
Application Specific NoC Design

Luca Benini
DEIS Universitá di Bologna

lbenini@deis.unibo.it

Abstract

Scalable Networks on Chips (NoCs) are needed to match
the ever-increasing communication demands of large-scale
Multi-Processor Systems-on-chip (MPSoCs) for high-end
wireless communications applications. The heterogeneous
nature of on-chip cores, and the energy efficiency re-
quirements typical of wireless communications call for
application-specific NoCs which eliminate much of the
overheads connected with general-purpose communication
architectures. However, application-specific NoCs must be
supported by adequate design flows to reduce design time
and effort.

In this paper we survey the main challenges in
application-specific NoC design, and we outline a com-
plete NoC design flow and methodology. A case study on
a high complexity SoC demonstrates that it is indeed pos-
sible to generate an application-specific NoC from a high
level specification in a few hours. Comparison with a hand-
tuned solution shows that the automatically generated one
is very competitive from the area, performance and power
viewpoint, while design time is reduced from days to hours.

Keywords: Systems on chip, networks on chip,
application-specific integrated systems, design methodolo-
gies

1 Introduction

The number of processor, memory and accelerator cores
on systems on chip for wireless communications is rapidly
increasing to support evolving standards and new applica-
tions. Computation and communication complexity is sky-
rocketing, and scalability-centric design paradigms are crit-
ically needed. Networks on Chip (NoCs) have emerged as
a viable option for designing scalable communication ar-
chitectures for MPSoCs [5], [6]. In NoCs, on-chip micro-
networks are used to interconnect the various cores. NoCs
have better modularity and design predictability when com-
pared to traditional bus-based systems, and they are viewed

by many as a strategic technology for addressing communi-
cation issues in current and future nanometer-scale ICs.

The challenges encountered in NoC design differ consid-
erably from those encountered in macro-networks. First, the
communication patterns can be statically analyzed for many
SoCs and the NoC can be tailored for the particular applica-
tion behavior. Second, design objectives and constraints are
different. As most wireless communication chips are meant
to operate in energy-constrained environments, network en-
ergy efficiency is an important design objective. These sys-
tems are also subject to tight real-time requirements and
must operate in a highly predictable fashion, hence quality-
of-service oriented, predictable interconnects are highly de-
sirable. Finally, the design process should also consider
VLSI issues, such as the structure and wiring complexity
of the resulting interconnect.

Some of the most important phases in designing the
NoC are the design of the topology or structure of the net-
work and setting of various design parameters (such as fre-
quency of operation or link-width). Several early works
favored the use of standard topologies under the assump-
tion that the wires can be well structured in such topologies.
These approaches are adequate for general-purpose systems
where the traffic characteristics of the system cannot be pre-
dicted statically, as in homogeneous chip-multiprocessors
[1]. However, most SoCs are heterogeneous, with each core
having different size, functionality and communication re-
quirements. Thus, standard topologies can have a structure
that poorly matches application traffic. This leads to large
wiring complexity after floorplanning, as well as significant
power and area overhead. Moreover, for most SoCs the
system is designed with static (or semi-static) mapping of
tasks to processors and hardware cores and hence the com-
munication traffic characteristics of the SoC are well char-
acterized at design time. This is true for a number of SoC
platforms for wireless and multimedia, such as the Philips
Nexperia platform [2], ST Nomadik [3], TI OMAP [4], etc.

On the other hand, SoC platforms are designed under
ever-increasing time-to-market pressure, and simply there
is no time for handcrafting a system interconnect on every
platform instantiation. What is ultimately needed is then

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



a methodology to automatically design the best topology
that is tailor-made for a specific application and satisfies
the communication constraints of the design. The topol-
ogy design process should support multiple objective func-
tions, such as minimizing power or hop delay. The topology
design process also needs to support constraints on several
parameters such as design area and total wire-length. The
topology synthesis process is should embed a floorplanner
to estimate the design area and wire-lengths. The wire-
length estimates from the floorplan can be used to evalu-
ate whether the designed NoC satisfies the target frequency
of operation and to compute the power consumption of the
wires. As deadlock-free routing is critical for proper oper-
ation of custom topologies, topology generation must also
integrate algorithms that guarantee deadlock-free deliver of
packets.

