A New Self-checking Sum-bit Duplicated Carry-select Adder*

E. S. Sogomonyan[†] D. Marienfeld V. Ocheretnij M. Gössel

University of Potsdam, Department of Computer Science, Fault Tolerant Computing Group, 14439 Potsdam, Germany E-mail: egor | dmarien | vitalij | mgoessel @cs.uni-potsdam.de

Abstract

In this paper the first code-disjoint totally selfchecking carry-select adder is proposed. The adder blocks are fast ripple adders with a single NAND-gate delay for carry-propagation per cell. In every adder block both the sum-bits and the corresponding inverted sum-bits are simultaneously implemented. The parity of the input operands is checked against the XOR-sum of the propagate signals. For 64 bits area and maximal delay are determined by the SYNOPSYS CAD tool of the EUROCHIP project. Compared to a 64 bit carry-select adder without error detection the delay of the most significant sum-bit does not increase. The area is 170% of a 64 bit carry-select adder (without error detection and not code-disjoint).

1. Introduction

The first self-checking carry-select adder was described in [1], where a time redundant solution was proposed. Recently in [2, 3] self-checking carry-select adders are described which are not code-disjoint. In this paper we propose the first code-disjoint completely self-checking carryselect adder.

2. Proposed Sum-bit Duplicated Carry-select Adder

In Fig. 1 the proposed self-checking code-disjoint carryselect adder for 64 bits is shown. The input operands $a = a_0, \ldots, a_{63}$ and $b = b_0, \ldots, b_{63}$ are supposed to be parity encoded with the parity bits $p_a = a_0 \oplus \ldots \oplus a_{63}$ and $p_b = b_0 \oplus \ldots \oplus b_{63}$ respectively.

From the input operands the propagate signals $p_0 = a_0 \oplus b_0$, $p_1 = a_1 \oplus b_1, ..., p_{63} = a_{63} \oplus b_{63}$ are derived only once by the "*Propagate Generator*" which consists of 64 *XOR*-gates.

The *XOR*-sum of the propagate signals which is determined by 63 *XOR*-gates and which is equal to the *XOR*-sum $p(a \oplus b)$ of the bits of operands *a* and *b*, is compared with the *XOR*-sum $p_a \oplus p_b$ of the input parity bits p_a and p_b . Thus we save 64 *XOR*-gates.

As long as no error occurs we have $p_a \oplus p_b = p(a \oplus b)$.

The adder blocks of the 64 bit self-checking codedisjoint carry-select adder of Fig. 1 are in our design of block sizes of 8, 8, 12, 12, 12 and 12 bits. The adder blocks implement besides the corresponding sum-bits also the inverted sum-bits. The carry-out signals of the blocks are duplicated. All the propagate signals which are already checked by comparing $p(a \oplus b)$ with $p_a \oplus p_b$ are only determined once by the "*Propagate Generator*" for the duplicated blocks and we save $56 \cdot 3 + 8 = 176 XOR$ -gates. The adder blocks are denoted by *SDB*.

The first block $SDB_1(8)$ which is not duplicated computes from the operand bits $a_{[0,7]} = a_0, \ldots, a_7, b_{[0,7]} = b_0, \ldots, b_7$ and from the propagate signals $p_{[0,7]} = p_0, \ldots, p_7$ the sum-bits $s_{[0,7]} = s_0, \ldots, s_7$, the inverted sum-bits $\overline{s}_{[0,7]} = \overline{s}_0, \ldots, \overline{s}_7$ and the duplicated carries $c_7 1$ and $c_7 2$ of the block.

The second block $SDB_2^0(8)$ computes for the constant carry-in signal 0 from the operand bits $a_{[8,15]} = a_8, \ldots, a_{15}$, $b_{[8,15]} = b_8, \ldots, b_{15}$ and from the propagate signals $p_{[8,15]} = p_8, \ldots, p_{15}$ the sum-bits $s_{[8,15]}^0 = s_8^0, \ldots, s_{15}^0$, the inverted sum-bits $\overline{s}_{[8,15]}^0 = \overline{s}_8^0, \ldots, \overline{s}_{15}^0$ and the duplicated carries $c_{15}^0 1$ and $c_{15}^0 2$ of the block.

