed. Based on

LID, the cross point matrix (made of Multiplexer (Mux) and

Demultiplexer (Demux)) select signals are appropriately set.

This establishes the transfer to the correct local port, when

more than one local ports are available. But for the extra de-

coding logic (to correctly select one among many logic (lo-

cal) ports), the rest are same as the traditional mesh based

NoC system. Since there is no clock penalty in the establish-

ment of connections, this approach does not degrade the per-

formance. Figure 1(b) shows the block diagram of a 4 local

port (LP) router. We see the 8 connections between different

input and output channels that can be established simultane-

ously. As a general case, in an n LP router with 4 directional

ports, n + 4 connections can be established simultaneously.

This is possible because an arbiter is present at each of the

output channels (no central arbiter) in LiPaR [1] and the con-

nections can be established independent of other channels.

We implement an important design optimization on part

of Network Interface (NI) design. If a node has to send data

to multiple nodes (out-degree > 1), we give precedence of

sending based on the distance of the receiving node. This in-

creases the pipelining rate of flow and serves to reduce the

overall delay by abstraction. It is to be noted that there is

no additional overhead on part of the header of each packet.

Also, there is no reduction in the total number of address-

able logic IP cores. This scheme mainly aims to replace the

inter router channel communication with intra-channel com-

munication. This scheme can be extended to wormhole flow

control. Also, this scheme will help to optimize the buffer

size of each channel in each router.

3.1 Architectural Advantages

Area Reduction: We observe an average area savings of

36%, with maximum savings of 47.5% in a 4 LP version in

Xilinx XC2V P30 Virtex II Pro FPGA (Figure 1(c)). The

huge area savings are due to the fact that for every single

LP router that is removed (and the corresponding logic core

added to a multi LP router), we save upon 8 channel buffers

(of 4 directional ports) and the associated decoding and rout-

ing logic. Furthermore, we save on the routing area between

single LP routers.

Power Savings: LiPaR consumes 824.25mW , out of which

797.5mW is the quiescent power [1]. Therefore, area reduc-

tion in term of the number of routers significantly reduces

the number of slices consumed, thereby, reducing the power

consumption considerably.

Congestion Reduction: Congestion is an inherent problem

in a shared network. As the intercommunication between

the cores increase, there can be heavy congestion as a lot
of paths will be shared. Multi LP router achieves communi-

cation in the form of intra-channel communication replacing

inter-router-channel communication. This in turn reduces the

number of shared paths, thereby, reducing the overall conges-

tion in the network.

Local Port
ID

Router Co-ordinate
(A)

LID X Y

North

South

E
as

t

W
es

t

Loca
l

0

Loca
l 2

Local 1

Local 3

Xilinx Area Report (Buffer Depth/Width : 16/8)

�

����

����

����

����

����

Local
Ports (LP)

A
re

a
(S

lic
es

)

���	
 ��� ���
�� ��� ����

��	
 ��� ��� ��
� �
�
 ����

� � � �

��������	
� ��
������������
��	
� ���������������������
��������������������������

(a) Modified Header Packet (b) 4 LP Router (having 8 Parallel connections) (c) Xilinx ISE Synthesis Results

Figure 1: Modified Router Architecture

1

432 5

5 x 1 Mesh

1

2

3

4

5

1 x 5 Mesh

1 2 3 4 5

Worst case Router Hops = 4

2 x 2 Mesh

3

4

5

2

1

Worst case Router
Hops = 2

Figure 2: Mapping of Five cores

Transit Time Reduction: The transit time of the packets is

one of the performance bottlenecks in an NoC. For example,

consider a case where a core is communicating with more

than four cores (out-degree > 4). The fifth receiving core,

at the best, can only be reached in 2 router hops. Increased

number of router hops increases the overall time. With use of

multi LP routers, the total number of hops are significantly

reduced. For every local port added, we do away with two

complete channel hops, which reduces the number of clock

cycles by 2×#flits. This is because the inter-router channel

transfers are now replaced by intra-channel transfers and this

effect is more pronounced in routers using store-and-forward

type of flow control.

