A New Self-checking Sum-bit Duplicated Carry-select Adder*

E. S. Sogomonyan ${ }^{\dagger}$ D. Marienfeld V. Ocheretnij M. Gössel
University of Potsdam, Department of Computer Science, Fault Tolerant Computing Group, 14439 Potsdam, Germany
E-mail: egor \mid dmarien \mid vitalij \mid mgoessel @cs.uni-potsdam.de

Abstract

In this paper the first code-disjoint totally selfchecking carry-select adder is proposed. The adder blocks are fast ripple adders with a single NAND-gate delay for carry-propagation per cell. In every adder block both the sum-bits and the corresponding inverted sum-bits are simultaneously implemented. The parity of the input operands is checked against the XOR-sum of the propagate signals. For 64 bits area and maximal delay are determined by the SYNOPSYS CAD tool of the EUROCHIP project. Compared to a 64 bit carry-select adder without error detection the delay of the most significant sum-bit does not increase. The area is 170% of a 64 bit carry-select adder (without error detection and not code-disjoint).

1. Introduction

The first self-checking carry-select adder was described in [1], where a time redundant solution was proposed. Recently in $[2,3]$ self-checking carry-select adders are described which are not code-disjoint. In this paper we propose the first code-disjoint completely self-checking carryselect adder.

2. Proposed Sum-bit Duplicated Carry-select Adder

In Fig. 1 the proposed self-checking code-disjoint carryselect adder for 64 bits is shown. The input operands $a=a_{0}, \ldots, a_{63}$ and $b=b_{0}, \ldots, b_{63}$ are supposed to be parity encoded with the parity bits $p_{a}=a_{0} \oplus \ldots \oplus a_{63}$ and $p_{b}=b_{0} \oplus \ldots \oplus b_{63}$ respectively.

From the input operands the propagate signals $p_{0}=a_{0} \oplus$ $b_{0}, p_{1}=a_{1} \oplus b_{1}, \ldots, p_{63}=a_{63} \oplus b_{63}$ are derived only once by the "Propagate Generator" which consists of 64 XORgates.

[^0]The $X O R$-sum of the propagate signals which is determined by $63 X O R$-gates and which is equal to the $X O R$-sum $p(a \oplus b)$ of the bits of operands a and b, is compared with the $X O R$-sum $p_{a} \oplus p_{b}$ of the input parity bits p_{a} and p_{b}. Thus we save $64 X O R$-gates.

As long as no error occurs we have $p_{a} \oplus p_{b}=p(a \oplus b)$.
The adder blocks of the 64 bit self-checking codedisjoint carry-select adder of Fig. 1 are in our design of block sizes of $8,8,12,12,12$ and 12 bits. The adder blocks implement besides the corresponding sum-bits also the inverted sum-bits. The carry-out signals of the blocks are duplicated. All the propagate signals which are already checked by comparing $p(a \oplus b)$ with $p_{a} \oplus p_{b}$ are only determined once by the "Propagate Generator" for the duplicated blocks and we save $56 \cdot 3+8=176 \mathrm{XOR}$-gates. The adder blocks are denoted by $S D B$.

The first block $S D B_{1}(8)$ which is not duplicated computes from the operand bits $a_{[0,7]}=a_{0}, \ldots, a_{7}, b_{[0,7]}=$ b_{0}, \ldots, b_{7} and from the propagate signals $p_{[0,7]}=p_{0}, \ldots, p_{7}$ the sum-bits $s_{[0,7]}=s_{0}, \ldots, s_{7}$, the inverted sum-bits $\bar{s}_{[0,7]}=$ $\bar{s}_{0}, \ldots, \bar{s}_{7}$ and the duplicated carries $c_{7} 1$ and $c_{7} 2$ of the block.

The second block $S D B_{2}^{0}(8)$ computes for the constant carry-in signal 0 from the operand bits $a_{[8,15]}=a_{8}, \ldots, a_{15}$, $b_{[8,15]}=b_{8}, \ldots, b_{15}$ and from the propagate signals $p_{[8,15]}=$ p_{8}, \ldots, p_{15} the sum-bits $s_{[8,15]}^{0}=s_{8}^{0}, \ldots, s_{15}^{0}$, the inverted sum-bits $\bar{s}_{[8,15]}^{0}=\bar{s}_{8}^{0}, \ldots, \bar{s}_{15}^{0}$ and the duplicated carries $c_{15}^{0} 1$ and $c_{15}^{0} 2$ of the block.

