
Multi-Processor SoC Design Methodology using a Concept of Two-Layer
Hardware-dependent Software

Sungjoo Yoo, Mohamed-Wassim Youssef, Aimen Bouchhima, Ahmed A. Jerraya

TIMA Laboratory, Grenoble France

Mario Diaz-Nava
ST Microelectronics, Grenoble France

Abstract
In conventional multiprocessor SoC (MPSoC) design methods,
we find two problems: lack of SW code portability and lack
of early SW validation. The problems cause a long design
cycle. To resolve them, we present a concept of two-layer
hardware-dependent software (HdS). The presented HdS
consists of hardware abstraction layer to abstract the sub-
system architecture and SoC abstraction layer to abstract the
global MPSoC architecture. During the exploration of global
and sub-system architectures, the application programming
interfaces of presented two-layer HdS allow to keep the SW
independent from architectural change. The simulation
models of two-layer HdS enable to validate the entire system
including the SW and HW design early in the design steps.
We show the effectiveness of the presented methodology in
the MPSoC architecture exploration of an OpenDiVX encoder
system design.

1. Introduction
Multi-processor SoCs (MPSoCs) are generally built as a set of
sub-systems interconnected through a communication
network called network-on-chip. MPSoCs may include sub-
systems executing application SW. Conceptually, the SW can
be decomposed into three parts: one part is application SW
running on the sub-system, another part is the SW
(conventionally called hardware abstraction layer, HAL) that
depends on the local architecture of sub-system, and the other
is the SW (which we call SoC abstraction layer, SAL) that
depends on the global architecture of MPSoC.

Current practices in MPSoC design hardly separate these
three parts. SW is generally designed as a single program
where all the three layers are mixed. This induces at least the
following two problems: lack of SW portability and lack of
early SW validation.

Lack of SW portability: The SW is not portable over
different MPSoC architectures. This incurs two
inconveniencies. One is the SW is not reusable over different
SoC designs. The other is that HW architecture exploration is
difficult since when we change a HW architecture, we need
also to change the SW which will run on the new HW
architecture.

Lack of early SW validation: As the SW and HW
design continues, the designer needs to be able to validate the
current SW design before the HW design is not yet
completely finished. In conventional practices, since the SW
is a single program, we cannot validate a part of SW
independently from the other part of SW. Thus, the validation
of SW is done late in the design steps after both SW and HW

design is finished, using cycle-accurate HW/SW
cosimulation or a prototyping system.

To overcome the above problems, we propose the
usage of two hardware dependent software (HdS)
application programming interfaces (APIs): HAL and SAL
APIs. The APIs allow SW portability by dividing the SW
into three parts (application SW, sub-system architecture
dependent one, and global architecture dependent one) that
we mentioned in the beginning of this section. To resolve
the problems of early SW (and HW) validation, we present
the simulation models of the two HdS APIs.

2. Related Work and Our Aim
From the HW abstraction viewpoint, there are a few
standardization activities for hardware abstraction.
Universal Device Interface (UDI) is a standard of HW
access in device driver [1]. VSIA is developing HdS-API
[2]. Recently, the industry starts to develop HdS APIs such
as Mobile Industry Processor Interface (MIPI) API standard
[3]. As parallel programming model, there are two types of
programming model for multiprocessor systems: message
passing, e.g. MPI [4] and shared memory, e.g. OpenMP [5].

In our work, our aim is to efficiently utilise the above
concepts of existing APIs of HW abstraction and parallel
programming model to resolve the above two problems in
MPSoC design.

HAL API
HAL
Proc

IP

SW

SAL API
SAL1

Net i/f Net i/f

Network-on-Chip #1

HAL API
HAL
Proc

IP

SW

SAL API
SAL2

Net i/f Net i/f

Network-on-Chip #2

(b) SW portability by SAL API in global architecture exploration

HAL API
HAL1
Proc

IP1

HAL API
HAL2
Proc

IP2

SW SW

local
bus

local
bus

HAL API
HAL1
Proc

IP1

HAL API
HAL2
Proc

IP2

SW SW

local
bus

local
bus

(a) SW portability by HAL API in sub-system architecture exploration

Sub-system 1

Other
Sub-systems

Sub-system 1

Other
Sub-systems

Figure 1 SW portability in architecture

exploration

1530-1591/04 $20.00 (c) 2004 IEEE

3. SW Portability in Architecture
Exploration
Figure 1 (a) shows a simple sub-system architecture
consisting of a processor, processor local bus, and a
peripheral IP. HAL API gives an abstraction of sub-system
architecture to upper SW layer (application SW + SAL). Thus,
when exploring different sub-system architectures, e.g.
changing the processor type, peripheral IPs, etc., HAL API
gives SW code portability. In the figure, the peripheral IP is
assumed to be changed from IP1 to IP2. In the architecture
change, since HAL API does not change, upper SW layer
does not change, either. According to the architecture change,
HAL needs to be changed (in the figure, from HAL1 to
HAL2).

