
Compositional Memory Systems for Data Intensive Applications

A.M. Molnos�������, M.J.M. Heijligers����, S.D. Cotofana���, J.T.J. van Eijndhoven����
��� Delft University of Technology, The Netherlands

email:�ancutza, sorin�@dutepp0.et.tudelft.nl
���� Philips Research Laboratories, The Netherlands

email:�marc.heijligers, jos.van.eijndhoven�@philips.com

Abstract

To alleviate the system performance unpredictability of
multitasking applications running on multiprocessor plat-
forms with shared memory hierarchies we propose a task
level set based cache partitioning. We evaluate our ap-
proach on a CAKE platform with three Trimedias, one MIPS
and a shared level 2 cache using a picture in picture bench-
mark. We compare the performance implications of two
types of cache partitioning namely set based. Our exper-
iments indicates that associativity based cache partition-
ing induces at least 30% performance degradation, whereas
set-based partitioning provide 27% performance improve-
ment when compared to non-partitioned cache scenario.

1. Introduction

The increase in size and complexity of state-of-the-art
multimedia applications requires high performance hard-
ware platforms with large memory bandwidth. To fulfil
the bandwidth requirements usually memory hierarchies
(caches) are used [3]. Besides the default probabilistic be-
haviour for sequential code, caches induce unpredictabil-
ity because parallel tasks can influence each others perfor-
mance by flushing each others data out of the cache.

Several alternatives of cache partitioning techniques are
reported in literature. They require the processors’ instruc-
tion set architecture or the compiler to be modified [4]
which increase time-to-market when using standard proces-
sor cores or apply only to fully associative caches [7] [5]. To
our knowledge, none of them compare the performance im-
pact of different partitioning techniques.

In this paper we propose a cache partitioning mechanism
to alleviate this problem. More in particular, the problem ad-
dressed in this article can be formulated as follows: given a
multitasking application, concurrently running on a multi-
processor architecture with shared memory hierarchy, find
a strategy that preserves the individual tasks’ performance

predictability. To address the problem we propose two ways
to partition the cache and we evaluate our scheme using a
picture in picture application running on a CAKE multipro-
cessor platform with shared level 2 cache and 3 Trimedia
cores and 1 MIPS core.

2. Cache partitioning

The underlying idea of the proposed solution is to give
exclusive cache parts to the applications’ tasks that run on
the multiprocessor platform. When knowing the cache be-
haviour of individual tasks, based on the compositionality
property induced by cache partitioning, one can predict the
performance for the overall system. To determine the num-
ber of cache misses for individual tasks, one can analyse the
program code [2], or use simulation.

With respect to conventional cache organisation [3] we
identify two main possible types of partitioning: based on
associativity (called column caching in [1]) - every task gets
a number of ways from every set of the cache (Figure 1a)
and based on sets - every task gets a number of sets from
the cache (Figure 1b).

tag index offset

=?
=?

=?

. . ..va
lid

ta
g

da
ta

set 0 set 1 set N−1

tag index offset

=?
=?

=?

. . ..va
lid

ta
g

da
ta

set 0 set 1 set N−1

HIT/MISS

b) set−based partitioning

T1 T2

HIT/MISS

T2 T2T1T1 T2T1

a) associativity−based partitioning

Figure 1. Types of cache partitioning

Both types of cache partitioning are suitable for address-
ing the considered predictability problem. With respect to

1530-1591/04 $20.00 (c) 2004 IEEE

implementation implications, associativity based partition-
ing requires a replacement policy that uses a task identifier,
but the granularity of the partitioning is limited by the num-
ber of ways in a set. Set based partitioning implies a transla-
tion of the addresses that canbe done using partition infor-
mations provided by the operating system but it has no gran-
ularity limitation. In the next section we compare the perfor-
mance (measured in number of misses) of the two types of
partitioning.

3. Experimental framework

The impact on performance of the cache partitioning was
studied for the non-communicating tasks case. For our ex-
periments we use a practical instance of the CAKE mul-
tiprocessor platform [6] having three Trimedias cores (for
computation) and one MIPS core (for control) (with their
level 1 cache) and a shared level 2 cache (1MB, 8 ways,
512B block size). We assume a picture in picture (PiP) ap-
plication with three independent mpeg2 decoders running
on different video streams as benchmark.

Corresponding with each of the five presented cases, the
individual tasks’ number of misses were measured for the
cache configurations described in Table 1. For the shared
case the applications are concurrently executed on the mul-
tiprocessor with no L2 cache partitioning. For the rest of the
cases each task receive a certain amount of L2 cache. Us-
ing compositionality the individual misses can be added to
obtain the total systems’ performance. The simulation re-
sults are presented in Table 1 and Figure 2.

all three decoder 1 decoder 2 decoder 3
decoders 128x128 720x608 352x240

201 frames 8 frames 24 frames
case1 [1M 8ways] - -

(shared) 1234639 - - -
case2 - [256k 8ways] [256k 8ways] [512k 8ways]
(set) - 423941 447481 55712
case3 - [256k 2ways] [256k 2ways] [512k 4ways]

(assoc) - 1213233 1806211 96005
case4 - [256k 2ways] [384k 3ways] [384k 3ways]

(assoc) - 1213233 475677 362182
case5 - [384k 3ways] [384k 3ways] [256k 2ways]

(assoc) - 392689 475677 1729862

Table 1. Number of level 2 misses

In terms of cache misses, Figure 2 indicates that parti-
tioning at associativity level (case 3, 4, 5) gives a perfor-
mance degradation of at least 30% when compared with
the shared cache performance(case 1). This degradation
is present because by dividing the cache every task uses a
smaller part of it than in the shared cache case. However in
set based partitioning case we experience a performance in-
crease by 27% due to the disparition of inter-task conflicts.

Figure 2. Cache misses for different partition-
ing types

4. Conclusions

We proposed a strategy, based on cache partitioning, that
guarantees performance predictability of the overall multi-
programmed system when knowing the individual task’s be-
haviour.

Experimental results suggest that set-based cache parti-
tioning can bring to the system not only predictability but
also a gain in performance. A case study for a picture in pic-
ture application shows up to 27% improvement in number
of cache misses when compared to the shared cache case.
We also found that associativity based partitioning always
degrades memory hierarchy performance (at least 30%).

Finding the partitioning ratio for the best overall system
performance gain will be addressed in future research.

References

[1] D. L. Chiou. Extending the Reach of Microprocessors: Col-
umn and Curious Caching. PhD thesis, Massachusetts Insi-
tute of Technology, 1999.

[2] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations:
An analytical representation of cache misses. InInternational
Conference on Supercomputing, pages 317–324, 1997.

[3] J. L. Hennesy and D. A. Patterson.Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, San
Fransisco, CA, third edition, 2003.

[4] H. Muller, D. Page, J. Irwin, and D. May. Caches with com-
positional performance.Proc. Embedded Processor Design
Challenges, pages 242–259, 2002.

[5] H. S. Stone, J. Truek, and L. Wolf, Joel. Optimal parti-
tioning of cache memory.IEEE Transactions on computers,
41(9):1054–1068, 1992.

[6] P. Stravers and J. Hoogerbrugge. Homogeneous multiprocess-
ing and the future of silicon design paradigms. InIn Interna-
tional Symposium on VLSI Technology, Systems, and Applica-
tions (VLSI-TSA), Proceedings, april 2001.

[7] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache
models with applications to cache partitioning.Proc. Thir-
teenth IASTED International Conference on Parallel and Dis-
tributed Computing Systems, 2001.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