The second duplicated block $S D B_{2}^{1}(8)$ computes for the constant carry-in signal 1 from the operand bits $a_{[8,15]}=$ $a_{8}, \ldots, a_{15}, b_{[8,15]}=b_{8}, \ldots, b_{15}$ and from the propagate signals $p_{[8,15]}=p_{8}, \ldots, p_{15}$ the sum-bits $s_{[8,15]}^{1}=s_{8}^{1}, \ldots, s_{15}^{1}$, the inverted sum-bits $\bar{s}_{[8,15]}^{1}=\bar{s}_{8}^{1}, \ldots, \bar{s}_{15}^{1}$ and the duplicated carries $c_{15}^{1} 1$ and $c_{15}^{1} 2$ of the block.

If the carry-out signals $c_{7} 1=c_{7} 2$ of the preceeding block $S D B_{1}(8)$ are equal to $0(1)$ the multiplexors $M U X s_{2}$ and

Figure 1. General structure of a $\mathbf{6 4}$ bit sum-bit duplicated carry-select adder
$M U X \bar{s}_{2}$ select $s_{[8,15]}^{0}$ and $\bar{s}_{[8,15]}^{0}\left(s_{[8,15]}^{1}\right.$ and $\left.\bar{s}_{[8,15]}^{1}\right)$ and the multiplexors $M U X c_{2}^{1}$ and $M U X c_{2}^{2}$ direct the carries $c_{15}^{0} 1$ and $c_{15}^{0} 2\left(c_{15}^{1} 1\right.$ and $\left.c_{15}^{1} 2\right)$ to their outputs. Thus we have for $c_{7} 1=c_{7} 2=0 s_{[8,15]}=s_{[8,15]}^{0}$ and $\bar{s}_{[8,15]}=\bar{s}_{[8,15]}^{0}, c_{15} 1=c_{15}^{0} 1$ and $c_{15} 2=c_{15}^{0} 2$, and for $c_{7} 1=c_{7} 2=1 s_{[8,15]}=s_{[8,15]}^{1}$ and $\bar{s}_{[8,15]}=\bar{s}_{[8,15]}^{1}, c_{15} 1=c_{15}^{1} 1$ and $c_{15} 2=c_{15}^{1} 2$.

In a similar way the sum-bits, the inverted sum-bits and the carry-signals of the succeeding blocks $S D B_{3}^{0}(12)$, $S D B_{3}^{1}(12) S D B_{4}^{0}(12), S D B_{4}^{1}(12) ; S D B_{5}^{0}(12), S D B_{5}^{1}(12)$ and $S D B_{6}^{0}(12), S D B_{6}^{1}(12)$ are determined and selected by the corresponding multiplexors. All the adder blocks are implemented as fast carry-ripple adders according to [4].

Figure 2. First sum-bit duplicated fast carryripple adder block

The first adder block $S D B_{1}(8)$ which computes $s_{[0,7]}$ and $\bar{s}_{[0,7]}$ is shown in Fig. 2. It consists of a first fast ripple adder for computing the eight sum-bits $s_{[0,7]}$ and the first carryout signal $c_{7} 1$ and a second fast ripple adder with inverted
outputs for computing the inverted eight sum-bits $\bar{s}_{[0,7]}$ and the duplicated carry-out signal $c_{7} 2$. Both these adders share the propagate signals $p_{[0,7]}$ which are derived by eight $X O R$ gates from the operands $a_{[0,7]}$ and $b_{[0,7]}$ and which have to be implemented only once. For details see [5]

All the adder blocks $S D B_{2}^{0}(8), S D B_{2}^{1}(8), \ldots, S D B_{6}^{0}(12)$, $S D B_{6}^{1}(12)$ are very similar to the sum-bit duplicated adder block in Fig. 2 with either a constant carry-in signal 0 or 1.

Compared to a completely duplicated code-disjoint carry-select adder we save 240 XOR-gates.

References

[1] F.-H. W. Shih, "High performance self-checking adder having small circuit area," in US PS 5,018,093, 1991.
[2] V. Ocheretnij, M. Gössel, E. S. Sogomonyan, and D. Marienfeld, "A Modulo p Checked Self-Checking Carry Select Adder," in 9th International On-Line Testing Symposium, pp. 25-29, 2003.
[3] B. K. Kumar and P. K. Lala, "On-line Detection of Faults in Carry-Select Adders," in International Test Conference (ITC), pp. 912-918, 2003.
[4] M. Smith, Application-specific integrated circuits. Adison Wesley, Reading, MA, 1997.
[5] E. S. Sogomonyan, D. Marienfeld, V. Ocheretnij, and M. Gössel, "A New Self-checking Sum-bit Duplicated Carry-select Adder." Department of Computer Science, University of Potsdam, Germany, 2003. ISSN: 0946-7580.

[^0]: *This paper was supported by a research grant of Intel
 ${ }^{\dagger}$ Guest professor of the University of Potsdam