Improving NoC Design by reducing router count: Consider

the case where five cores are communicating in a particular

fashion (Figure 2). With traditional mesh design, we have

either a 5 × 1 or a 1 × 5 mesh, having a worst-case of 4
router hops. But, with the use of just one 2 LP router, we

can implement a 2× 2 design, reducing the worst-case router

hops to 2. This is a very effective strategy and with large

number of cores and complex interconnection patterns, the

savings will be much larger.

3.2 Design Issues

The proposed approach gives gains in terms of area, power

and performance. Intuitively, a single router with n local

ports seems to be the best option. But, following are some

issues that may limit the maximum number of local ports in

the NoC design.

Critical Path: Addition of more local ports to a single router

increases size of the decoding logic of the router. Also, in-

creased interconnect count and length within a router are in-

evitable. This can impact the critical path of final design.

But, we observe that the variation in the timing due to addi-

tion of local ports (till 9) to the routers in XC2V P30 FPGA

is not very significant. The router designs are reported to be

operating close to 90MHz. With increased local port count,

we can expect a larger variation.

Input/Output (I/O) Constraints: Pins are limited in an

FPGA. I/O requirements dictate the placement of cores.

Hence, to avoid performance degradation due to larger in-

terconnects, routers having lesser LP are preferred.

Buffer: Buffer requirements of router and logic favor the

placement of cores and its corresponding router near the

bRAMs of Xilinx FPGA, thus favoring smaller LP routers.

Routing Resources Congestion: A larger LP router needs

larger number and complex form of interconnects, which

may create problems for the FPGA Place-And-Route (PAR)

tool. But, for a 9 LP router, PAR was successful.

Arbitration: Our router design has an arbiter at each of the

output channel. The access grant of an output channel is

given inside a single FSM state (if-then-else construct)

and hence has a fixed priority service scheme. With this ap-

proach, there are no extra cycles wasted for arbitration. But

the flip side is that when there are multiple channels request-

ing the same output channel, the fixed priority scheme may

lead to an unfair service.

Based on the above factors, we investigate the alternate

router architecture with multiple local ports against the tradi-

tional NoC implementation. It is to be noted that except for

the critical path constraint (which affects frequency of oper-

ation), others dictate the upper bound on the search space of

the algorithm.

4 optiMap: The Mapping Algorithm
Mapping of cores onto a non-traditional NoC architec-

ture using multi local port routers, is not a straight forward

process and presents a great challenge. Under certain con-

straints, traditional NoC mapping may be better in some

cases. Even in that situation, there can be a better map-

ping compared to the nearest-neighbor based mapping. Let

us consider the example shown in Figure 3, to give a flavor

of mapping on multi local port routers. Here we choose a

1 × 2 mesh each having a two local port router. Let us con-

sider a simple cost function where we sum number of hops.

We increment the cost for each channel access, to get the fi-

nal cost. We observe from Figure 3 that the cost is reduced

1

4

32

(c)

2

1

3

4

Cost = 12

(b)

3

1

4

2

Cost = 13

(a)

4

1

3

2

Cost = 16

Figure 3: Mapping using with two local ports

Algorithm 1: optiMap Algorithm

Input: Given a system level task graph, G(T, E) with n logic cores

Input: Input the placement constraint, routing constraint, I/O constraint and

buffer constraint

Output: The optimum NoC configuration

Analyze the constraint file and set the upper bound of the router configuration,1
thereby, defining the search space of the algorithm
repeat2

γ: Generate the set of all possible partition configurations for n for the3
defined search space

Γ: Generate all possible combinations of γ4
foreach Partition configuration in Γ do5

Define the # of routers for the present configuration6
Define the configuration of each router7
Υ: Generate all possible mesh connection topologies for the partition8
configuration

foreach Mesh and Partition configuration in Γ, Υ do9
ϕ: Generate all possible ways of mapping of cores10
foreach Mapping of given Mesh and Partition configuration in11
Γ, Υ, ϕ do

foreach Edge in the Task graph do12
Identify the source router (i1, j1) and the13
destination router (i2, j2)

κ: Decompose in terms of the intra/inter-channel14
communications between (i1, j1) and (i2, j2)

using XY routing scheme

Update the communication times of all channels15
Calculate the Queue times (Qt) at all channels and16
update the transit/arrival times appropriately

Cf = α× Total Execution Time of cores (transit,17
core execution and arbitration times) +β ×Qt

if Cf < Best.Config.Cost then18
Best.Config← Current.Config19

end20
end21

end22
end23

end24
until All the configurations are evaluated25

by 25%, with proper mapping. This represents the simplest

of cases, where the queuing effect at channels and other cost

parameters are not considered. For a complex NoC system, a

mapper that finds an optimum NoC configuration is required.

