
From synchronous to asynchronous: an automatic approach

J. Cortadella
Univ. Politècnica de Catalunya

Barcelona, Spain

A. Kondratyev
Cadence Berkeley Labs

San Jose, CA, USA

L. Lavagno
Politecnico di Torino

Torino, Italy

K. Lwin
Cadence Berkeley Labs

Berkeley, CA, USA

C. Sotiriou
ICS-FORTH
Crete, Greece

Abstract
This paper presents a methodology to derive asyn-

chronous circuits from optimized synchronous circuits by
replacing the clock distribution tree by a handshaking net-
work. A case study shows the applicability of the method
and the potential benefits of de-synchronizing synchronous
circuits.

1. Introduction
We propose a methodology to design asynchronous cir-

cuits that does not require any knowledge of asynchronous
design. The essential idea is to start from a synchronous
synthesized (or manually designed) circuit, and replace di-
rectly the global clock network with a set of local hand-
shaking circuits. The circuit is the one implemented with
standard tools, using a flow originally developed for syn-
chronous circuits. The only modification is the clock tree
generation algorithm. The method still provides several key
advantages of asynchronicity, such as low clock power, low
EMI, global idling, and modularity. To prove that the sug-
gested methodology is sound we compared synchronous
and de-synchronized designs of a DLX processor. Both de-
signs were implemented using the same set of commercial
EDA tools for synthesis, placement and routing.

The automatic generation of asynchronous circuit has
also been faced by other authors. There have been ap-
proaches to derive delay-insensitive circuits [4], handshake
circuits to generate local clocks [5] and doubly-latched
asynchronous pipeline [3]. Our work is the first that pro-
poses a method with negligible overhead while providing a
theoretical foundation for the de-synchronization approach.

2. De-synchronization
The approach presented in this paper assumes that the

circuit has combinational blocks (CL) and registers imple-
mented with D flip-flops (FF), all of them working with the
same clock edge (e.g. rising in Figure 1(a)).

It proceeds in three steps: (1) Conversion into a latch-
based synchronous circuit (

�
and � latches in Figure 1(b)),

FF FF FF

CLK

(a)

(b)

gen gen gen gen gen gen
CLK CLK CLK CLK CLK CLK

CLCL

M S M S M SCLCL

Cm Cs

Figure 1. Sync. and de-synchronized circuit.

A

DC

B E

0

0

01

1

CLK

F

1

G1

C+

C−

D+

D−

E+

E−

F+

F−

B+

B−

A+

A−G+

G−

Figure 2. Synchronous circuit with a global
clock and its de-synchronization model.

(2) generation of matched delays for combinational logic,
and (3) interconnection of controllers for local clocks.

Figure 2 depicts a synchronous netlist after conversion
into latch-based design. The shadowed boxes represent
latches, whereas the white boxes represent combinational
logic. Latches with a label � (�) represent the even (odd)
latches, transparent when the clock is low (high).

Pipeline de-synchronization model. A timing diagram
and the corresponding marked graph for a simple pipeline
is depicted in Fig. 3. The latches are transparent when the
control signal is high. Initially, only half of the latches con-
tain data. Data items flow in such a way that a latch never

1530-1591/04 $20.00 (c) 2004 IEEE

A B C D
Asynchronous control

D D

A

D

C

B B−

C− D+

D−

B+

C+A+

A−

Figure 3. Pipeline de-synchronization.

B+

B−

A+

A−

B+

B−

A+

A−(a) (b)
Figure 4. Synchronization between latches:
(a) even � odd, (b) odd � even.

captures a new item before the successor latch has captured
the previous one. Data overwriting can never occur, even
though the pulses for the latch control can overlap. This
model is based on the observation that a data item can rip-
ple through more than one latch, as long as the previous val-
ues stored in those rippling latches have already been cap-
tured by the successor latches.

General de-synchronization model. The pipeline model
can be generalized for any netlist, while preserving a prop-
erty that makes de-synchronized circuits equivalent to their
synchronous versions: flow equivalence [2].

The method for de-synchronizing a netlist relies on com-
position of the controllers. We just identify pairwise inter-
actions between adjacent latches, and then the overall clock
generation circuit is obtained through composition of these
partial descriptions. The specification of a pairwise inter-
action between even-odd and odd-even latches for overlap-
ping de-synchronization is shown in Figure 4. It models the
communication of data from latch

�
to latch � . These pat-

terns exactly correspond to the ones used in the behavioral
specification of a linear pipeline in Figure 3. The only dif-
ference is that we added two auxiliary arcs

��� � ���
and

� � ��� � to model the behavior of the abstracted parts of
the system (those that precede

�
and succeed �).

The marked graph in Fig. 2 depicts the de-
synchronization model for the netlist at the left, as obtained
by composition of patterns from Figure 4. In [1], an im-
plemention of the controllers and a formal proof of the
correctness of the approach are presented.

3. De-Synchronization Case Study
We present results on the application of de-

synchronization to a DLX processor. The circuit has
been obtained by using synthesis tools from Cadence
(G2C-RC, SoC Encounter, Amoeba and NanoRoute). Ta-

Sync. DLX De-Sync. DLX
Cycle Time 4.4ns 4.45ns
Dyn. Power Cons. 70.9mW 71.2mW
Area 372,656 �
	�� 378,058 �
	��
Table 1. Sync. vs. De-Synchronized DLX.

ble 1 contrasts the characteristics of the synchronous and
of the de-synchronized DLX. The data are post-layout re-
sults based on gate-level simulations with back-annotation
of extracted parasitics.

To the best of our knowledge, this is the first successful
attempt of delivering an automated design flow for asyn-
chronous circuits that does not introduce significant penal-
ties to corresponding synchronous designs. This opens wide
opportunities of exploring the implementation space within
the very same set of industrial tools. This, we believe, is a
valuable feature for a designer.

4. Conclusions
This paper presented a de-synchronization model that

can be used to automatically substitute the clock network of
a synchronous circuit by a set of asynchronous controllers.
This results in EMI improvements, shortens the design cy-
cle, and can allow one to measure more easily the perfor-
mance of each manufactured circuit. We believe that these
techniques are a significant step toward spreading the use of
asynchronous circuits among mainstream designers.

Acknowledgment. This work has been partially funded by CI-
CYT TIC2001-2476, ACiD-WG (IST-1999-29119), the ASPIDA
project (IST-2002-37767) and a Distinction by the Generalitat de
Catalunya.

References

[1] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou.
A concurrent model for de-synchronization. Ex-
tended version of paper presented at IWLS03.
www.lsi.upc.es/˜jordicf/publications/pdf/iwls03 extended.pdf.

[2] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony for
system design. Journal of Circuits, Systems and Computers,
Apr. 2003.

[3] R. Kol and R. Ginosar. A doubly-latched asynchronous
pipeline. In Proc. International Conf. Computer Design
(ICCD), pages 706–711, Oct. 1996.

[4] D. H. Linder and J. C. Harden. Phased logic: Supporting
the synchronous design paradigm with delay-insensitive cir-
cuitry. IEEE Transactions on Computers, 45(9):1031–1044,
Sept. 1996.

[5] V. Varshavsky, V. Marakhovsky, and T.-A. Chu. Log-
ical timing (global synchronization of asynchronous ar-
rays. In The First International Symposium on Paral-
lel Algorithm/Architecture Synthesis, pages 130–138, Aizu-
Wakamatsu, Japan, Mar. 1995.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

