
Issues in Implementing Latency Insensitive Protocols

Mario R. Casu and Luca Macchiarulo
Politecnico di Torino, Dipartimento di Elettronica, C.so Duca degli Abruzzi, 24, I-10129 Torino, Italy

mario.casu@polito.it luca.macchiarulo@polito.it

1 Extended Abstract

The performance of future Systems-on-Chip will be lim-
ited by the latency of long interconnects requiring more than
one clock cycle for the signals to propagate. To deal with
the problem L. Carloniet alii proposed theLatency Insensi-
tive Protocols (LIP). A design that works under the assump-
tion of zero-delay connections between functional modules
is modified in aLatency Insensitive Design (LID)by en-
capsulating them within wrappers (“shells”) and connecting
them through internally pipelined blocks (“relay stations”)
complying with a protocol that guarantees identity of be-
havior [1]. The wrappers perform:
- Data Validation: each output channel signals whether the
datum therein present has still to be consumed.
- Back Pressure: when the pearl is stopped the shell gener-
ates astopsignal sent in the opposite direction of inputs;
- Clock Gating: a module waiting for new data and/or
stopped keeps its present state.
Such a protocol was implemented [2] through the introduc-
tion of two new signals per channel,valid andstop. The
introduction of thestopled us to important theoretical con-
siderations about the minimum memory requirements for
the safe implementation of the protocol that are not apparent
from the papers by Carloni et alii. Our general conclusion is
that since the stop signal cannot be back propagated indef-
initely throughout the shells, at least one memory element
to save this signal is needed between two shells. This led to
the introduction of the “half relay station” whose difference
from the normal (“full”) relay station is that it has only one
register instead of two. Our shell will be simplified since it
does not save the incoming stop signals, but we need to add
at least one half or one full relay station between two shells.
This will guarantee at the same time that no data are lost
and will help to improve the performance when necessary.

We employed a slight variant of the original protocol,
aimed at optimizing its implementation. In previous works
the stop signal is back-propagated regardless of the signals
validity, in our implementation stops on invalid signals are
discarded. The overall computation can get a significant
speedup, and higher locality of management of void/stop

signals is ensured. The details of the RTL implementation
of relay stations as FSM’s, and of the shells can be found in
[3], together with the differences from previous proposals.

Our protocol refinement allows precise calculations of
important design parameters, such asSystem Throughput
andTransient Length. The second figure comes up as an
interesting consequence of the protocol: after a number of
clock cycles that are dependent on the system each part of
it behaves in a periodic fashion.

It is natural to associate a direct, possibly cyclic graph to
a system of interconnected synchronous processes. There
are representative graph topologies whose performance can
be easily derived. The simplest topology is atree. The
throughput of each node, i.e. the number of valid data per
clock cycle, is 1. However, each relay station must be ini-
tialized with non valid outputs that must be eliminated flow-
ing toward the primary outputs1. Thus the initial latency for
each node before firing at full speed can be as much as the
longest path in the tree (transient duration).

Another case is what we called “reconvergent inputs”
topology. Its behavior differs from that of trees due to im-
plicit loops created by the introduction of reverse-flowing
stop signals. Let’s consider the simple example of Fig. 1
and follow the system’s evolution. “N”s represent non

����
����
����
����
����
����

����
����
����
����
����
����

A

B

C

A

B

C

A

B

C

0
0

0n

n

n

0

0

1
1

1

0
n

n
1

2

2

1

stop

Out=0 Out=1 Out=n

A

B

C

1
1

2

3
3

2

2

Out=2

stop

A

B

C

3
3

4
4

n

4

Out=4

A

B

C

4
4

5
5

4

n

Out=5

A

B

C

n
5

6
6

5

5

Out=n

A

B

C

2
2

3
n

3

3

Out=3

Figure 1. FeedForward Topology Evolution.

valid data, while stops are indicated by dashed arrows and
stopped modules by dashed blocks. After the initial tran-
sient, the situation becomes periodic, and the output utters

1On the other hand, the shells outputs are initialized with valid data.

1530-1591/04 $20.00 (c) 2004 IEEE

an invalid datum every 5 cycles. The unbalanced number
of relay stations in the reconvergent paths forces the longest
one to introduce a number of invalid data. A single invalid
token gets propagated from top to bottom and then gener-
ates a stop signal that goes back on the shortest path every
n cycles. The number of invalid data is the difference of
relay stationsi between the “feedforward” branches. In the
present case,n = 5, while i = 1. The number of valid data
every 4 periods is 4 and the throughput is4

5. The general
formulaT = m−i

m , wherem is the total number of relay sta-
tion in the loop, plus the number of shells on the path with
the highest number of relay station. To get the maximum
T from a feedforward arrangement, it is necessary to insert
enough spare relay stations to make all converging paths of
the same length (path equalization).