Topology generation is only the first step of a complete
design flow for parameter tuning (e.g. buffer depth, clock
frequency), instantiation, synthesis, simulation/emulation
and physical design of the NoC. Practical flows should
also support manual intervention, if needed, at several lev-
els (like manually setting up frequency, link-width). Even
though NoCs have been investigated intensively for a rel-
atively short time (approximatively five years), significant
progress has been obtained, and a few automatic network
design flow have reached a good level of maturity [9, 7].

In the following section we will first give an overview
of current NoC synthesis research efforts. We then describe
the ×pipes design flow, as an example of one of the first
attempts to provide a complete application-to-layout flow
for application-specific NoCs. Finally, we focus on a case
study of interconnect design for a complex multi-core SoC,
which provides quantitative evidence of the advantages of a
complete synthesis based design flow.

2 NoC synthesis: the landscape

In recent years, a large body of research has focused on
synthesizing and generating bus-based systems [10]-[16].
A floorplan aware point-to-point link design and bus de-
sign are presented in [17] and [16]. While some of the
design issues in the NoCs are similar to bus based sys-
tems (such as link-width sizing), a large number of issues
such as finding the number of switches required, sizing the
switches, finding routes for packets, etc. are new in NoCs.
A good overview of NoC synthesis problems is given by
Marculescu et al. [13].

Methods to collect and analyze traffic information that
can be fed as input to the bus and NoC design processes
have been presented in [14] and [15]. Mappings of cores
onto standard NoC topologies have been explored in [18]-
[21]. In [19], [21] a floorplanner is used during the map-
ping process to get area and wire-length estimates. These

works only select from a library of standard topologies, and
cannot generate a fully customized topology. In [20], a uni-
fied approach to mapping, routing and resource reservation
has been presented. However, the work does not explore
the topology design process. Important research in macro-
networks has considered the topology generation problem
[22]. As the traffic patterns on these networks are difficult
to predict, most approaches are tree-based (like spanning or
Steiner trees) and only ensure connectivity with node degree
constraints [22]. Hence, these techniques cannot be directly
extended to address the NoC synthesis problem.

Application-specific custom topology design has been
explored in [23]- [26]. The works from [23], [24], do not
consider the floorplanning information during the topology
design process. In [25], a physical planner is used dur-
ing topology design to reduce power consumption on wires.
However, it does not consider the area and power consump-
tion of switches in the design. Also, the number and size
of network partitions are manually fed. In [26], a slicing
tree based floorplanner is used during the topology design
process. This work assumes that the switches are located
at the corners of the cores and it does not consider the net-
work components (switches, network interfaces) during the
floorplanning process. Also, the actual sizes of the cores
are considered only after generating their relative positions.
The resulting floorplan can be extremely area inefficient
when compared to the standard floorplanning process. Also,
deadlock free routing, which is critical for custom NoC de-
signs is not supported. Moreover, a complete design space
exploration, from architectural parameter setting to simula-
tion is not presented. ored in [23]- [26]. The works from
[23], [24], do not consider the floorplanning information
during the topology design process. In [25], a physical plan-
ner is used during topology design to reduce power con-
sumption on wires. However, it does not consider the area
and power consumption of switches in the design. Also,
the number and size of network partitions are manually
fed. In [26], a slicing tree based floorplanner is used dur-
ing the topology design process. This work assumes that
the switches are located at the corners of the cores and it
does not consider the network components (switches, net-
work interfaces) during the floorplanning process. Also, the
actual sizes of the cores are considered only after generat-
ing their relative positions. The resulting floorplan can be
extremely area inefficient when compared to the standard
floorplanning process. Also, deadlock free routing, which
is critical for custom NoC designs is not supported. More-
over, a complete design space exploration, from architec-
tural parameter setting to simulation is not presented.

