

.NET Framework - A solution for the next generation tools for system-level
modeling and simulation

J. Lapalme(1), E.M. Aboulhamid(1), G. Nicolescu(2), L. Charest(1), F.R. Boyer(2), J.P David(1), G. Bois(2)

(1) DIRO, Université de Montréal (2) DGI, Ecole Polytechnique de Montréal
http://www.esys-net.org

1. Introduction
Nowadays the use of System Level Description

languages is mandatory for the efficient design of
complex systems. These description languages are
exemplified by SystemC and SystemVerilog. SystemC is
meant for hw/sw system level design. It provides all the
basic concepts used by HDLs (e.g. modules, ports,
signals, time) and more abstract concepts (e.g. interfaces,
communication channels, events). Most of the features
for software modeling are not completely implemented:
dynamic process creation, process control (e.g. suspend,
resume, kill), preemption, software specific
communication primitives (e.g. monitors, semaphores).
Connecting tools to SystemC seems a relatively costly
task due to the complexity of C++ as well as the lack of
introspection mechanisms. SystemVerilog is an extension
of Verilog, adding a significant set of features including
high-level concepts for abstract system modeling and
simulation, testbench automation, and the integration of
Verilog with the C language. While SystemC is an
“open” environment, based on C++, SystemVerilog is a
standalone language.

Despite all these efforts, all the following mandatory
requirements for an efficient modeling and simulation
framework are still not provided by a single existing
environment: (a) easier software components
specification and their integration into an overall hw/sw
system specification; (b) clean programming features and
memory management to enable less error prone models,
easier specification and reuse; (c) introspection and the
possibility of annotating models which simplifies the
debugging and analysis of complex specifications as well
as the development of synthesis and verification tools; (d)
translation to a standard intermediate format to enable the
design of EDA tools independently of the used
description languages; (e) integration in a distributed
web-based design environment and easy system
documentation to facilitate cooperation between different
designers groups and allow remote processing; (g) multi-
platform and multi-language features for describing and
designing the overall embedded systems composed of
heterogeneous components; (h) openness of the system.

Most of the presented requirements are already
provided by the .NET Framework (announced by
Microsoft in 2000 and which led to three ISO standards
in April 2003). It is intended to be platform and operating

system independent. It simplifies application
development in the highly distributed Internet
environment. It is meant to facilitate the reuse of existing
code. Currently, the Microsoft version supports 20
languages (e.g. Java, C++, C#). These languages are
mapped to a Common Intermediate Language and
execute in a Common Language Runtime. This simplifies
programming by assisting with different tasks including
memory management and error handling. .NET provides
also a class library that can be used by the developers to
extend the capabilities of their software.

We propose a new .NET Framework based system
level modeling and simulation environment called
Esys.NET (Embedded Systems Design with .NET). This
environment respects all the requirements above. In
particular, it allows (1) cooperation – by enabling web-
based design and multi-language features, (2) easy
systems specification task – by enabling integration of
software components running application and operating
systems and by alleviating memory management, (3) link
to automatic refinement tools – by enabling translation of
specification models into a standard intermediate format
and annotation of specification models, and (4)
comparative performances with existing environments.

2. Modeling and simulation in ESys.NET
The core of ESys.NET was developed on top of .NET

using C#, a strongly typed object-oriented language
designed to give the optimum blend of simplicity,
expressiveness and performance. In terms of
implementation, ESys.NET is based on a set of classes
encapsulating the concepts of modules, communications
and events. One of its important characteristics is that it
offers the designers the possibility to easily specify
execution directives by tagging the different concepts in
the specification. This allows the association of a thread
or parallel method semantic to a class method, the
addition of a sensitivity list for a parallel method or a
thread, the call of methods before/after the execution of a
process, the execution of a class method at a specific
moment during the execution. This was implemented by
exploiting attribute programming provided by .NET and
C#. The available directives also permit the hooking of
external tools to simulator and model.