Hence, we present a mapping algorithm, capturing the effects

explained in Section 3.1 and 3.2. The algorithm does an ex-

haustive search and is guaranteed to find the optimal config-

uration and hence a formal proof is redundant. The mapping

algorithm can be easily extended to incorporate additional

cost parameters, thereby, giving a multi-objective based map-

ping algorithm. The algorithm efficiently maps the cores of

the given task graph for various objectives and constraints.

Also, the algorithm finds the optimum number of routers, the

configuration of each router and an optimum mesh topology

for a given task graph. We test the algorithm on a wide vari-

ety of benchmarks and report the results.

Problem definition: Given a system level task graph,

G(T,E) and the set of constraints, find the optimum NoC

configuration, that is, find the mesh topology, number of

routers, configuration of each router and the final mapping

of logic cores, reducing the cost function.

In Algorithm 1, the problem of finding the different par-

tition configurations for the given task graph corresponds to

the partitioning of an integer problem. We permute and find

9

12 x 1

Varying number of local ports (from nine 1-port routers to one 9-port router)
3 x 3 2x3 3 x 2 2 x 2 1 x 2

2 1 2

1 2 1

2

2

2

3

2

1

2

1

2

1

1 1 1

1 1 1

1 1 1 4 5

5

4

(Square represents Router in the mesh, # inside square represents # of Local Ports)

Figure 4: Mapping Search Space for Cores

Constraint
FilesCongestion

Logic Area
Requirements

Buffer
Requirements

I/O Constraints
Target FPGA

Cycle Accurate Time
Estimator

Mesh-based
NoC

Configuration
Generator

Library of
Routers

32 4

1

65

8

9

7

Application
Task Graph

Area, Timing
Data

Core Timing,
Bandwidth data

No

Optimum NoC
Configuration

VHDL files

Finished analyzing the
defined search space

Yes

Figure 5: Algorithm Flow of optiMap

all possible ways of partitioning the value n (which is the

number of nodes in the graph) to get the set Γ. Based on

Γ, we define the number of routers and the configuration of

each router, based on the constraints. We generate all pos-

sible mesh topologies for all the partition configurations to

get set Υ. After this, we map the cores onto each of the

configuration in all possible ways (ϕ) and evaluate the cost

function. Figure 4 shows the search space of the mapping

algorithm for a specific case of 9 cores. The cost function

is the weighted sum of total execution time (which includes

transit time, core execution time and arbitration time) and

queue delay (due to simultaneous access of paths/channels).

The factors explained in the Section 3.2 like routing density,

placement constraints, I/O constraints, buffer requirements,

etc. dictate the upper bound of the search space, that is, the

maximum number of local ports that can be added to a router.

We build a cycle accurate simulator to calculate the execution

and queue times, for the overall data transfer. In other words,

we find the overall execution time of the given task (appli-

cation). In the end, the algorithm outputs the best NoC con-

figuration (including the best partition, configuration of each

router, the mesh topology, and the optimum mapping of the

cores). In short terms, we are doing an exhaustive search of

all possible NoC configurations (Figure 5). Analytically, for

a task graph with n nodes, the total number of configurations

analyzed is (2n−1 partitions) × (# mesh configurations) ×
(n! ways of mapping n cores). The # of mesh configurations

(k) for a given value of partition (p) is k += t (where t=1, if

(p/i)=0; else t=0;), where i = 1,...,p.