Topology generation is the front end of a complete de-
sign flow that spans multiple abstraction levels, down to
placement and routing. The back-end of the flow is more
mature at the present time. In fact, several works have been



switch area,

phase 2

power, hop−delay,

combination

switch, link
power models

User Objective: Constraints:

wire−length,
area, power, 

hop−delay

NoC Architecture

Synthesis

Application

characteristics

phase 1

phase 3

switch

link

NI

SystemC
library

Processor
models

Network 
generation

RTL simulations

RTL synthesis

FPGA emulation

Placement

& Routing 

Layout

To Fab

mismatch

parameter

Figure 1. NoC Design Flow

published on automatically generating the Register Transfer
Level (RTL) code of a designed topology for simulation and
synthesis [27]-[29]. Building area, power models for on-
chip networks have been addressed in [30]-[33]. These ap-
proaches have rapidly reached the industrial practice. Sev-
eral companies are today productizing synthesizable NoC
architectures [34, 35, 36]. At the research and development
frontier, the focus is now on bridging the gap between high-
level analysis of communication requirements and synthesis
of a NoC implementation for a given topology.

3 ×pipes NoC Synthesis Flow

×pipes is an example of a complete flow for designing
NoCs, as shown in Figure 1. In the first phase, the user
specifies the objectives and constraints that should be satis-
fied by the designed NoC. The application traffic character-
istics, size of the cores, and the area and power models for
the network components are also obtained.

Vary NoC frequency from a range

Vary link−width from a range

Vary the number of switches from one to number of cores
Synthesize the best topology with the particular
frequency, link−width, switch−count

Perform floorplan of synthesized topology, get
link power consumption, detect timing violations 

Choose topology that best optimizes user objectives 
satisfying all design constraints

Figure 2. Topology synthesis iterations

In the second phase of the flow, the NoC architecture that
optimizes the user objectives and satisfies the design con-

straints is automatically synthesized. The different steps in
this phase are presented in Figure 2. In the outer iterations,
the key NoC architectural parameters: NoC frequency of
operation and link-width are varied from a range of suitable
values. The bandwidth available on each NoC link is the
product of the NoC frequency and link-width. During the
topology synthesis, it is ensured that the traffic on each link
is less than or equal to its available bandwidth value.

The synthesis step is performed once for each set of the
architectural parameters. In this step, several topologies
with different number of switches, starting from a topol-
ogy where all the cores are connected to one switch, to the
topology where each core is connected to a separate switch
are explored. The synthesis of each topology includes find-
ing the size of the switches, establishing the connectivity
between the switches and connectivity with the cores and
finding deadlock-free routes for the different traffic flows
(using the approach outlined in [37]).

In the next step, to have an accurate estimate of the de-
sign area and wire-lengths, the floorplanning of each syn-
thesized topology is automatically performed (using the
tool described in [38]). The floorplanning process finds the
2D position of the cores and network components used in
the design. Based on the frequency point and the obtained
wire-lengths, the timing violations on the wires are detected
and power consumption on the links is obtained. In the last
step, from the set of all synthesized topologies and architec-
tural parameter design points, the topology and the architec-
tural point that best optimizes the user’s objectives, satisfy-
ing all the design constraints is chosen. Thus, the output
of phase 2 is the best application-specific NoC topology,
its frequency of operation and the width of each link in the
NoC.

In the last phase of the design (phase 3 in Figure 1), the
RTL (SystemC) code of the switches, network interfaces
and links for the designed topology are automatically gen-
erated. For this, we use ×pipesLite [9], a library of soft
macros for the network components and the associated tool
[27] to interconnect the network elements with the cores.
At this phase, we also obtain synthesizable RTL design
(that can also be emulated on FPGA). From the floorplan
specification of the designed topology, the synthesis engine
automatically generates the inputs for placement&routing.
The placement&routing of the design is performed using
SoC Encounter [39] for obtaining the layout, including the
global and detailed routing of wires. The output of this
phase is a complete layout of the NoC design that can be
sent to fabrication.

