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Introduction 
In this work, we propose a combined Dynamic Voltage Scaling 

(DVS) and Dynamic Cache Reconfiguration (DCR) online algorithm 
that dynamically adapts the processor speed (i.e., voltage) and the 
cache subsystem to the workload requirements for the purposes of 
saving energy. The workload is considered to be a set of tasks with 
real-time deadlines. Our online algorithm is invoked as part of the OS 
scheduler, which performs standard earliest deadline first (EDF) task 
scheduling first. Then, our online algorithm, determines an ideal 
voltage/cache configuration for the current executing task. 

Related Work 
An extensive analysis of related work can be found in [1]. 
Dynamic Voltage Scaling (DVS) is an approach for power 

reduction that has gained much attention in the recent years. Power 
reduction is often accomplished by appropriately scheduling tasks and 
selecting voltage settings that eliminate the slack [2]. 

A great amount of previous work has also shown that statically 
tuning the cache subsystem to the running task can result in 
significant energy savings. Malik et al. [3] have shown that the best 
cache configuration depends heavily on the particular running task. 
Likewise, Zhang et al. [4] analysis shows that having a dynamically 
configurable line size architecture can have a significant (up to 50%) 
energy saving potential in embedded systems. 

Problem Formulation 
We assume a system composed of N non-preemptive tasks, T1, T2 

… Tn. Each task Ti has a deadline Di and a period Pi. One of the tasks 
is the scheduler Ts. The scheduler selects the next task Tj to be 
executed based on EDF. Then, our online algorithm, running as part 
of the scheduler, selects a system configuration that maintains the 
timing of the task Tj while saving as much energy as possible. 

The platform’s cache subsystem has a finite number of possible 
configurations C1, C2 … Cn, each one different than any other by at 
least one of the configurable parameters: cache size, line size or cache 
associativity. Among all valid configurations, one of them is the so-
called reference configuration Cr. The voltage of the platform can also 
be set to one of a finite set of voltages V1, V2 … Vn. A reduction in 
voltage directly affects the operating frequency of the system. 

We assume a time penalty as well as a power penalty for cache 
reconfiguration. These penalties are for writing dirty data back to 
memory, and are a function of the current configuration Ci and the 
new configuration Cj. The functions can be either hard coded 
statically, or learned by our online algorithm during run time. In a 
similar fashion, we assume time and power penalties for selecting a 
new processor operating point (i.e., voltage/speed). 

Proposed Solution 
Any feasible solution in this context must address a 

multi-objective problem: minimize power while still meeting task 
deadlines. In a multi-objective problem, it is usually the case that one 
solution is good for one objective, but not so good for the others. In 
the universe of different configurations, we can identify some 

configurations that are better than all the other ones for at least one of 
the objectives. These are the so-called Pareto-optimal solutions. 

Assuming the exact set of Pareto-optimal voltage and cache 
configurations for each task are known, our online algorithm, after 
performing EDF, picks the Pareto-optimal configuration that best fills 
the slack given the next task to be executed. 

The challenge, thus, is to compute the voltage and cache Pareto-
optimal configurations for each task. Extensive simulations are 
needed in order to compute the exact Pareto-optimal set. For practical 
reasons, we have considered computing the Pareto-optimal sets 
online. However, due to computation overhead, it is not feasible to 
compute the exact Pareto-optimal sets. Instead, an approximation of 
the Pareto-optimal set is sufficient.  

Given the Pareto-optimal sets (or an approximation in the online 
case), the system can trade-off power consumption and execution 
time by selecting the configuration that is best suited to fill the excess 
processing time (i.e., slack). The configuration selection is based on 
the utilization rate of the processor. The utilization rate of the 
processor is calculated every time a task finishes execution, or 
whenever a task is added or removed to and from the system.  
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For the utilization calculation, the best case execution time (but 
not necessarily most energy efficient) of each task is used. Given this 
utilization rate, we calculate the target execution time for the next task 
Tj as shown in Equation 2. 
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Given the target execution time, the scheduler is able to select the 
Pareto-optimal configuration that has a time less, but closest to the 
target time. 

Experimental Setup 
In order to evaluate the effects and benefits of our online 

algorithm, we have performed several simulations. We have 
considered different task timings and have experimented with only 
DVS, only DCR, and the combination of DVS and DCR. 

Our simulations were performed on a target platform that is 
composed of a MIPS processor, unified L1 reconfigurable cache, 
on-chip memory, and the associated busses between the cache and the 
processor, as well as cache and on-chip memory. In addition, our 
platform includes a hardware power monitor for real-time power 
measurements. 

