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Abstract
In this paper the first code-disjoint totally self-

checking carry-select adder is proposed. The adder blocks
are fast ripple adders with a single NAND-gate delay for
carry-propagation per cell. In every adder block both the
sum-bits and the corresponding inverted sum-bits are simul-
taneously implemented. The parity of the input operands
is checked against the XOR-sum of the propagate signals.
For 64 bits area and maximal delay are determined by the
SYNOPSYS CAD tool of the EUROCHIP project. Com-
pared to a 64 bit carry-select adder without error detection
the delay of the most significant sum-bit does not increase.
The area is 170% of a 64 bit carry-select adder (without
error detection and not code-disjoint).

1. Introduction

The first self-checking carry-select adder was described
in [1], where a time redundant solution was proposed. Re-
cently in [2, 3] self-checking carry-select adders are de-
scribed which are not code-disjoint. In this paper we pro-
pose the first code-disjoint completely self-checking carry-
select adder.

2. Proposed Sum-bit Duplicated Carry-select
Adder

In Fig. 1 the proposed self-checking code-disjoint carry-
select adder for 64 bits is shown. The input operands
a = a0, . . . ,a63 and b = b0, . . . ,b63 are supposed to be pa-
rity encoded with the parity bits pa = a0 ⊕ . . .⊕ a63 and
pb = b0 ⊕ . . .⊕b63 respectively.

From the input operands the propagate signals p0 = a0⊕

b0, p1 = a1 ⊕b1, . . ., p63 = a63 ⊕b63 are derived only once
by the ”Propagate Generator” which consists of 64 XOR-
gates.
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The XOR-sum of the propagate signals which is deter-
mined by 63 XOR-gates and which is equal to the XOR-sum
p(a⊕ b) of the bits of operands a and b, is compared with
the XOR-sum pa ⊕ pb of the input parity bits pa and pb.
Thus we save 64 XOR-gates.

As long as no error occurs we have pa ⊕ pb = p(a⊕b).
The adder blocks of the 64 bit self-checking code-

disjoint carry-select adder of Fig. 1 are in our design of
block sizes of 8, 8, 12, 12, 12 and 12 bits. The adder
blocks implement besides the corresponding sum-bits also
the inverted sum-bits. The carry-out signals of the blocks
are duplicated. All the propagate signals which are already
checked by comparing p(a⊕ b) with pa ⊕ pb are only de-
termined once by the ”Propagate Generator” for the dupli-
cated blocks and we save 56 ·3 + 8 = 176 XOR-gates. The
adder blocks are denoted by SDB.

The first block SDB1(8) which is not duplicated com-
putes from the operand bits a[0,7] = a0, . . . ,a7, b[0,7] =

b0, . . . ,b7 and from the propagate signals p[0,7] = p0, . . . , p7

the sum-bits s[0,7] = s0, . . . ,s7, the inverted sum-bits s[0,7] =

s0, . . . ,s7 and the duplicated carries c71 and c72 of the block.
The second block SDB0

2(8) computes for the constant
carry-in signal 0 from the operand bits a[8,15] = a8, . . . ,a15,
b[8,15] = b8, . . . ,b15 and from the propagate signals p[8,15] =

p8, . . . , p15 the sum-bits s0
[8,15] = s0

8, . . . ,s
0
15, the inverted

sum-bits s0
[8,15] = s0

8, . . . ,s
0
15 and the duplicated carries c0

151

and c0
152 of the block.

The second duplicated block SDB1
2(8) computes for the

constant carry-in signal 1 from the operand bits a[8,15] =

a8, . . . ,a15, b[8,15] = b8, . . . ,b15 and from the propagate sig-
nals p[8,15] = p8, . . . , p15 the sum-bits s1

[8,15] = s1
8, . . . ,s

1
15, the

inverted sum-bits s1
[8,15] = s1

8, . . . ,s
1
15 and the duplicated car-

ries c1
151 and c1

152 of the block.
If the carry-out signals c71 = c72 of the preceeding block

SDB1(8) are equal to 0 (1) the multiplexors MUXs2 and
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Figure 1. General structure of a 64 bit sum-bit duplicated carry-select adder

MUXs2 select s0
[8,15] and s0

[8,15] (s1
[8,15] and s1

[8,15]) and the

multiplexors MUXc1
2 and MUXc2

2 direct the carries c0
151

and c0
152 (c1

151 and c1
152) to their outputs. Thus we have for

c71 = c72 = 0 s[8,15] = s0
[8,15] and s[8,15] = s0

[8,15],c151 = c0
151

and c152 = c0
152, and for c71 = c72 = 1 s[8,15] = s1

[8,15] and

s[8,15] = s1
[8,15],c151 = c1

151 and c152 = c1
152.

In a similar way the sum-bits, the inverted sum-bits
and the carry-signals of the succeeding blocks SDB0

3(12),
SDB1

3(12) SDB0
4(12), SDB1

4(12); SDB0
5(12), SDB1

5(12) and
SDB0

6(12), SDB1
6(12) are determined and selected by the

corresponding multiplexors. All the adder blocks are im-
plemented as fast carry-ripple adders according to [4].
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Figure 2. First sum-bit duplicated fast carry-
ripple adder block

The first adder block SDB1(8) which computes s[0,7] and
s[0,7] is shown in Fig. 2. It consists of a first fast ripple adder
for computing the eight sum-bits s[0,7] and the first carry-
out signal c71 and a second fast ripple adder with inverted

outputs for computing the inverted eight sum-bits s[0,7] and
the duplicated carry-out signal c72. Both these adders share
the propagate signals p[0,7] which are derived by eight XOR-
gates from the operands a[0,7] and b[0,7] and which have to
be implemented only once. For details see [5]

All the adder blocks SDB0
2(8), SDB1

2(8), . . . , SDB0
6(12),

SDB1
6(12) are very similar to the sum-bit duplicated adder

block in Fig. 2 with either a constant carry-in signal 0 or 1.
Compared to a completely duplicated code-disjoint

carry-select adder we save 240 XOR-gates.
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