4 Case Study

In this section we test the effectiveness of the topology
synthesis approach outlined in the previous section against a



M0

T3

T2

T1

S14

S13

S12

S11

S10T0

M9

M8

M7

M6

P9

P8

P7

P6

P5

P4

P3

P2

P1

M5

M4

M3

M2

M1

P0

T4

(a) Hand-designed topology

6.
95

 m
m

5.1 mm

2
1 mm

(b) Layout

P6

P5 P4

P3 P2

P1

M5 M4

M3 M2

M1

P0 M0

T4

T3

T2

T1

S14S13

S12

S11

S10

T0

M9

M8

M7

M6

P9

P8

P7

(c) Automatically synthesized

5.05 mm

7.
32

 m
m

21 mm

(d) Layout

Figure 4. (a), (b) Hand-designed topology and its layout. M: ARM7 processors, T: traffic generators,
P, S: private and shared slaves (c), (d) Automatically synthesized topology and its layout. In Figure
(c), bi-directional links are dark and uni-directional links are dotted.

256B 1KB 4KB 256B 1KB 4KB
0

1

2

3

4

5

6x 10
5

E
x
e

c
u

ti
o

n
 T

im
e

 (
n

s
)

hand−design
automatic

Benchmark 1

Benchmark 2

(a) Execution time

256B 1KB 4KB 256B 1KB 4KB
0

50

100

150

200

250

300

A
v
e
ra

g
e
 R

e
a
d
 L

a
te

n
c
y
 (

n
s
) hand−design

automatic

Benchmark 1

Benchmark 2

(b) Average read latency

Figure 3. Performance vs. cache sizes

hand-designed NoC architecture for a SoC design that runs
multi-media application benchmarks. The design consists
of 30 cores: 10 ARM7 processors with caches, 10 private
memories (a separate memory for each processor), 5 cus-
tom traffic generators, 5 shared memories and devices to
support interprocessor communication. The hand-designed
NoC has 15 switches connected in a 5x3 mesh network,
shown in Figure 4(a). The design is highly optimized, with
the private memories being connected to the processors us-
ing a single switch and the shared memories distributed
around the switches. The layout of the design (presented
in Figure 4(b)) was performed using SoC Encounter and
the mesh structure was maintained in the layout. Each of
the cores has an area of 1 mm2 in the design. The entire
process, from topology specification to layout generation
took several weeks. The post-layout NoC could support
a maximum frequency of operation of 885 MHz and the

power consumption of the topology for functional traffic is
368.08 mW.

We apply the topology synthesis process with the objec-
tive of minimizing power consumption, to automatically de-
sign the NoC for this SoC design. We set the design con-
straints and the required frequency of operation to be the
same (885 MHz) as that of the hand-designed topology. The
designed NoC topology and the layout obtained using SoC
Encounter are presented in Figures 4(c) and 4(d). The syn-
thesized topology has fewer switches (8 switches) than the
hand-designed topology. But, the switch-to-switch wires
are longer (up to 2× longer) in the synthesized topology.
However, it could support the same maximum frequency of
operation (885 MHz) as that of the hand-designed topology,
without any timing violations on the wires. As we consid-
ered the wire-lengths during the synthesis process to esti-
mate the frequency that can be supported, we could syn-
thesize the most power efficient topology that would still
meet the target frequency. To arrive at such a design point
manually would require several iterations of topology de-
sign and place&route phases, which is a very time consum-
ing process.

Layout level power consumption calculations on func-
tional traffic shows that the synthesized topology has 277.08
mW power consumption, which is 1.33× lower than the
hand-designed topology. Given the fact that the hand-
designed topology is highly optimized, with much of the
communicating traffic (which is between the ARM cores
and their private memories) traversing only one switch, this
savings is achieved entirely from efficiently spreading the
shared memories around the different switches. The lay-
out of the hand-designed NoC was manually optimized to
a large extent (by moving switches, network interfaces) to
reduce the area of the design. The layout of the synthesized
topology is obtained completely automatically, and still the



area of the design is close to that of the manual design (only
a marginal 4.3% increase in area).