The second duplicated block $SDB_2^1(8)$ computes for the constant carry-in signal 1 from the operand bits $a_{[8,15]} = a_8, \ldots, a_{15}, b_{[8,15]} = b_8, \ldots, b_{15}$ and from the propagate signals $p_{[8,15]} = p_8, \ldots, p_{15}$ the sum-bits $s_{[8,15]}^1 = s_8^1, \ldots, s_{15}^1$, the inverted sum-bits $\overline{s}_{[8,15]}^1 = \overline{s}_8^1, \ldots, \overline{s}_{15}^1$ and the duplicated carries c_{15}^1 1 and c_{15}^1 2 of the block.

If the carry-out signals $c_7 1 = c_7 2$ of the preceeding block $SDB_1(8)$ are equal to 0 (1) the multiplexors $MUXs_2$ and

^{*}This paper was supported by a research grant of Intel

[†]Guest professor of the University of Potsdam

Figure 1. General structure of a 64 bit sum-bit duplicated carry-select adder

 $\begin{array}{l} MUX\overline{s}_{2} \text{ select } s_{[8,15]}^{0} \text{ and } \overline{s}_{[8,15]}^{0} (s_{[8,15]}^{1} \text{ and } \overline{s}_{[8,15]}^{1}) \text{ and the} \\ \text{multiplexors } MUXc_{2}^{1} \text{ and } MUXc_{2}^{2} \text{ direct the carries } c_{15}^{0}1 \\ \text{and } c_{15}^{0}2 (c_{15}^{1}1 \text{ and } c_{15}^{1}2) \text{ to their outputs. Thus we have for} \\ c_{7}1 = c_{7}2 = 0 s_{[8,15]} = s_{[8,15]}^{0} \text{ and } \overline{s}_{[8,15]} = \overline{s}_{[8,15]}^{0}, c_{15}1 = c_{15}^{0}1 \\ \text{and } c_{15}2 = c_{15}^{0}2, \text{ and for } c_{7}1 = c_{7}2 = 1 s_{[8,15]} = s_{[8,15]}^{1} \text{ and} \\ \overline{s}_{[8,15]} = \overline{s}_{[8,15]}^{1}, c_{15}1 = c_{15}^{1}1 \text{ and } c_{15}2 = c_{15}^{1}2. \end{array}$

In a similar way the sum-bits, the inverted sum-bits and the carry-signals of the succeeding blocks $SDB_3^0(12)$, $SDB_3^1(12) SDB_4^0(12)$, $SDB_4^1(12)$; $SDB_5^0(12)$, $SDB_5^1(12)$ and $SDB_6^0(12)$, $SDB_6^1(12)$ are determined and selected by the corresponding multiplexors. All the adder blocks are implemented as fast carry-ripple adders according to [4].

Figure 2. First sum-bit duplicated fast carryripple adder block

The first adder block $SDB_1(8)$ which computes $s_{[0,7]}$ and $\overline{s}_{[0,7]}$ is shown in Fig. 2. It consists of a first fast ripple adder for computing the eight sum-bits $s_{[0,7]}$ and the first carryout signal c_71 and a second fast ripple adder with inverted outputs for computing the inverted eight sum-bits $\overline{s}_{[0,7]}$ and the duplicated carry-out signal c_72 . Both these adders share the propagate signals $p_{[0,7]}$ which are derived by eight *XOR*gates from the operands $a_{[0,7]}$ and $b_{[0,7]}$ and which have to be implemented only once. For details see [5]

All the adder blocks $SDB_2^0(8)$, $SDB_2^1(8)$,..., $SDB_6^0(12)$, $SDB_6^1(12)$ are very similar to the sum-bit duplicated adder block in Fig. 2 with either a constant carry-in signal 0 or 1.

Compared to a completely duplicated code-disjoint carry-select adder we save 240 *XOR*-gates.

References

- F.-H. W. Shih, "High performance self-checking adder having small circuit area," in US PS 5,018,093, 1991.
- [2] V. Ocheretnij, M. Gössel, E. S. Sogomonyan, and D. Marienfeld, "A Modulo *p* Checked Self-Checking Carry Select Adder," in *9th International On-Line Testing Symposium*, pp. 25–29, 2003.
- [3] B. K. Kumar and P. K. Lala, "On-line Detection of Faults in Carry-Select Adders," in *International Test Conference (ITC)*, pp. 912–918, 2003.
- [4] M. Smith, Application-specific integrated circuits. Adison Wesley, Reading, MA, 1997.
- [5] E. S. Sogomonyan, D. Marienfeld, V. Ocheretnij, and M. Gössel, "A New Self-checking Sum-bit Duplicated Carry-select Adder." Department of Computer Science, University of Potsdam, Germany, 2003. ISSN: 0946-7580.