
Model-Based Specification and Execution of Embedded Real-Time Systems

Tim Schattkowsky, Wolfgang Mueller
Paderborn University, Paderborn, Germany

1. Introduction
Embedded systems design comes in different variations

and is most often due to the specific application or project
[1]. Sometimes, graphical means like StateCharts or
Matlab/Simulink are applied for graphical specification.
Code generators target for different micro controllers such
as C166 and different Real-Time Operating Systems
(RTOSs) like OSEK. There have been efforts to
investigate retargetable compilers to easily adopt them to
different hardware platforms.

Most recently, the MDA approach (Model-Driven
Architecture) became also recognized in the domain
embedded systems design. MDA is based on the idea that
specification and development is based on a platform-
independent model (PIM). The PIM has to be mapped to a
platform-specific model (PSM) in some way. This PSM is
representing the actual implementation.

Executable UML seems to become a major role here,
as it enables the PSM itself to be executable. However,
current approaches target towards platform-specific code
generation. Examples are X

TUML [2] and xUML [4]. The
latter is based on the Action Specification Language
(ASL), which defines the computational model of active
objects for code generation.

A different approach to portable code is the idea of a
Virtual Machine (VM). A VM is a virtual computer
defining the runtime environment for the executed
software. It functions as a low-level abstraction layer
defined by its behavior and the format of the executed
software program. This program consists often of
bytecode similar to the machine code executed by a
microprocessor. One such example is the Java VM.
Compiled Java bytecode programs can run on any Java
VM. The use of a VM eliminates the need to translate the
models to different platforms by code generators. Instead,
only the VM itself has to be ported to each platform.
Available software should instantly run on any new VM
implementation. Improvements to the runtime
environment are immediately beneficial to existing
already delivered software. This reduces costs for
application development and testing.

We propose a methodology for an executable UML 2.0
subset based on State Transition Diagrams (STDs) and

Sequence Diagrams (SD) that covers interrupts,
exceptions, and timeouts. We have defined a UML Virtual
Machine (UVM) as the run-time environment for
complete executable specifications based on that
executable UML subset. Such specifications are compiled
to binary programs consisting of data structures (STDs)
and bytecode (SDs). These binary programes are executed
directly by the UVM.

2. Methodology
We employ UML Class Diagrams, STDs and SDs to

define the complete executable application. The remainder
of this paper focuses on SDs and STDs, as the use of class
diagrams for type definition is quite straightforward.

UML has introduced STDs as a variation of Harel’s
StateCharts. However, several behavioral aspects like
concurrent objects and simple data-oriented algorithms
(e.g., sorting) cannot be easily expressed. The UML 2.0
sequence diagrams (SDs) have several extensions for
loops etc, which make them an ideal complement for the
use of STDs. Thus, we can overcome these drawbacks of
just using STDs through the integration of SDs with STDs
by using SDs as the Action1 language to describe the
Activities associated with States or Transitions.

Main

A

AE AI

B

BE BI

TIMEOUT(20 ms)

<<interrupt>>i <<interrupt>>i<<exception>>e<<exception>>e

Figure 1: Top Level STD with two Primary States

Our approach starts from a state-oriented specification
of the operation behavior by a STD. After clearly
identifying the primary States, exceptions, and interrupts,
which are due to individual application and available
sensors, the primary top level States are defined and
connected to the primary initial and final State. For

1 Note that references to classes from the UML metamodel are

capitalized.

1530-1591/04 $20.00 (c) 2004 IEEE

timeouts, we use a relative TimeTrigger with an Integer
value and a physical time unit as parameter. Interrupts and
exceptions are introduced as stereotypes of Trigger. An
example is given in Figure 1, which shows a top level
STD with two primary States A and B and corresponding
Transition for exceptions and interrupts. When the given
timeout is reached, an exception is thrown and the
Transition performed. The primary States are composite
States, which may recursively embed STDs or SDs. The
combination of diagrams used is mainly due to the
individual application.

