
Dynamic Voltage and Cache Reconfiguration for Low Power

Andre C. Nacul and Tony Givargis
University of California, Irvine
{nacul, givargis}@ics.uci.edu

Introduction
In this work, we propose a combined Dynamic Voltage Scaling

(DVS) and Dynamic Cache Reconfiguration (DCR) online algorithm
that dynamically adapts the processor speed (i.e., voltage) and the
cache subsystem to the workload requirements for the purposes of
saving energy. The workload is considered to be a set of tasks with
real-time deadlines. Our online algorithm is invoked as part of the OS
scheduler, which performs standard earliest deadline first (EDF) task
scheduling first. Then, our online algorithm, determines an ideal
voltage/cache configuration for the current executing task.

Related Work
An extensive analysis of related work can be found in [1].
Dynamic Voltage Scaling (DVS) is an approach for power

reduction that has gained much attention in the recent years. Power
reduction is often accomplished by appropriately scheduling tasks and
selecting voltage settings that eliminate the slack [2].

A great amount of previous work has also shown that statically
tuning the cache subsystem to the running task can result in
significant energy savings. Malik et al. [3] have shown that the best
cache configuration depends heavily on the particular running task.
Likewise, Zhang et al. [4] analysis shows that having a dynamically
configurable line size architecture can have a significant (up to 50%)
energy saving potential in embedded systems.

Problem Formulation
We assume a system composed of N non-preemptive tasks, T1, T2

… Tn. Each task Ti has a deadline Di and a period Pi. One of the tasks
is the scheduler Ts. The scheduler selects the next task Tj to be
executed based on EDF. Then, our online algorithm, running as part
of the scheduler, selects a system configuration that maintains the
timing of the task Tj while saving as much energy as possible.

The platform’s cache subsystem has a finite number of possible
configurations C1, C2 … Cn, each one different than any other by at
least one of the configurable parameters: cache size, line size or cache
associativity. Among all valid configurations, one of them is the so-
called reference configuration Cr. The voltage of the platform can also
be set to one of a finite set of voltages V1, V2 … Vn. A reduction in
voltage directly affects the operating frequency of the system.

We assume a time penalty as well as a power penalty for cache
reconfiguration. These penalties are for writing dirty data back to
memory, and are a function of the current configuration Ci and the
new configuration Cj. The functions can be either hard coded
statically, or learned by our online algorithm during run time. In a
similar fashion, we assume time and power penalties for selecting a
new processor operating point (i.e., voltage/speed).

Proposed Solution
Any feasible solution in this context must address a

multi-objective problem: minimize power while still meeting task
deadlines. In a multi-objective problem, it is usually the case that one
solution is good for one objective, but not so good for the others. In
the universe of different configurations, we can identify some

configurations that are better than all the other ones for at least one of
the objectives. These are the so-called Pareto-optimal solutions.

Assuming the exact set of Pareto-optimal voltage and cache
configurations for each task are known, our online algorithm, after
performing EDF, picks the Pareto-optimal configuration that best fills
the slack given the next task to be executed.

The challenge, thus, is to compute the voltage and cache Pareto-
optimal configurations for each task. Extensive simulations are
needed in order to compute the exact Pareto-optimal set. For practical
reasons, we have considered computing the Pareto-optimal sets
online. However, due to computation overhead, it is not feasible to
compute the exact Pareto-optimal sets. Instead, an approximation of
the Pareto-optimal set is sufficient.

Given the Pareto-optimal sets (or an approximation in the online
case), the system can trade-off power consumption and execution
time by selecting the configuration that is best suited to fill the excess
processing time (i.e., slack). The configuration selection is based on
the utilization rate of the processor. The utilization rate of the
processor is calculated every time a task finishes execution, or
whenever a task is added or removed to and from the system.

��
�
�
�
�

�

�

��
�
�
�
�

�

�

−
=

�
=

∀ timecurrentdeadline

timeexec

util
i

i

j
j

i _

_

max 1 Eq. (1)

For the utilization calculation, the best case execution time (but
not necessarily most energy efficient) of each task is used. Given this
utilization rate, we calculate the target execution time for the next task
Tj as shown in Equation 2.

util
timeexec

timeexectarget j
j

_
__ = Eq. (2)

Given the target execution time, the scheduler is able to select the
Pareto-optimal configuration that has a time less, but closest to the
target time.

Experimental Setup
In order to evaluate the effects and benefits of our online

algorithm, we have performed several simulations. We have
considered different task timings and have experimented with only
DVS, only DCR, and the combination of DVS and DCR.

Our simulations were performed on a target platform that is
composed of a MIPS processor, unified L1 reconfigurable cache,
on-chip memory, and the associated busses between the cache and the
processor, as well as cache and on-chip memory. In addition, our
platform includes a hardware power monitor for real-time power
measurements.

The largest cache size is 32Kb, and the fastest speed setting for
the platform is 400Mhz. The total number of possible system
configurations is the cross-product of the parameters, resulting in 820
different valid platform configurations.

1530-1591/04 $20.00 (c) 2004 IEEE

Combining DVS and DCR
In the first set of experiments we attempted to estimate the

possible savings by the combination of DVS and DCR. In order to get
a more accurate estimate of the largest savings possible, the OS was
fed with the actual Pareto-optimal sets. We call this an Oracle
solution, since it knows the behavior of the applications beforehand.