2 3 4

1

5

9

6 7 8

2 3

6

1

54

7 8 9

1 2

6

5

43

7

8

9

2 3

6

1

54

7 8

9

In (bs1) Out (bs2) Fork-Join (bs3) Mean-Value
Analysis (bs4)

Figure 6: Basic Task Graphs [9]

5 Experiment Results

A typical SoC design is described as a task communica-

tion graph. The application is described as a Directed Acyclic

Graph G(T,E) (referred to as Task Graph hereon), where T
represents the vertices (tasks) and E is the set of directed

edges describing the precedence, the dependence, the tim-

ing and the bandwidth constraints in the task graph. Most

applications, including Fast Fourier Transform, Discrete Co-

sine Transform (DCT) and Auto Regressive Filter, can be de-

scribed in the form of task graphs.

Benchmarks: Kwok and Ahmad [9] use a set of different

task graph types for studying various scheduling algorithms

for multiprocessors, including Out-Tree, In-Tree, Fork-Join

and Mean-Value-Analysis. Figure 6 shows the basic graph

structures [9]. These basic task graph types represent high

level task structures that are commonly encountered in par-

allel applications. We use a tool called Task Graphs for

Free (TGFF) [13] to generate the basic task graphs having

nine nodes (bs1, bs2) by fixing the in-degree, out-degree,

and dependence width/depth. The fork-join (bs3) and mean-

value-analysis (bs4) graph structures are manually created, as

TGFF was not capable of generating these graph structures.

We then write a C++ program that takes in the set of basic

task graph structures that were already generated and outputs

an application task graph, G. The application task graph G
is formed by a random combination of the basic graph struc-

tures, by varying the dependence degree, the width and the

depth across different levels of nodes. It is to be noted that

most of the application task structures can be generated us-

ing the combination of the basic graph structures and hence

the program generates a variety of the system task graphs.

We set the upper limit on the number of tasks in the graphs

to nine and develop a set of 18 benchmarks (including the

4 basic graphs). We fix the number of nodes at 9 because

it represents a 3 × 3 NoC system, a typical case. We an-

alyze this system with 9 single LP routers, against the new

scheme. The algorithm presented in Section 4 explains the

strategy to find an optimum mapping in the new scheme. Fig-

ure 7 shows the benchmark set that were generated using our

tool. We omit the specific details of the nodes and edges of

each of the benchmarks due to space limitations. The bench-

marks b1 and b2 represent the simple graphs. The cases e1
and e2 have large out-degree. Benchmarks p1 - p4 repre-

sent packed structures [13], while r1 and r2 are two ran-

dom cases. Benchmarks pa1 and pa2 have high degree of

parallelism. LU Decomposition (lu) and Laplace Equation

Solver(les) represent the real time examples [13]. The set of

eighteen benchmarks cover a wide variety of graph types and

the proposed methodology can be easily extended to cover

applications like MPEG4, JPEG and DCT.

Experiment Platform: We use the ML310 board provided

by Xilinx to functionally verify the various versions of the

stand alone router and the NoC system. The test board has

Virtex II Pro family (XC2V P30) of FPGA [15]. We use

the Xilinx ISE 6.2i [15] to synthesize the designs. Mod-

elsim 5.8c [12] is used to simulate the model and generate

activity data of the Placed-And-Routed (PAR) models. The

FloorPlanner tool of the Xilinx ISE 6.2i is used to imple-

ment placement constraints on the NoC system. We use the

XPower tool of the Xilinx ISE 6.2i to get the power estimate

values of the designs. The mapping algorithm is written in

C++ using the Standard Template Library (STL) vectors and

dynamic arrays. The optiMap algorithm is executed in a Sun-

Blade 1000 workstation having dual processors operating at

750MHz and 2GB RAM. The average execution time var-

ied between 5 and 6 hours. The large execution time is due

to the fact that the algorithm does an exhaustive search of a

very large design space (refer Section 4), to find the optimum

NoC configuration.

Analysis of the Results: In this research, we make the al-

gorithm to search the entire search space, while caching the

results for different constraints. We perform this to present

a broad picture of the effectiveness of the algorithm. For ex-

perimentation purposes, we assume equal execution times for

all nodes in the graph (communication time from NI to logic

is also abstracted into this lumped time) and equal bandwidth

constraints for the edges. We discuss the results of randomly

selected benchmarks in each of the cases below.