The largest cache size is 32Kb, and the fastest speed setting for 
the platform is 400Mhz. The total number of possible system 
configurations is the cross-product of the parameters, resulting in 820 
different valid platform configurations. 
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Combining DVS and DCR 
In the first set of experiments we attempted to estimate the 

possible savings by the combination of DVS and DCR. In order to get 
a more accurate estimate of the largest savings possible, the OS was 
fed with the actual Pareto-optimal sets. We call this an Oracle 
solution, since it knows the behavior of the applications beforehand.  

We observed that the combination of DVS and DCR had a 
potential for larger savings than either of the two techniques alone. 
However, the effective energy savings was highly dependable on the 
deadlines (and so on the slack available), as expected. Table 1 
summarizes the results for the different scenarios and platform 
configurations. 

Configuration D=19.0ms D=20.3ms D=22.5ms 
(A) 32K,64,8,400Mhz 2.26W 

13.4ms 
2.29W 
13.4ms 

2.33W 
13.4ms 

(C1) 32K,64,8,300Mhz 1.14W 
18ms 

1.16W 
18ms 

1.19W 
18ms 

(D) 32K,64,8,DVS 1.04W 
18.9ms 

1.04W 
19.6ms 

0.93W 
21.9ms 

(B1) 16K,16,2,400Mhz 0.65W 
16.3ms 

0.67W 
16.3ms 

0.69W 
16.3ms 

(B2) 16K,16,2,330Mhz n/a 0.51W 
19.7ms 

0.54W 
19.7ms 

(E) 16K,16,2,DVS 0.53W 
18.5ms 

0.50W 
19.2ms 

0.44W 
22.3ms 

(F1) Dynamic,400Mhz 0.55W 
18.7ms 

0.52W 
20.2ms 

0.47W 
21.7ms 

(F2) Dynamic,330Mhz 0.56W 
18.4ms 

0.51W 
20.2ms 

0.45W 
22.4ms 

(G) Dynamic,DVS 0.52W 
18.9ms 

0.45W 
20.1ms 

0.32W 
22.4ms 

n/a = not possible to meet time constrains with the respective configuration 

Table 1. Summary of experimental results. 

Based on Table 1 and on the results presented in [1], we conclude 
that a DVS-only system performs slightly better than a DCR-only 
system. We also observe that the savings provided by the combination 
of DVS and DCR increase with larger slacks. In the 19 ms deadline 
scenario, there is almost no gain in adding DCR to the system (i.e., 
changing from E to G). However, in the 20.3 ms and 22.5 ms, there is 
an extra saving of 10% and 27%, respectively.  

Table 1 also shows that combining DVS and DCR allows a better 
usage of the slack. For example, in the 20.3 ms scenario, DVS only 
(experiment E) can slowdown execution to 19.2 ms, leaving 1.1 ms 
unused. When DCR is combined to DVS (experiment G), the 
execution time is stretched to 20.1 ms. 

Online Reconfiguration 
As an alternative to pre-computing the exact Pareto-optimal sets, 

we introduce an online algorithm for calculating an approximation of 
the Pareto-optimal sets. This online algorithm uses the same 
scheduling algorithm discussed before. Here, the OS scheduler 
additionally interleaves the configuration selection with the 
configuration discovery algorithm. After each invocation of the 
scheduler, a new point may be added to the Pareto-optimal sets. 

The main objective of the Pareto discovery algorithm is to 
converge on to a reasonable approximation of the actual Pareto-
optimal set for each task. The discovery procedure starts with the 
reference configuration as the only member of the Pareto-optimal 
sets. Gradually, each of the cache size, line size, and associativity 
parameters are varied, individually (i.e., one change per scheduler 
invocation) in a greedy search, until the Pareto-optimal set converges.  

Simulation Results 
The power consumption results for the online approach are 

partially shown in Figure 1. For comparison purposes, Figure 1 
includes the plots for the online system as well as the Oracle system 
and the reference configuration.  

As expected, the online performance is slightly worse than the 
Oracle DCR+DVS implementation. The worst increase happened in 
the case when the deadline is 22.5 ms, where the power consumption 
increased by as much as 20%. However, savings are still higher when 
DVS and DCR are combined when compared to either technique 
alone. 

The online discovery behavior can also be seen in Figure 1. 
Initially, the power consumption oscillates quickly, as the system 
discover new Pareto-optimal points. As the discovery converges, the 
power profile stabilizes.  

Furthermore, while the system is testing new cache 
configurations, some deadlines are eventually lost. With deadline set 
to 19 ms, 10% of the deadlines are lost during discovery. On the other 
hand, when deadline is 22.5 ms, only 4% of the deadlines are lost 
during the discovery process. Clearly, the online approach is not 
suitable for real-time applications with strict deadlines. In the hard 
real-time instances, the static approach to discovering Pareto-optimal 
points should be utilized 

As a final remark, we observed that the discovery process requires 
to analyze about 60-70 platform configurations in order to converge. 
This is less than 10% of the 820 possible configurations when cache 
and voltage are combined. 
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Figure 1. Online execution behavior. 
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