3. Executing UML

The binary programs compiled from the UML models are
executed by the UML VM (UVM), which can be
implemented in hard- or software. This section outlines
the structure and execution of such programs.

2.1 UML Program Code
In order to enable simple and efficient execution of

these models, we use a transformation of the specification
to an equivalent executable model based on binary
encoding for the STDs and bytecode for the SDs.

The encoding of a STD results in a data structure that
can be interpreted by the UVM to execute transitions. It is
not necessary to include direct support for all STD
features. Instead, the STDs are transformed into
semantically equal simpler STDs where entry- exit- and
transition Activities are mapped to additional States and
Transitions. This is also used to resolve deferred Triggers.

Each State may have a timeout value. If this timeout
value is less then the pending timeout (from a containing
State), it is pushed on a timeout stack in the UVM, and
becomes the pending timeout. A timer in the UVM
triggers the corresponding transition if the State is not
exited before the timeout. The timeout will be removed
from the timeout stack when exiting the State.

Concurrent States are not supported in STDs. Thus,
there is no need for an event queue at runtime. Conflicting
transitions are not possible. This significantly reduces the
complexity of the UVM implementation.

The encoding of the SD results in bytecode, which is
equivalent to statements of the SD. However, since the
sequence diagram may contain severally nested
expressions and invocations. Those have to be resolved
and mapped to the simpler instruction set used by the
UVM. The code of the nested diagrams is transformed
into a flattened version consisting of instructions
executable by the UVM. Parameters are passed to and
from Interactions using the stack like in other compiled
high-level languages. The data structures used to hold
class and instance information are similar to those in C++.

The instruction set supported by the virtual machine
contains instructions similar to those of common
microprocessors (cf. Table 1). However, the UVM uses
no registers, as this is an unnecessary limitation. In
contrast, the UVM is stack-oriented and uses no registers.
Hardware implementations may make transparent use of
registers. This allows flexible use of the available
hardware resources and enables simple scalable
implementation in both hard- and software.

Table 1: Excerpt of the UVM Instruction Set

Mnemonic Dst Src Semantics
Traditional Instructions

mov.[b,l,d] mem mem/im Dst ← Src
push.[b,l,d] mem [-sp] ← Dst
add.[b,l,d] mem mem/im Dst ← Dst + Src
cmp.[b,l,d] mem mem/im [Flags according]

OO Control Instructions
new mem mem/im Dst ← (instanceof Src)
destroy mem (destroy instance Dst)
invoke mem (invoke operation Dst)
invokea mem (invoke Dst asynch.)

StateMachine Control Instructions
trans mem (transition to Dst)
event mem (handle event Dst imm.)
complete (completion of State)

In addition to the usual instructions for moving data,
integer and floating point math, bit manipulations and
flow control, instructions for managing and invoking
objects have to be introduced. Furthermore, instructions
for triggering Transitions have been added.

While the invocation of a class operation can be
implemented directly using the concept of a C++ vtable,
for instance, the support for object creation and
destruction in the instruction set has wide implications, as
the UVM must provide special memory management
functions when those instructions are executed.

2.2 Runtime Environment
UML programs are executed starting from the primary

initial State until either the sub-StateMachine reaches a
final State or an unexpected exception or external event
(i.e., interrupt) occurs. In such a case, the UVM stops the
execution of the UML program, processes the events or
exception and handles initiates scheduling if necessary.

The UVM has to provide certain high-level runtime
functionality including memory management and
scheduling. This functionality is provided as a predefined
set of Operations of a static Runtime Class. This class
may also contain initialization code.

References
[1] Marwedel, P.: Embedded Systems Design. Kluwer, 2003.
[2] Project Technology, www.projtech.com, 2003.
[3] The Object Management Group: Unified Modeling

Language: Superstructure. OMG ad/2003-04-01, 2003.
[4] Raistrick, C., Wilkie, I., Carter, C.: Executable UML

(xUML). In Proc. UML, 2000

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