Upper Bound on # Routers: It is to be noted that for a case

where the upper bound on the number of routers is k, the

optimum configuration can contain combination of router(s)

with ≤ k local ports and the timing of the maximum LP

router used is taken as the timing of NoC configuration. It

is seen in all of the benchmarks that reduction in the num-

ber of routers increases performance. Interestingly, from the

Figure 9(a), we see that having 8 routers is beneficial than

having 7 routers. This is due to the fact the maximum num-

ber of hops (diagonal length) is reduced from 6 to 4. Overall,

we infer that it is better to reduce as many routers as possible

and introduce multi LP routers.

Upper Bound on # LP: In Figure 9(b), we fix an upper bound

on the number of local ports (timing data in Table 1). We

see that increasing the number of local ports increases per-

formance. But, it is seen in most of the cases that the 7 LP

version is not better than the 6 LP version. Also, for the spe-

cific case of p4, the 8 LP version is better than the 9 LP ver-

sion. The best NoC configurations obtained by the optiMap

algorithm for lu, les and p4 (for different upper bounds on

number of LP) are shown in Figure 8, along with the sin-

gle LP versions. It is to be noted that the algorithm finds

the optimum NoC configuration even for the single LP router

version. Interestingly, in Figure 8(c), for a 3 LP upper bound

case, the optimum NoC configuration uses 4 routers (instead

of three 3 LP routers). This is due to the fact that the algo-

rithm tries to reduce the overall hop count (thereby reducing

overall time) and the inter-communication pattern of p4 dic-

tates this configuration. We observe an average performance

Basic – 2
(b2)

Extended – 1
(e1)

Extended – 2
(e2)

2

4

8

1

6

3

9

7

5
2

4 8

1

6

3

7

9

5

34

7

1

5

8

6

9

2

3

2

4

1

6

8

5

97

Basic – 1
(b1)

Packed – 2
(p2)

Packed – 3
(p3)

Packed – 4
(p4)

Packed – 1
(p1)

6

4

7

1 2 3

8

9

5

6

4

8

1 2 3

7

9

5
6

4

8

1 2 3

7

9

5

6

4

8

1 2 3

7

9

5

3

4

7

1

5

8

6

9

2

Random – 2
(r2)

Parallel – 2
(pa2)

LU Decomposition
(lu)

Laplace Equation
Solver (les)

Parallel – 1
(pa1)

3
2

4

1

6

7

5

9

8

32 4

1

65

8

9

7
3 6 7

1

4

8

5

9

2

2 3

6

1

4

8

5

7

9

2 3 4

1

5

8

6 7

9

Random -1
(r1)

Figure 7: Benchmark Set (lu,les [9])

6,8,
9

2,5,
7

1,3,
4

1,3 2,5 6,8

4 7 9

2 1 3

5 4 7

6 8 9

1,2,
3,5

6,7,
8,9

4

1 LP Cost = 1041.2

2 LP Cost = 907.92

3 LP Cost = 858.92

4 LP Cost = 824.68

1,2,
4

3,5,
7

6,8,
9

1,3 2,5 4,7

6 8 9

1 2 4

3 5 7

6 8 9

1 LP Cost = 904.4

2 LP Cost = 861.36

3 LP Cost = 811.64

4 LP Cost = 801.34

6
1,3,
8,9

2,4,
5,7

1 LP Cost = 1185.6

1 2,6 7

3,5 8,9 4

7 1 5

2 6 3

8 4 9
1,3,
5,9

2,6,
7,8

42 LP Cost = 1086.4

3 LP Cost = 1032.28

4 LP Cost = 956.94

1
2,6
,7

4,8
,9

3,5

(a) LU Decomposition (lu) (b) Laplace Equation Solver (les) (c) Packed-4 (p4)
Figure 8: Optimum NoC configuration with varying upper bound on # local ports(LP) - the mapped cores are inside square

(router) (shown till # LP = 4, due to space constraints)

Best Execution Time

300

400

500

600

700

800

900

1000

1100

1200

1300

1 2 3 4 5 6 7 8 9# Routers

T
im

e
(n

s)

e1 pa1 b1 p1 p3

Best Execution Time

600

700

800

900

1000

1100

1200

1300

1 2 3 4 5 6 7 8 9# Local Ports

T
im

e
(n

s)

p4 pa2 les lu r2

(a) Upper bound: # routers (b) Upper bound: # LP

Figure 9: Overall Execution Time (ns)