Graphs containing loops of shells and relay stations as in
Fig. 2 are responsible for the worst throughput degradation.
The evolution shows a behavior dictated mainly by the ratio
between shell and relay station numbers. A maximum ofS
valid data can be present at a time, out ofS+ R positions
(where R is the number of relay stations in the loop). This
justifies the number S

S+R for the maximum throughput. This
result is fundamentally the same discussed by Carloni in [5].

n

A

B

����
����
����
����
����

����
����
����
����
����

A

1

B

A

B

n

A

B

����
����
����
����
����

����
����
����
����
����

0

n

0

n

0

n

0

����
����
����
����
����

����
����
����
����
����

n

n

1

0 1

1

nn

1
n

1

B

stop

n

A

n

n

2 2

n

2

n

n

A

n

n

B

n

0

n

n

n

2

n

stop

n

n

n

2

n

11

0 0

n

B

A

n

n

33

A

B

2

stop
22

Figure 2. FeedBack Topology Evolution.

The most general topology is a feed-forward combina-
tion of self-interacting loops. It is possible to prove that the
slowest subtopology (either reconvergent feed-forward or
feedback) will force the system to slow down to its speed.
The protocol itself will adapt to such a speed without any
need for path equalization.

Both to get more insight on the properties of our imple-
mentations and to avoid design mistakes, we employed a
tool of formal verification in which it was possible to de-
scribe our basic blocks at the RT level. We dealt with safety
and liveness problems separately.For us a LIP implemen-
tation issafe iff any composition of blocks will behave in
a latency insensitive sense exactly as an equally connected
system without and shells and non/pipelined connections.
We used the tool SMV [4] to verify that:
- Any shell elaborates coherent data;
- Any shell produces outputs in the correct order;

- Any shell does not skip any valid output;
provided the shell works in an appropriate environment, t.i.,
all its inputs keep their values on asserted stops. Analo-
gously, for relay stations, we verified:
- Any relay station produces outputs in the correct order;
- Any relay station does not skip any valid output;
- Any relay station keeps its output on asserted stops;
provided the relay station works in an appropriate environ-
ment, t.i., all its valid inputs are ordered.

Another issue to be addressed is that of ensuring that
deadlock does not occur (liveness). Since liveness is topol-
ogy dependent, we couldn’t verify formally the protocol
as such. However experiments and some proved results
support the following conclusions:
- Any LID is deadlock free if it has only a feed-forward
topology (possibly with reconvergence);
- Any LID using only “full” relay stations is deadlock free;
- Any LID with full and half relay stations has potential
deadlocks iff half relay stations are present in loops;
The last point is particularly critical. However, there is a
possible remedy: in many cases, even though deadlock is
not ruled out by general consideration, its injection will
never occur. If we simulate the system up to the transient’s
extinction, either the deadlock will show, or will be forever
avoided. And fortunately, the transient length is related
to the number of relay stations and shells, and can be
predicted upfront. Moreover we are allowed to simulate
just the skeleton of the system consisting of stop and valid
signals, thus the simulation cost is absolutely negligible.
For a relatively limited effort, this strategy can allow high
increase in throughput. In our experience, furthermore, the
cases that inject deadlocks can be “cured” by low intrusive
changes (adding/substituting few relay stations).

To validate our protocol, together with the results ex-
posed in the previous sections, we used many proof-of-
concept examples that comprise various combinations of
feedforward and feedback topologies. All examples were
successfully simulated using a VHDL description of all
blocks and an event-driven simulator.

References
[1] L.P. Carloni et al., Theory of Latency-Insensitive Design, IEEE TCAD,

vol. 20, No. 9, Sept. 2001, pp. 1059-1076.

[2] L.P. Carloniet al., A Methodology for “Correct-by-Construction” Latency
Insensitive Design”, Proc. ICCAD 99, pp. 309-315.

[3] M.R. Casu and L. Macchiarulo, A Detailed Implementation of Latency In-
sensitive Protocols, Proc. FMGALS 2003, Pisa, Italy, Sep. 2003. Available at
http://www.vlsilab.polito.it/ ∼casu

[4] K.L. McMillan, “Getting Started with SMV,” Cadence Berkely Labs, 2001
Addison St., Berkely, CA, March 1999.

[5] L.P. Carloni and A.L. Sangiovanni-Vincentelli, Performance Analysis and
Optimization of Latency Insensitive Protocols, Proc. DAC 00, pp. 361-367.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

