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Abstract

A scalar metric for temporal locality is proposed. The
metric is based on LRU stack distance. This paper shows
that the cache hit rate can be estimated based on the pro-
posed metric (an error of a few percents can be expected).
The metric alleviates high-level memory system outlining
and enables using stack processing in run-time locality
analysis.

1. Introduction

The performance of a memory hierarchy heavily de-
pends on the locality of the memory references. A well-
defined metric for locality would alleviate designing and
studying memory systems. Traditionally, locality has been
characterized verbally (“a lot” or “little”) or visually using
stack distance curves [3]. There has not been a commonly
accepted scalar metric. This paper presents such metric for
temporal locality.

The proposed metric is based on (LRU) stack distance
curve, which is considered an excellent metric of temporal
locality, e.g., [1]. A scalar metric, instead of a curve, al-
leviates comparing and distributing locality information. It
also enables using stack processing techniques for studying
run-time behavior of a program. The lack of run-time infor-
mation has been earlier considered as a drawback of studies
using stack processing [5].

Originally, stack processing was proposed to be a one-
pass simulation technique for all cache sizes [3]. An LRU
stack distance curve states the probability for there being x
or less unique addresses between successive references to
the same address. The hit rate of a fully associative cache
is directly shown by the curve, and the hit rate of a set asso-
ciative curve can be fairly accurately estimated [4].

2. Scalar metric for temporal locality

Temporal locality has been traditionally studied by vi-
sually exploring stack distance curves using a logarithmic

scale for x. A curve that is higher in such diagram is con-
sidered to have more temporal locality.

The metric proposed in this paper is calculated as follows

T (FT ) =
log2 xm

∑
i=0

FT (2i)
log2 xm +1

, (1)

i.e., the stack distance curve FT (x) is averaged at x’s values
1,2,4, . . . ,xm, evaluating to a value between zero and one.
The result is larger for a curve that would be considered to
have more temporal locality by visually studying the curves.

The metric is demonstrated in Fig. 1 and in the header
of Fig. 2. They show the run-time behavior of two test
applications and the locality values for the pre- and post- L1
accesses for a direct mapped and fully associative cache.

3. Regenerating stack distance curve

A simple method for regenerating the original curve
based on the scalar value Lt is presented. The product of the
following functions is used to outline the curve: f A(x) =
1 − βxα , (α < 0), f B(x) = 1 − δ

x
γ , f C(x) = min(( x

ε )
ζ ,1).

f A(x) is based on a rule of thumb for increasing the cache
size [2], f B(x) the way a fully associative cache filters mem-
ory stream (no short stack distances in the output), and
f C(x) the way a low-associativity cache filters the stream
(there are also short stack distances due to conflict misses).

In the following, the constants α − ζ are set without
knowing the source of the memory sequence. First, set β =
1−0.7Lt and find α such that T ( f A(x)) = max(Lt ,A). Set-
ting β approximates the starting point of f A(x) to be 0.7Lt .
Then, set ζ = 0.3 and find ε, such that T ( f A(x) f C(x)) =
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Figure 1. Temporal locality and ref. index.
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Figure 2. Scalar values and actual and estimated curves (pre-L1, post-L1 direct and fully assoc.).

max(Lt ,C). The typical curvature of the curve after a low-
associativity cache is approximated by the value 0.3. Highly
associative caches are also handled by f B(x). Finally, set
δ= 0.7 and find γ, such that T ( f A(x) f B(x) f C(x)) = Lt . The
value of δ(< 1,> 0) does not affect the form of the curve.

The source of the sequence being unknown, we have
to provide limits for translating from one form to another
(A = 0.8 and C = 0.4). The values are not critical as the
form of the estimated function changes smoothly. Usually,
the source of the memory sequence does not have to be con-
cluded from the scalar value, and the correct functions can
be applied directly.

We do not claim this method to be the best for regener-
ating the curve. Rather than emphasizing the method itself,
we point out that it is possible to estimate the curve based
on the proposed scalar metric and certain principles.

4. Cache performance estimation

To test the metric in cache performance estimation, sim-
ulations were run using SPECint 2000 benchmarks. The
references in the input and output of a direct mapped and a
fully associative (64 KB / 64 B) L1 cache were studied.

Fig. 2 compares the actual curves to the estimates ob-
tained using the method presented in the previous section
for the first four benchmarks. Including all 12 benchmarks,
the absolute average and worst-case deviations are 1.3 %
/ 6.4 %, 6.7 % / 26 % and 4.8 % / 28 % for pre-L1, post-
L1 direct mapped associative, and post-L1 fully associative,
respectively.

A single value of the curve directly states the hit rate
of a fully associative cache. However, for set-associative
systems, the full curve is used, as follows [4]

h(n,s, f T ) =
n

∑
i=1

∞

∑
j=i

(
j−1
i−1

)[
1
s

]i−1[
s−1

s

] j−i

f T ( j), (2)

where n states the degree of associativity, s the number of
sets, and f T is the derivate of the estimated curve. Thus,
because T (Fe(x)) = T (FT (x)), local deviations are filtered
away and a more accurate estimate is obtained for set-
associative than for fully associative cache.

Table 1 shows the cache hit rate estimates for direct
mapped caches: 16 KB / 64 B L1 and 512 KB / 64 B L2,
backing a direct mapped (L2-A) and fully associative (L2-
B) L1. Here, the average and worst-case errors including

Table 1. Direct mapped cache hit rates.
L1 L2-A L2-B

App. Real Est. Real Est. Real Est.
164.gzip 0.973 0.968 0.84 0.86 0.72 0.68
175.vpr 0.963 0.957 0.73 0.78 0.55 0.54
176.gcc 0.958 0.965 0.82 0.80 0.66 0.63
181.mcf 0.930 0.930 0.35 0.35 0.34 0.30

all the benchmarks are 0.58 % / 1.4 % (L1), 5.1 % / 9.4 %
(L2-A), and 4.1 % / 7.1 % (L2-B).

5. Conclusions

A scalar metric for temporal locality has been proposed.
The metric is more accurate than verbally describing local-
ity, and it is easier to compare and distribute than stack dis-
tance curves. In addition, the metric enables using stack
processing in run-time locality analysis. According to the
results, the cache performance can be estimated with an
absolute error of a few percents, even though the com-
plete temporal behavior of a program is captured into single
scalar value. This shows that the metric correlates to the
cache performance, making it practically usable. Yet, the
metric is no substitute for cache simulations. Rather than
using the metric for obtaining cache hit rates, typical appli-
cations can benefit from comparing the metric and observ-
ing its changes.
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