We observed that the combination of DVS and DCR had a
potential for larger savings than either of the two techniques alone.
However, the effective energy savings was highly dependable on the
deadlines (and so on the slack available), as expected. Table 1
summarizes the results for the different scenarios and platform
configurations.

Configuration D=19.0ms D=20.3ms D=22.5ms
(A) 32K,64,8,400Mhz 2.26W

13.4ms
2.29W
13.4ms

2.33W
13.4ms

(C1) 32K,64,8,300Mhz 1.14W
18ms

1.16W
18ms

1.19W
18ms

(D) 32K,64,8,DVS 1.04W
18.9ms

1.04W
19.6ms

0.93W
21.9ms

(B1) 16K,16,2,400Mhz 0.65W
16.3ms

0.67W
16.3ms

0.69W
16.3ms

(B2) 16K,16,2,330Mhz n/a 0.51W
19.7ms

0.54W
19.7ms

(E) 16K,16,2,DVS 0.53W
18.5ms

0.50W
19.2ms

0.44W
22.3ms

(F1) Dynamic,400Mhz 0.55W
18.7ms

0.52W
20.2ms

0.47W
21.7ms

(F2) Dynamic,330Mhz 0.56W
18.4ms

0.51W
20.2ms

0.45W
22.4ms

(G) Dynamic,DVS 0.52W
18.9ms

0.45W
20.1ms

0.32W
22.4ms

n/a = not possible to meet time constrains with the respective configuration

Table 1. Summary of experimental results.

Based on Table 1 and on the results presented in [1], we conclude
that a DVS-only system performs slightly better than a DCR-only
system. We also observe that the savings provided by the combination
of DVS and DCR increase with larger slacks. In the 19 ms deadline
scenario, there is almost no gain in adding DCR to the system (i.e.,
changing from E to G). However, in the 20.3 ms and 22.5 ms, there is
an extra saving of 10% and 27%, respectively.

Table 1 also shows that combining DVS and DCR allows a better
usage of the slack. For example, in the 20.3 ms scenario, DVS only
(experiment E) can slowdown execution to 19.2 ms, leaving 1.1 ms
unused. When DCR is combined to DVS (experiment G), the
execution time is stretched to 20.1 ms.

Online Reconfiguration
As an alternative to pre-computing the exact Pareto-optimal sets,

we introduce an online algorithm for calculating an approximation of
the Pareto-optimal sets. This online algorithm uses the same
scheduling algorithm discussed before. Here, the OS scheduler
additionally interleaves the configuration selection with the
configuration discovery algorithm. After each invocation of the
scheduler, a new point may be added to the Pareto-optimal sets.

The main objective of the Pareto discovery algorithm is to
converge on to a reasonable approximation of the actual Pareto-
optimal set for each task. The discovery procedure starts with the
reference configuration as the only member of the Pareto-optimal
sets. Gradually, each of the cache size, line size, and associativity
parameters are varied, individually (i.e., one change per scheduler
invocation) in a greedy search, until the Pareto-optimal set converges.

Simulation Results
The power consumption results for the online approach are

partially shown in Figure 1. For comparison purposes, Figure 1
includes the plots for the online system as well as the Oracle system
and the reference configuration.

As expected, the online performance is slightly worse than the
Oracle DCR+DVS implementation. The worst increase happened in
the case when the deadline is 22.5 ms, where the power consumption
increased by as much as 20%. However, savings are still higher when
DVS and DCR are combined when compared to either technique
alone.

The online discovery behavior can also be seen in Figure 1.
Initially, the power consumption oscillates quickly, as the system
discover new Pareto-optimal points. As the discovery converges, the
power profile stabilizes.

Furthermore, while the system is testing new cache
configurations, some deadlines are eventually lost. With deadline set
to 19 ms, 10% of the deadlines are lost during discovery. On the other
hand, when deadline is 22.5 ms, only 4% of the deadlines are lost
during the discovery process. Clearly, the online approach is not
suitable for real-time applications with strict deadlines. In the hard
real-time instances, the static approach to discovering Pareto-optimal
points should be utilized

As a final remark, we observed that the discovery process requires
to analyze about 60-70 platform configurations in order to converge.
This is less than 10% of the 820 possible configurations when cache
and voltage are combined.

Acknowledgments
This work was supported in part by a National Science

Foundation Award (#0205712) and by a CAPES Foundation, Brazil
scholarship (#1054015).

References
[1] A. Nacul, T. Givargis. Dynamic Voltage and Cache

Reconfiguration for Low Power Systems. Technical Report
CECS-03-34, November 2003.

[2] T.D. Burd, T.A. Pering, A.J. Stratakos, R.W. Brodersen. A
Dynamic Voltage Scaled Microprocessor System. IEEE
International Solid-State Circuits Conference, Nov. 2000.

[3] A. Malik, B. Moyer, D. Cermak. A Lower Power Unified Cache
Architecture Providing Power and Performance Flexibility.

[4] C. Zhang, F. Vahid, W. Najjar. A Highly Configurable Cache
Architecture for Embedded Systems. In Proceedings of
International Symposium on Computer Architecture. 2003.

Deadline = 20.3ms

0

0.5

1

1.5

2

2.5

Tim e

P
o

w
er

Online

Reference

Oracle, Dynamic+DVS

Oracle, DVS

Oracle, Dynamic

Figure 1. Online execution behavior.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