We perform cycle-accurate simulations of the hand-
designed and the synthesized NoCs for two multimedia
benchmarks. The total application time for the benchmarks
(including computation time) and the average packet laten-
cies for read transactions for the topologies are presented
in Figures 3(a) and 3(b). The custom topology not only
matches the performance of the hand-designed topology,
but provides an average of 10% reduction in total execution
time and 11.3% reduction in average packet latency.

5 Conclusions

Synthesizing application-specific NoC architectures is a
non-trivial task, given the large design space that needs to
be explored. In this work, we have outlined a methodology
that automates the process, generating efficient NoCs that
satisfy the design constraints of the application. We have
presented a case study with the comparison between a hand-
crafted and a synthesized topology. Our results (fully val-
idated post-placement and routing) demonstrate that NoC
synthesis can achieve competitive quality at a fraction of
the design time: manual topology design took a couple
of weeks while the automatic flow required less than four
hours to complete.

6 Acknowledgments

The author wishes to thank his co-workers at Stan-
ford University (Srinivasan Murali), University of Bologna
(Federico Angiolini, Davide Bertozzi), University of
Cagliari (Salvatore Carta, Paolo Meloni, Luigi Raffo),
EPFL (Giovanni De Micheli, David Atienza). The finan-
cial support of STMicrolectronics and SRC (contract 1188)
is gratefully acknowledged.

References

[1] M. Taylor, W. Lee, S. Amarasinghe, A. Agarwal, ”Scalar operand networks ”,
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 2, pp. 145-
162, Feb 2005.

[2] S. Dutta et al., “Viper: A Multiprocessor SOC for Advanced Set-Top Box and
Digital TV Systems”, IEEE Design and Test of Computers,Sep/Oct 2001, pp.
21-31.

[3] A. Artieri et al., “Nomadik Open Multimedia Platform for Next-generation Mo-
bile Devices”, STMicroelectronics Technical Article TA305, 2003, available at
http://www.st.com

[4] J. Helmig, “Developing core software technologies for TI’s OMAPTM plat-
form”, Texas Instruments, 2002. Available at http://www.ti.com.

[5] L.Benini and G.De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE
Computers, pp. 70-78, Jan. 2002.

[6] D.Wingard,”MicroNetwork-Based Integration for SoCs”, Design Automation
Conference DAC 2001, pp. 673-677, Jun 2001.

[7] K. Goossens et al., ”A Design Flow for Application-Specific Networks on Chip
with Guaranteed Performance to Accelerate SOC Design and Verification”,
DATE 2005.

[8] D. Bertozzi et al., ”NoC Synthesis Flow for Customized Domain Specific Multi-
Processor Systems-on-Chip”, IEEE Transactions on Parallel and Distributed
Systems, Feb 2005.

[9] S. Stergiou et al., “×pipesLite: a Synthesis Oriented Design Library for Net-
works on Chips”, pp. 1188-1193, Proc. DATE 2005.

[10] J. Daveau et al., “Synthesis of system-level communication by an allocation
based approach”, Proc. ISSS, pp. 150-155, Sept. 1995.

[11] M. Gasteier, M. Glesner, “Bus-based communication synthesis on system
level”, ACM TODAES, vol.4, no.1, pp. 1-11, 1999.

[12] K. Ryu, V. Mooney, “Automated Bus Generation for Multiprocessor SoC De-
sign”, Proc. DATE, pp. 282-287, March 2003.

[13] U. Ogras, J. Hu, R. Marculescu, ”Key research problems in NoC design: a
holistic perspective”, IEEE CODES+ISSS pp. 69-74, 2005.

[14] K.Lahiri et al., “Design Space Exploration for Optimizing On-Chip Communi-
cation Architectures”, IEEE TCAD, vol.23, no.6, pp. 952- 961, June 2004.

