
 
 

 

Abstract 
We unify virtual-method despatch (polymorphism im-

plementation) and network packet-routing operations; vir-
tual-method calls correspond to network packets, and net-
work addresses are allocated such that routing the packet 
corresponds to dispatching the call. As the run-time rout-
ing structure is inherent in Network-on-Chip platforms, 
this unification implements polymorphism for free.1 
 

1. Introduction 

Object-oriented methodology is an approach to narrow-
ing the design productivity gap and to decreasing time-to-
market by increasing the design abstraction level. In OO 
design methodology, polymorphism (and the associated 
virtual method despatch) is a key feature. However, it im-
plies run-time support for dynamic binding of operations; 
this imposes performance, area, and power overheads to 
the design that is known as the major drawback of OO 
hardware synthesis. 

On the other hand, the technology trend in System-on-
Chips is toward Network-on-Chip paradigm due to deep 
submicron effects [1]. These on-chip networks imply rout-
ing infrastructures for run-time packet-switched communi-
cation. We take advantage of this NoC inherent structure 
and show how method-calls can be dispatched at the same 
time that packets are routed. This realises polymorphism 
with no circuitry additional to that already required for 
routing in the NoC, and hence introduces no overhead.  

2. Polymorphism in a Network-on-Chip 

We follow an ASIP approach and realise OO models as 
cooperating hardware and software [2]. The internal archi-
tecture of the chip is shown in Fig. 1. Those methods of the 
class library that are to become hardware are each imple-
                                                           

1 We wish to thank the British Council for funding the first author's 
visit to Cambridge, and also the Ministry of Science, Research, and Tech-
nology of the Islamic Republic of Iran for a partial scholarship. This work 
was partly supported by (UK) EPSRC grant GR/N64256. 

mented as a Functional Unit (FU); the other methods are 
implemented as software routines in the traditional proces-
sor(s); objects data are stored in a shared data memory and 
all FUs and processors have cached-access to it through the 
Object-Management Unit. 

In this paper, we wish to view virtual-method calls as 
packets sent over the network from the caller module to the 
called one, carrying the parameters of the call as the packet 
data payload. The return-value(s), if any, is also sent in 
another packet from the callee back to the caller. We assign 
the FU addresses and object numbers such that routing of a 
packet is equivalent to dynamic binding of the correspond-
ing virtual-method call. 

2.1. FU network-address assignment scheme 
We assign a unique bit-field identifier cid to each class 

in the system model, and another unique identifier mid to 
the methods of each class, provided that overridden meth-
ods in a derived class use the same identifier as in the par-
ent class.; i.e., if class B is derived from A and overrides 
A::f(args) by B::f(args), both f(args) methods share the 
same identifier м. 

Since an FU corresponds to a certain method of a certain 
class, we assign FUid = <mid.cid> as its network address 
where the “.” operation represents a bit-field concatenation.  

2.2. Object numbering scheme 
Objects are assigned a number objn, unique among all 

objects of the same class; consequently, oid = <cid.objn> 
(cid shows the class identifier) distinguishes each object 
from others; e.g. the objects of a class A numbered 1 will 
be numbered 1.1, 1.2, 1.3, etc. 

2.3. Method dispatch without polymorphism 
When the type of the called object is known at compile 

time, method dispatch will be straightforward since the 
receiver is statically known; e.g, a.f(params) in C++ is 
statically known to  invoke A::f(args).  We first present our 
scheme in this case, and then extend it to polymorphism 
where the type of the called object is not statically known. 

We view each method call as a network packet. Each 

 Maziar Goudarzi1,2, Shaahin Hessabi1  Alan Mycroft2 

 1 Department of Computer Engineering 2 Computer Laboratory 

 Sharif University of Technology, Tehran, I.R. Iran University of Cambridge, Cambridge, UK 

 gudarzi@mehr.sharif.edu  hessabi@sharif.edu  alan.mycroft@cl.cam.ac.uk 

 
Overhead-free Polymorphism in  

Network-on-Chip Implementation of Object-Oriented Models 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/04 $20.00 (c) 2004 IEEE 



 
 

 

method call is identified by a method, an object, and the 
parameters of the call; hence, the bit-field concatenation of 
these items represents the method call and comprises the 
packet to be sent; i.e. <mid.oid.params>. 
The oid can be expanded to <cid.objn>. Hence, the packet 
becomes: <mid.<cid.objn>.params>  
or simply <mid.cid.objn.params>  
or <<mid.cid>.objn.params> with a change in viewpoint, 
or finally <FUid.objn.params> when observing that ac-
cording to our FU-address-assignment, <mid.cid> desig-
nates an FUid which is conveniently the unit that must han-
dle the method call and hence is the destination of the 
packet. 

