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Abstract

This paper proposes a low-energy solution for CAM-
based highly associative I-caches using a segmented word-
line and a predictor-based instruction fetch mechanism.
Not all instructions in a given I-cache fetch are used due
to branches. The proposed predictor determines which in-
structions in a cache access will be used and does not fetch
any other instructions. Results show an average I-cache en-
ergy savings of 44% over the baseline case and 6% over the
segmented case with no negative impact on performance.

1. Introduction
Embedded processors routinely use multiple instruction

issue to increase performance. This leads to higher energy
consumption due to the presence of additional resources and
higher utilization of such resources. These processors use
in-order instruction issue and often do not contain a float-
ing point unit. As a result, I- and D-caches and TLBs con-
sume a major share of overall energy (from 10% to 25%
was reported in [6]).

Today such a processor typically fetches two instructions
per cycle from an I-cache which needs a wide data store, in-
creasing its energy consumption. I-caches are also highly
associative: 32-way set associative for Intel StrongArm [6]
and Xscale [2], 16-way for Transmeta Crusoe [5]. High as-
sociativity implementations using CAM and SRAM arrays
use even more energy.

The goal of this research is to propose a reduced energy
I-cache design for future embedded processors. It assumes
that higher clock frequencies, longer pipelines, wider is-
sue and highly associative CAM–based caches will be used
in such processors, and explores opportunities to reduce I-
cache energy consumption.

This paper attempts to reduce the instruction fetch en-
ergy in two ways. First, it proposes a modification to the
data array organization to use a “segmented” wordline. This
is similar to proposals for using a segmented bitline [3] and
saves energy by allowing the fetch of the exact number of

instructions needed in a cycle as determined by issue width
N. Second, it further reduces the number of instructions read
by fetching only the “useful” ones among the N-word fetch
segment. When a processor fetches N instructions per cycle,
not all may actually be issued. This happens in two cases:

1. One of the N instructions is a conditional or an uncon-
ditional branch that is taken – abranch outcase. All
instructions after the taken branch are unused.

2. An I-cache line contains a branch target, which is not
at the beginning of the N–word segment – abranch in
case. The instructions before the target are unused.

A predictor is proposed to identify which instructions in
each fetched line are going to be used. Based on this pre-
diction only the useful part of the cache line is fetched in
each clock cycle.

There are many hardware and architectural proposals for
reducing the energy consumption in I-caches but most of
them are not applicable in the case of a highly-associative
CAM-based design. Two very related approaches are a
banked cache organization and a segmented wordline or bit-
line RAM design.

A banked I-cache organization divides the cache into
sub-banks [3] and activates only the required sub-banks.
A segmented wordline [7] is used to reduce the length
of a wordline and thus its capacitance. Bitline segmenta-
tion [7, 3] divides a bitline using pass transistors and allows
sensing of only one of the segments.

2. Fetch Mask Predictor

TheFetch Mask Predictordetermines the control bit vec-
tor used to decide which words in a instruction cache line
will be fetched each cycle. Each bit in the mask controls the
drivers in the segmented wordline in order to access only
the useful words in the next fetch cycle.

For branching intothe next line, it is only necessary to
determine whether the current fetching line contains a taken
branch. This is provided by both the Branch Target Buffer
(BTB) and the branch predictor. When a branch is taken and
the target address is known, its position in the next I-cache
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line is easily determined. The correspondingtarget mask
will select those instructions from the target until the end of
the line.

Forbranching outof the next line, it is necessary to pre-
dict if the next I-cache line contains a branch that is going to
be taken. In that case, the instructions from the branch po-
sition to the end of the line do not need to be fetched in the
next cycle. This is accomplished by aPredicted Mask Table
(PMT) which has the same number of entries as the I-cache.
Each PMT entry stores whether the corresponding I-cache
line contains a branch that will be taken the next time the
branch is predicted.

It is possible for bothbranching inandbranching out
to occur on the same cache line. In this case, thetarget
maskand thepredicted maskneed to be combined. There is
no performance degradation associated with the use of the
Fetch Mask Predictorsince it basically anticipates the be-
havior of the underlying branch predictor mechanism.

3. Experimental Evaluation

The Wattch v1.02 power simulator [1] was augmented
with the power model implemented in CACTI v3.2 [7] in or-
der to increase its accuracy. The embedded processor mod-
eled is a 4-wide issue processor with a pipeline of 12 stages.
The CMOS process parameters are a 1.5GHz clock and a
.10µm feature size. The cache organization was based on
the Xscale processor: 32KB, 32–way set associative data
and instruction L1 caches with 32 byte lines. There was no
L2 cache. Benchmarks from MiBench [4] were used, com-
piled with the -O3 flag and run to completion using the
“large” input set.

The baseline I-cache operation is as follows. Every cy-
cle a new I-cache access is performed to fetch N instruc-
tion words. An active CAM match line selects a data array
line and all 256 bits (8 instructions) are read out. A multi-
plexor is used to select an aligned set of N instruction words
to be sent to the instruction decoder. On the other hand, the
segmented wordline design allows partial accesses to the I-
cache lines. Finally, theFetch Mask Predictorprovides the
control bit mask to enable access to a subset of the N words
in the data array as explained above. All other words in the
data array are disabled. The average I-cache energy savings
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Figure 1. Average I–cache energy savings

for each benchmark category are shown in Figure 1. On av-
erage, the segmented wordline design saves approximately
39% of the I–cache energy over the baseline design. The
fact that half of the cache line is disabled in this case, and
that the I-cache consumes more than one half of the dy-
namic energy justifies the above results.

The mask predictor performs better, saving on average
an additional 6% of the I-cache energy over the segmented
design. In order to asses the potential of the proposed pre-
diction technique an oracle predictor was used. It makes no
mistakes in identifying the instructions to be fetched. The
oracle allows an additional 12% of I-cache energy reduc-
tion. This indicates that the mask predictor design can be
significantly improved. Finally, Figure 2 shows the overall
processor energy savings. They range from 25% to 31% for
the segmented wordline design, and from 29% to 37% for
theFetch Mask Predictordesign.

0

5

10

15

20

25

30

35

40

45

50

industrial netw orking security telecom consumer

segmented

mask

oracle

Figure 2. Overall processor energy savings

4. Conclusions
Two energy saving mechanisms utilizing a segmented

wordline for a highly associative CAM-based cache design
have been presented. They were shown to reduce the energy
consumption of the I-cache by 44% for a 4-issue next gener-
ation embedded processor. It was also shown that theFetch
Mask Predictorapproach has potential for significant im-
provement. Future embedded processor are likely to have
even larger caches, branch predictors and BTBs. This will
further improve the efficiency of theFetch Mask Predictor.
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