[15] S. Murali, G. De Micheli, “An Application-Specific Design Methodology for
STbus Crossbar Generation”, pp. 1176-1181, Proc. DATE ’05.

[16] S. Pasricha et al., “Floorplan-aware automated synthesis of bus-based commu-
nication architectures”, Proc. DAC ’05.

[17] J. Hu et al., “System-Level Point-to-Point Communication Synthesis Using
Floorplanning Information”, Proc. ASPDAC ’02.

[18] J. Hu, R. Marculescu, ’Exploiting the Routing Flexibility for En-
ergy/Performance Aware Mapping of Regular NoC Architectures’, Proc. DATE,
March 2003.

[19] S. Murali, G. De Micheli, “SUNMAP: A Tool for Automatic Topology Selec-
tion and Generation for NoCs”, Proc. DAC 2004.

[20] A. Hansson et al., “A unified approach to constrained mapping and routing on
network-on-chip architectures”, pp. 75-80, Proc. ISSS 2005.

[21] S. Murali et al., “Mapping and Physical Planning of Networks on Chip Archi-
tectures with Quality-of-Service Guarantees”, Proc. ASPDAC 2005.

[22] R. Ravi et al., “Approximation algorithms for degree-constrained minimum-
cost network design problems”, Algorithmica, 31(1): 58-78, 2001.

[23] A.Pinto et al., “Efficient Synthesis of Networks on Chip”, ICCD 2003, pp. 146-
150, Oct 2003.

[24] W.H.Ho, T.M.Pinkston, “A Methodology for Designing Efficient On-Chip In-
terconnects on Well-Behaved Communication Patterns”, HPCA 2003, pp. 377-
388, Feb 2003.

[25] T. Ahonen et al. ”Topology Optimization for Application Specific Networks on
Chip”, Proc. SLIP 04.

[26] K. Srinivasan et al., “An Automated Technique for Topology and Route Gener-
ation of Application Specific On-Chip Interconnection Networks”, Proc. ICCAD
’05.

[27] A. Jalabert et al., “×pipesCompiler: A tool for instantiating application specific
networks-on-chip”, pp. 884-889, Proc. DATE 2005.

[28] D.Siguenza-Tortosa, J. Nurmi, “Proteo: A New Approach to Network-on-
Chip”, in CSN 02, Sep. 2002.

[29] X.Zhu, S.Malik, “A Hierarchical Modeling Framework for On-Chip Commu-
nication Architectures”, ICCD 2002, pp. 663-671, Nov 2002.

[30] T. T. Ye et al., “Analysis of power consumption on switch fabrics in network
routers”, Proc. DAC ’03.

[31] H-S Wang et al., “Orion: A Power-Performance Simulator for Interconnection
Network”, Proc. International Symposium on Microarchitecture, , Nov 2002.

[32] N. Banerjee et al., “A power and performance model for network-on-chip ar-
chitectures”, Proc. DATE ’04.

[33] G. Palemoro, C. Silvano, “PIRATE: A Framework for Power/Performance Ex-
ploration of Network-On-Chip Architectures”, PATMOS 2004

[34] www.arteris.net

[35] M. Coppola et al., ”Spidergon: a novel on-chip communication network”, IS-
SOC pp. 16-18, 2004.

[36] J. Bainbridge, S. Furber, ”Chain: a delay-insensitive chip area interconnect”,
IEEE Micro, vol. 22, no. 5, pp. 16-23, Sept.-Oct. 2002.

[37] D. Starobinksi et al., “Application of network calculus to general topologies
using turn-prohibition”, IEEE/ACM Transactions on Networking, Vol. 11, Issue
3, pp. 411-421, June 2003.

[38] S. N. Adya, I. L. Markov, ”Fixed-outline Floorplanning : Enabling Hierarchical
Design”, IEEE Trans. on VLSI Systems, vol 11(6), pp. 1120-1135, Dec 2003.
URL: http://vlsicad.eecs.umich.edu/BK/parquet/

[39] www.cadence.com


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