In other words, a call to oid.mid(params) is equivalent 
to a network packet <mid.oid.params> which is routed for 
no extra cost to the FU with the address of FUid while the 
objn and params respectively represent the object to work 
on and the parameters of the call. So, the packet looks like: 

Header 
Other 

headers destination address 
Data payload 

… method-id class-id objn method  
parameters 

  object-id 

The grey part shows the packet fields. In addition to 
method-id, class-id, and objn, other headers may also be 
required, e.g. the source address to allow the called FU to 
return a result if required. The objn field and method pa-
rameters are sent as the data payload of the packet.  

Example 1: Suppose that an OO model defines a class 
A with method f(args). We assign number 1 to the class 
and the unique number м to the f(args) method. Our net-
work-address assignment scheme suggests <mid.cid> for 
the corresponding FU, resulting in м.1 for A::f(args). De-
fining a7 as an object of class A, our object-numbering 
scheme suggests <cid.objn> or 1.7, for example, as the 
identifier of the a7 object. Now, calling a7.f(params) cor-
responds to the following packet:  

… м 1 7 params 
The packet destination address is м.1 (see the above 

packet format), and hence when sent over the network, the 
routing structure conveys it to its destination address, м.1, 
which corresponds to A::f(args) FU as expected. 

2.4. Method dispatch with polymorphism 
Polymorphism is expressed in various ways in different 

languages. We follow a C++-like approach by allowing 
method-calls on pointer-to-objects; polymorphism implies 
the pointer may point to different objects (constrained by 
the class hierarchy) at run-time. However, unlike C++ we 
use the object numbers (see Section 1.2) to represent point-
ers instead of memory addresses of objects. 

The previous section showed how a packet is assembled 
for a statically known call. To implement polymorphism, 
we simply put the run-time value of the pointer in the  
object-id part of the packet (which overlaps both header 
and payload) and send it on the network as before; depend-
ing on the dynamic pointer value, the packet may reach 
different FUs, but in all cases it will be the appropriate one 
due to the FU address assignment scheme. 

Example 2: Suppose that one derives two classes B and 
C from class A in Example 1, such that both of them over-
ride A::f(args) and all implement as hardware FUs. As-
sume that we assign numbers 2, and 3 respectively to the 
classes, and hence, the three FUs are numbered м.1, м.2, 
and м.3 respectively (recall that all three f(args) methods 
use the same identifier м). Further assume that the system 
model defines only one object from each class, respectively 
named a, b, c and numbered 1.1, 2.1, and 3.1. 

A pointer to class A (e.g. ap) may dynamically point to 
a, b, or c; i.e. contain 1.1, 2.1, or 3.1 respectively.  So, call-
ing ap->f(params) should be dispatched to A::f(args) or 
B::f(args) or C::f(args) depending on ap run-time value. 
Assembling a packet with the ap value results in 
<м.1.1.params> or <м.2.1.params> or <м.3.1.params> 
packets that are routed to м.1 or м.2 or м.3 respectively 
corresponding to A::f(args) or B::f(args) or C::f(args) FUs. 
This is what polymorphism implementation implies. 

Prototype implementation: We used SystemC for a 
prototype implementation. Its simulation results confirm 
correctness of the scheme and its implementation. 

References 
[1] L. Benini, G. DeMicheli, Networks on Chips: A New SoC Paradigm. 

In IEEE Computer, Volume: 35 Issue: 1, pp. 70-78, 2002. 
[2] M. Goudarzi, S. Hessabi, and A. Mycroft, Object-Oriented ASIP 

Design and Synthesis. In Forum on Design & specification Lan-
guages (FDL’03), Frankfurt, Germany, 2003.  

Fig. 1 Internal structure of the ASIP with an on-chip network. 

The OO ASIP  

Instruction 
Memory 

Object 
Management 

Unit 
(OMU) 

 
Traditional 
Processor 

A::f() Functional Unit (FU)
i.e. f() method  from Class A 

B::f() FU 

The 
on-chip
Network

Data  
Memory 

 
(objects 

data) 


	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index