Figure 2 (b) shows the case of global architecture change.
SAL API gives an abstraction of global architecture to upper
SW layer (application SW). In this case, the network is
changed from NoC #1 (e.g. connection-less packet switch
network) to NoC #2 (e.g. connection-oriented circuit switch
network). Since the SAL API remains unchanged, application
SW code does not change in the architecture change.

4. Simulation Models of HdS APIs
Figure 2 shows the concept of simulation model of HdS API.
The HdS simulation model emulates a HdS API (HAL or
SAL API) on a host simulation environment, e.g. SystemC [6]
or Unix. For instance, if the application SW is written using
HAL API, the simulation model emulates the HAL API, e.g.
emulating context switch on Unix. the application SW can be
executed natively on a simulation host without using
simulators such as instruction set simulator. Such a native
execution enables a very fast simulation.

To evaluate the performance of application SW on the
HW architecture, timed simulation can be performed for the
application SW and the HW. For the timed simulation, the
application SW code is annotated with its execution delay
(measured or estimated by the designer) [7]. The simulation
model of HdS API synchronizes both timed SW and HW
simulation at RTL or TLM [8].

Application SW

HdS API

HW

Simulation Model
of HdS API

- Annotation of SW
execution delay

- Timed HW simulation

- HdS API emulation
- Synchronization of
HW/SW simulation

Figure 2 Simulation model of HdS API

5. Experiments
To prove our concept of two-layer HdS and the effectiveness
of simulation model of HdS API, we designed an OpenDiVX
[9] encoder system on a multiprocessor prototyping platform
[10]. We parallelised the initial sequential code of OpenDiVX
into four concurrent tasks: one master and three slave tasks.
Tasks communicate with each other via SAL API, i.e.
Message Passing Interface API (MPI_Send/Recv). HAL API
includes function calls such as context switch,
enable/disable_interrupt, read/write_bus, etc.

For global architecture exploration, as shown in Figure
3, we explored two different global architectures changing
the number of ARM processors on the prototyping platform.
Since SAL API gives an abstraction of underlying global
architectures, we use the same application SW code of
master and slave tasks in the global architecture exploration.
The code size of SAL and HAL is small (5.7—6.3KB)
compared with the application code size (254KB and
461KB for master and slave tasks, respectively).

For sub-system architecture exploration, we replace an
ARM processor (in Case 1 of Figure 3) with a ST220 VLIW
processor [11]. In this case, we need to design a new HAL
(15KB) for the new ST220 processor. However, since only
the sub-system architecture changes, the upper SW layer, i.e.
OpenDiVX code written in SAL API and SAL code, does
not change.

The simulation model of HdS API allowed to simulate
application SW at SAL and HAL API levels. Compared
with the speed and accuracy of execution of the OpenDivX
on the prototyping platform (all processors at 25MHz), the
high-level simulation of application SW yields 3.5~17 times
higher speed and up to 86% accuracy.

Master

ARM9

AMBA

Slave1

ARM9

Slave2

ARM7

Slave3

ARM7

Master

ARM9

AMBA

S1,S2,S3

ARM9

(a) Case 1 (b) Case 2
Figure 3 Two global architectures

6. Summary
In this paper, we presented a concept of two-layer hardware-
dependent software: SAL and HAL. The concept allows to
keep SW code unchanged during the architecture
exploration. The simulation models of HdS APIs enable the
entire system validation at SAL and HAL API levels, early
in the design flow. The accuracy and runtime of high-level
simulation show that the presented simulation model
enables early SW validation in a fast and accurate way.

Acknowledgement
This work was supported by ToolIP, Medea+ project and
ArchiFlex, French government funded project.

References
[1] Uniform driver interface, www.projectudi.org
[2] HdS Development Working Group, www.vsia.org
[3] Mobile Industry Processor Interface, www.mipi.org
[4] Message passing interface, www-unix.mcs.anl.gov/mpi
[5] OpenMP, www.openmp.org
[6] SystemC, www.systemc.org
[7] M. Lajolo, .et .al, “A Compilation-based Software
Estimation Scheme for Hardware/Software Co-simulation”,
Proc. CODES, 1999.
[8] SystemC based SoC Communication Modelling for the
OCP Protocol, www.ocpip.org/socket/systemc
[9] Project Mayo, www.projectmayo.com/index.php
[10] ARM Integrator, ARM Ltd.
[11] ST220, ST Microelectronics.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