Max local Benchmark Execution Time (ns)

port count p4 pa2 les lu r2

1 1185.6 1086.8 904.4 1041.2 1451.6

2 1086.4 985.52 861.36 907.92 1241.6

3 1032.28 914.08 811.64 858.92 1158.36

4 956.94 894.7 801.34 824.68 1089.2

5 889.28 849.58 786.06 817.82 1071.9

6 829.92 821.94 758.1 805.98 1077.3

7 817.02 825.03 776.97 809.01 1081.35

8 808 792 760 776 1024

9 814.06 773.76 717.34 749.58 1023.62

Table 1: Execution Time - Upper bound on # LP

improvement of 30% across the set of benchmarks, compared

to a single LP design. To summarize, the optimum number of

routers and the router configuration (and the final mapping)

depends on the given application task graph and the maxi-

mum frequency of operation of the NoC. In all the bench-

marks, it is observed that choosing a single LP router design

is never optimal, thus, validating our proposed approach.

6 Conclusion & Future Work

We present an approach of incorporating multi local port

routers in regular mesh based Networks-on-Chip design, in

FPGAs. We analyze the merits and the constraints involved

in using such a design methodology. We present an algo-

rithm that finds the optimum NoC Configuration. We exper-

iment with a wide set of benchmarks and report the results.

The results show significant area savings and improvement in

performance, thereby, validating the proposed approach. As

a future work, we are developing a heuristic based algorithm

to quickly output the NoC configuration, based on the results

and insight got from the current work.

Acknowledgements

We acknowledge the contributions of Prasun Bhattacharya

in obtaining the various VHDL models.

References

[1] Balasubramanian Sethuraman et al. LiPaR: A Light-Weight

Parallel Router for FPGA-based Networks-on-Chip. In 15th

Great Lakes Symposium on VLSI (GLSVLSI’05), 2005.
[2] C.A. Zerferino et al. ParIS: A Parametric and Scalable Net-

work on Chip. In SBCCI’2004, 2004.
[3] W. Dally and B. Towles. Route Packets, Not Wires: On-Chip

Interconnection Networks. In DAC, 2001.
[4] D.Bertozzi et al. NoC synthesis flow for customized domain

specific multiprocessor systems-on-chip. Parallel and Dis-

tributed Systems, IEEE Trans. on, 16(2):113–129, 2005.
[5] Fernando Moraes et al. A Low Area Overhead Packet-

switched Network On Chip: Architecture and Prototyping. In

IFIP VLSI-SOC 2003, pages 318–323, 2003.
[6] J. Hu and R. Marculesu. Exploiting the routing flexibility for

energy/performance aware mapping of regular noc architec-

tures. In DATE’03, pages 688–693, 2003.
[7] International Sematech. International Technology Roadmap

for Semiconductors. In http://public.itrs.net, 2002.
[8] N. Kavaldjiev and G. J. Smit. A survey of efficient on-chip

communications for SoC. In PROGRESS 2003 Embedded Sys-

tems Symposium, October 2003.
[9] Y.-K. Kwok and I. Ahmad. Dynamic critical-path scheduling:

An effective technique for allocating task graphs to multipro-

cessors. Parallel Distributed Systems, IEEE Transactions on,

7(5):506–521, 1996.
[10] L. Benini and G. De Micheli. Networks on Chips: A New

SOC Paradigm. In IEEE Computer, pages 70–78, Jan 2002.
[11] T. Lei and S. Kumar. A two-step genetic algorithm for map-

ping task graphs to a network on chip architecture. In Euromi-

cro Symposium on Digital System Design, 2003.
[12] MentorGraphics Inc. http://www.mentorgraphics.com.
[13] R.P. Dick et al. TGFF: Task Graphs For Free. In 6th Interna-

tional Workshop on Hardware/Software Codesign, 1998.
[14] Shashi Kumar et al. A Network on Chip Architecture and

Design Methodology. In Annual Symposium on VLSI’2002,

IEEE CS Press, pages 105–112, 2002.
[15] Xilinx Inc. http://www.xilinx.com, 2004.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

