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1. Introduction 
Embedded systems design comes in different variations 

and is most often due to the specific application or project 
[1]. Sometimes, graphical means like StateCharts or 
Matlab/Simulink are applied for graphical specification. 
Code generators target for different micro controllers such 
as C166 and different Real-Time Operating Systems 
(RTOSs) like OSEK. There have been efforts to 
investigate retargetable compilers to easily adopt them to 
different hardware platforms.  

Most recently, the MDA approach (Model-Driven 
Architecture) became also recognized in the domain 
embedded systems design. MDA is based on the idea that 
specification and development is based on a platform-
independent model (PIM). The PIM has to be mapped to a 
platform-specific model (PSM) in some way. This PSM is 
representing the actual implementation.  

Executable UML seems to become a major role here, 
as it enables the PSM itself to be executable. However, 
current approaches target towards platform-specific code 
generation. Examples are X

TUML [2] and xUML [4]. The 
latter is based on the Action Specification Language 
(ASL), which defines the computational model of active 
objects for code generation.  

A different approach to portable code is the idea of a 
Virtual Machine (VM). A VM is a virtual computer 
defining the runtime environment for the executed 
software. It functions as a low-level abstraction layer 
defined by its behavior and the format of the executed 
software program. This program consists often of 
bytecode similar to the machine code executed by a 
microprocessor. One such example is the Java VM. 
Compiled Java bytecode programs can run on any Java 
VM. The use of a VM eliminates the need to translate the 
models to different platforms by code generators. Instead, 
only the VM itself has to be ported to each platform. 
Available software should instantly run on any new VM 
implementation. Improvements to the runtime 
environment are immediately beneficial to existing 
already delivered software. This reduces costs for 
application development and testing. 

We propose a methodology for an executable UML 2.0 
subset based on State Transition Diagrams  (STDs) and 

Sequence Diagrams (SD) that covers interrupts, 
exceptions, and timeouts. We have defined a UML Virtual 
Machine (UVM) as the run-time environment for 
complete executable specifications based on that 
executable UML subset. Such specifications are compiled 
to binary programs consisting of data structures (STDs) 
and bytecode (SDs). These binary programes are executed 
directly by the UVM.  

2. Methodology 
We employ UML Class Diagrams, STDs and SDs to 

define the complete executable application. The remainder 
of this paper focuses on SDs and STDs, as the use of class 
diagrams for type definition is quite straightforward. 

UML has introduced STDs as a variation of Harel’s 
StateCharts. However, several behavioral aspects like 
concurrent objects and simple data-oriented algorithms 
(e.g., sorting) cannot be easily expressed. The UML 2.0 
sequence diagrams (SDs) have several extensions for 
loops etc, which make them an ideal complement for the 
use of STDs. Thus, we can overcome these drawbacks of 
just using STDs through the integration of SDs with STDs 
by using SDs as the Action1 language to describe the 
Activities associated with States or Transitions.  
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Figure 1: Top Level STD with two Primary States 

Our approach starts from a state-oriented specification 
of the operation behavior by a STD. After clearly 
identifying the primary States, exceptions, and interrupts, 
which are due to individual application and available 
sensors, the primary top level States are defined and 
connected to the primary initial and final State. For 

                                                                 
1 Note that references to classes from the UML metamodel are 

capitalized. 
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timeouts, we use a relative TimeTrigger with an Integer 
value and a physical time unit as parameter. Interrupts and 
exceptions are introduced as stereotypes of Trigger. An 
example is given in Figure 1, which shows a top level 
STD with two primary States A and B and corresponding 
Transition for exceptions and interrupts. When the given 
timeout is reached, an exception is thrown and the 
Transition performed. The primary States are composite 
States, which may recursively embed STDs or SDs. The 
combination of diagrams used is mainly due to the 
individual application. 

3. Executing UML 

The binary programs compiled from the UML models are 
executed by the UML VM (UVM), which can be 
implemented in hard- or software. This section outlines 
the structure and execution of such programs. 

2.1 UML Program Code 
In order to enable simple and efficient execution of 

these models, we use a transformation of the specification 
to an equivalent executable model based on binary 
encoding for the STDs and bytecode for the SDs. 

The encoding of a STD results in a data structure that 
can be interpreted by the UVM to execute transitions. It is 
not necessary to include direct support for all STD 
features. Instead, the STDs are transformed into 
semantically equal simpler STDs where entry- exit- and 
transition Activities are mapped to additional States and 
Transitions. This is also used to resolve deferred Triggers.  

Each State may have a timeout value. If this timeout 
value is less then the pending timeout (from a containing 
State), it is pushed on a timeout stack in the UVM, and 
becomes the pending timeout. A timer in the UVM 
triggers the corresponding transition if the State is not 
exited before the timeout. The timeout will be removed 
from the timeout stack when exiting the State. 

Concurrent States are not supported in STDs. Thus, 
there is no need for an event queue at runtime. Conflicting 
transitions are not possible. This significantly reduces the 
complexity of the UVM implementation.  

The encoding of the SD results in bytecode, which is 
equivalent to statements of the SD. However, since the 
sequence diagram may contain severally nested 
expressions and invocations. Those have to be resolved 
and mapped to the simpler instruction set used by the 
UVM. The code of the nested diagrams is transformed 
into a flattened version consisting of instructions 
executable by the UVM. Parameters are passed to and 
from Interactions using the stack like in other compiled 
high-level languages. The data structures used to hold 
class and instance information are similar to those in C++. 

The instruction set supported by the virtual machine 
contains instructions similar to those of common 
microprocessors (cf. Table 1). However, the UVM uses 
no registers, as this is an unnecessary limitation. In 
contrast, the UVM is stack-oriented and uses no registers. 
Hardware implementations may make transparent use of 
registers. This allows flexible use of the available 
hardware resources and enables simple scalable 
implementation in both hard- and software.  

Table 1: Excerpt of the UVM Instruction Set 

Mnemonic Dst Src Semantics 
Traditional Instructions 

mov.[b,l,d] mem mem/im Dst ← Src 
push.[b,l,d] mem  [-sp] ← Dst 
add.[b,l,d] mem mem/im Dst ← Dst + Src 
cmp.[b,l,d] mem mem/im [Flags according] 

OO Control Instructions 
new mem mem/im Dst ← (instanceof Src) 
destroy mem  (destroy instance Dst) 
invoke mem  (invoke operation Dst) 
invokea mem  (invoke Dst asynch.) 

StateMachine Control Instructions 
trans mem  (transition to Dst) 
event mem  (handle event Dst imm.) 
complete   (completion of State) 

In addition to the usual instructions for moving data, 
integer and floating point math, bit manipulations and 
flow control, instructions for managing and invoking 
objects have to be introduced. Furthermore, instructions 
for triggering Transitions have been added.  

While the invocation of a class operation can be 
implemented directly using the concept of a C++ vtable, 
for instance, the support for object creation and 
destruction in the instruction set has wide implications, as 
the UVM must provide special memory management 
functions when those instructions are executed.  

2.2 Runtime Environment 
UML programs are executed starting from the primary 

initial State until either the sub-StateMachine reaches a 
final State or an unexpected exception or external event 
(i.e., interrupt) occurs. In such a case, the UVM stops the 
execution of the UML program, processes the events or 
exception and handles initiates scheduling if necessary.  

The UVM has to provide certain high-level runtime 
functionality including memory management and 
scheduling. This functionality is provided as a predefined 
set of Operations of a static Runtime Class. This class 
may also contain initialization code. 
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