 Figure 1 illustrates the ESys.NET layered architecture.

1530-1591/04 $20.00 (c) 2004 IEEE

XML data m anipulation
W eb services

Interm ediate form at

Unified type system
Garbage co llector

Modules
Com m unication channels

Signals
Events

Attribute program m ing, Tagging
Interfaces

Thread m anagem ent

.NET

C#

ESys.NET

Figure 1: Layered architecture of ESys.NET

To prove the efficiency of ESys.NET we performed
several experiments. The main criteria that we used for
the evaluation were the performance and the applicability
for concrete systems modeling and simulation. We firstly
compared the performance of the C# language to the C++
language using the simulation model of a DLX processor.
We measured the simulation time of this application for
the C# specification execution on .NET and the C++
description executing natively and we obtained that the
two languages present comparable capabilities in terms of
simulation speed – the C# execution time penalty was
below 10%. In addition, we modeled and simulated a
second concrete application. In order to compare with
SystemC, we used an application provided by SystemC.
The application consists of six components
interconnected via a communication channel. These
components may be masters or slaves of the channel: a
master module requires communication primitives from
the channel and the slave module offers services to the
communication channel. The six components of the
system are:
- the fast memory and the slow memory differing by the
number of clock cycles necessary to read/ write data; they
are slave modules of the communication channel;
- three master modules reading/writing data to/from the
memories;
- an arbiter providing a priority based management for
the concurrent requests from the masters.
For this system we verified the correctness and the
performances of the simulation by comparing the results
in our environment with those given by SystemC.

3. Current status and future work
ESys.NET currently provides most of the concepts

found in the SystemC environment. It adds, among other
concepts, preemptive multithreading existing in .NET
and all the operating system primitives planned in
SystemC 3.0. ESys.NET is intended to be an evolution of

SystemC by offering a user-friendlier environment free
of macros, pointers, function prototyping, etc. It is also
intended to be a superset of SystemC’s core
functionalities extending it with features like automatic
memory management, system level primitives, strong
typing, native interfaces, safe pointers, reflective
capabilities, remoting, dynamic thread creation/control.
Hooking points were also added within the kernel, for
third-party tools written in specialized languages
permitting the analysis, synthesis, verification and
viewing of models. It is possible to execute unmodified
SystemC models in cooperation and in parallel with our
models in the same binary file.

Compared to SystemC, the power of ESys.NET relies
mainly on its direct connection to a meta-data oriented
standard intermediate format, on the multi-language
features of the .NET, and on the expressiveness, the
reflectivity and the attribute programming model
provided by the C#. These advantages allow us to
consider very interesting perspectives for the future
development of ESys.NET.

Our future work will have as prime objective the
exploration of refinement under its many facets.

Firstly, the standard intermediate format will permit
the creation of new refinement tools that can be guided in
better ways by the use of meta-data that annotate and
extend the manipulated models. Moreover, in order to
bridge the gap between our environment and other
existing tools (and environments) for hardware synthesis
and model analysis (ex. CoCentric), we will focus on the
automatic translation of C# specification to SystemC
and/or VHDL models. We have recently started working
on a new approach that will extend the Esys.NET
environment with hw/sw partitioning features. The
implementation is facilitated by the use of attributes (for
partitioning directives) and the reflective capacities of
.NET (for in-line checking of the respect of constraints
and even system hw/sw configurability).

Concerning the issues of simulation, we intend to
prove the multi-language and distributed capabilities of
.NET by exploiting them in the study of software
application and operating systems executed at different
abstraction levels.

In the mid term, our team will address the problems
surrounding the verification. When we designed the
simulation core of ESys.NET, we had in mind the future
needs required by verification and analysis tools; for
instance, many hooking points within the simulation
kernel have been provided for external tools use. Also,
several APIs enable the introspection of the system’s
status at any given moment during a simulation. Due to
the limited space, examples and details of the
environment were omitted, for more information refer to
http://www.esys-net.org.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

