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Abstract
Simulating quantum computation on a classical com-

puter is a difficult problem. The matrices representing
quantum gates, and vectors modeling qubit states grow ex-
ponentially with the number of qubits. It has been shown ex-
perimentally that the QuIDD (Quantum Information Deci-
sion Diagram) datastructure greatly facilitates simulations
using memory and runtime that arepolynomialin the num-
ber of qubits. In this paper, we present a complexity analysis
which formally describes this class of matrices and vectors.
We also present an improved implementation of QuIDDs
which can simulate Grover’s algorithm for quantum search
with the asymptotic runtime complexity of an ideal quantum
computer up to negligible overhead.

1. Introduction
Richard Feynman observed in the 1980s that simulat-

ing quantum-mechanical processes on aclassicalcomputer
seems to require super-polynomial memory and time [5].
For instance, a complex vector of size 2n is needed to rep-
resent all the information inn quantum bits, and modeling
(simulating) the time evolution of the states calls for square
matrices of size 22n [6]. Consequently, Feynman proposed
quantum computingwhich uses the quantum mechanical
states themselves to simulate quantum processes. A funda-
mental postulate of quantum mechanics dictates that these
individual state vectors can be combined, via the tensor
product, with other state vectors to represent multiple qubits
in a composite state [6]. With composite states of qubits,
quantum computers can operate directly on exponentially
more data than a classical computer with a similar number
of operations and information units.

In our previous work [10], we described theQuantum
Information Decision Diagram(QuIDD) and several ap-
proaches for simulating quantum computation, including
qubit-wise multiplication [7], the Heisenberg representation
[2], and QDD [3]. We noted that the Heisenberg repre-
sentation was incapable of simulation with a universal gate
set and that QDD could only capture a limited set of qubit

states. We showed experimentally that our QuIDD-based
simulator QuIDDPro scales much better in both runtime and
memory [10]. One may observe that QuIDDPro’s runtime
exhibited a complexity ofΘ(1.66n), while an ideal quantum
computer requiresΩ((

√
2)n) time. In trying to explain the

performance gap by theoretical analysis, we discovered that
QuIDDProshouldrun as fast as an ideal quantum computer
in the simulations we performed. Indeed, a re-engineering
of our implementation led to significantly improved run-
times and memory usage, as reported below.

2. Complexity Analysis
Below we prove that a significant subset of the QuIDD

matrices and vectors used in quantum circuit simulation re-
quire runtime and memory that arelinear in the number of
qubits. Proofs of the theorems can be found in [9].

Theorem 1 Given QuIDDs {Qi}n
i=1, the tensor-

product QuIDD ⊗n
i=1Qi contains |In(Q1)| +

Σn
i=2|In(Qi)||Term(⊗i−1

j=1Qj)+ |Term(⊗n
i=1Qi)| nodes.1

It follows [9] that the number of nodes in the tensor prod-
uct of QuIDDs grows linearly inn if the number of termi-
nals in⊗i=1Qi is constant; otherwise it grows exponentially
in n. Thus, the growth depends on matrix entries because
terminals ofA⊗B are products of terminal values ofA by
terminal values ofB, and repeated products are merged. If
all QuIDDsQi have terminal values from a setΓ, the termi-
nal values of⊗i=1Qi are products of elements fromΓ.

Consider finite non-empty sets of complex numbersΓ1

andΓ2, and define theirall-pairs productas{xy| x∈Γ1, y∈
Γ2}. This operation is associative, making the setΓm of all
m-element productswell-defined form> 0. We then call a
finite non-empty setΓ⊂ C persistentiff for all m> 0, |Γm|
is constant. An important example is the set consisting of 0
and alln-th degree roots of unityUn = {e2πik/n|k = 0..n−
1}. Every persistent set is eithercUn for somen andc 6= 0,
or {0}∪cUn [9].

1|In(A)| denotes the number of internal nodes inA, while |Term(A)|
denotes the number of terminal nodes inA.
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Theorem 2 Given a persistent setΓ and a constant C, con-
sider n QuIDDs with at most C nodes each and terminal
values from a persistent setΓ. The tensor product of those
QuIDDs has O(n) nodes and can be computed in O(n) time.

For Γ = {0}∪ cU, the tensor product can be computed
in linear time and memory for any equal superposition ofn
qubits, any sequence ofn qubits in the computational basis
states,n-qubit Pauli matrices,n-qubit Hadamard matrices,
and other matrices and vectors with terminals inΓ. Since
the time and memory complexity of matrix multiplication
and measurement are polynomial in the size of the operand
QuIDDs [1, 9], the above results suggest that there exists
a polynomial-sized QuIDD representation of anyn-qubit
quantum circuit with a constant number of such gates.

3. Simulation of Grover’s Algorithm
To demonstrate the power of QuIDDs, we used QuIDD-

Pro to simulate Grover’s algorithm [4], one of the two ma-
jor quantum algorithms that have been discovered to date.
Grover’s algorithm searches for a subset of items in an un-
ordered database ofN items. Allowed selection criteria are
black-box predicates, called oracles, that can be evaluated
on any database record. The overall complexity analysis
is performed by counting queries. In the classical domain,
any algorithm for such an unordered search must query the
predicateΩ(N) times. However, Grover’s algorithm can
perform the search with quantum query complexityO(

√
N).

Theorem 3 [9] The memory complexity of simulating
Grover’s algorithm using QuIDDs is polynomial in the size
of the oracle QuIDD and the number of qubits.

Theorem 3 implies that simulation with QuIDDs can of-
fer polynomialmemory complexity depending on the ora-
cle. Empirically, only linear memory is required in many
specific cases. This memory complexity is the same as an
actual, ideal quantum computer.

Figures 1 and 2 describe simulations of Grover’s algo-
rithm with an oracle that searches for one item out of 2n.
All experiments are performed on a 1.2GHz AMD Athlon
with 1GB RAM running Linux. As shown, the runtime of
the improved QuIDDPro is much closer to the lower bound
∝ (

√
2)n for an ideal quantum computer, while the origi-

nal QuIDDPro has performance∝ 1.66n. Similar improve-
ments were observed for several other oracles [9].

4. Future Work
Representing certain quantum operators on a classical

computer, even with QuIDDs, requires super-polynomial
resources. Examples include the Hidden-Weighted Bit [11]
oracle, the quantum Fourier transform and its inverse. Algo-
rithmic improvements directed at specific useful operators
could further improve QuIDDPro’s performance. We are
also studying the simulation of quantum noise and decoh-
erence. Error simulation is the key to modeling realistic
quantum-computational devices.
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Figure 1. Logscale runtime for the original
[10] and improved QuIDDPro (oracle 1).
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Figure 2. Memory usage for the original [10]
and improved QuIDDPro (oracle 1).
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