
Organizing Libraries of DFG Patterns

Gero Dittmann
IBM Research, Zurich Research Laboratory

Säumerstrasse 4 / Postfach
8803 Rüschlikon, Switzerland

ged@zurich.ibm.com

Abstract

We propose to arrange a library of tree patterns into a
hierarchy by means of identity operations. Compared with
current unstructured approaches, our new method reduces
the computational complexity of searching a pattern from
O(n · p) to only O(d), d ≤ p. Furthermore, the organization
reveals synergies between patterns for ASIP instruction-set
synthesis, data-path sharing, and code generation.

1 Introduction

A crucial step in the design of Application-Specific
Instruction-set Processors (ASIPs) is the instruction-set
generation. Methods for automating this process extract pat-
terns from the data-flow graphs (DFGs) of applications and
insert them into a pattern library. Along with each pattern,
statistical data is stored, such as the number of occurrences
of a pattern in the applications. Based on this data, a subset
of the patterns in the library is then selected for implemen-
tation as specialized instructions.

In current approaches, the pattern libraries are unordered
collections of patterns. A search algorithm on such a library
has a computational complexity of O(n · p), with n the total
number of operation nodes of all patterns in the library and
p the size of the pattern sought.

In this paper, we introduce a novel organization for pat-
tern libraries that enables a search algorithm with only O(d)
time. Here, d is the size of the sought pattern up to the
maximum pattern size in the library, therefore d ≤ p. Fur-
thermore, the new library organization reveals opportunities
to substitute one pattern by another. This can be exploited
for more efficient instruction selection and code generation.
The method is presented for tree-shaped patterns but can be
extended to directed acyclic graphs (DAGs).

2 The identity graph of a pattern

Most primitive operations in the instruction sets of
general-purpose processors can be used to map one input
operand a to itself by applying an identity operand opid to

the other input, i.e. the algebraic identity element for the
operation:

a◦opid = a.

This turns the primitive operation ◦ into an identity opera-
tion. For example, the identity operand for an addition is 0
and for a multiplication it is 1.

A complex pattern can be transformed into a simpler
pattern by applying the identity operands of its operation
nodes to the appropriate inputs, thereby effectively elimi-
nating nodes from the pattern. Particular values can be ap-
plied to operands that are accessible from the outside.

By applying identity operands to one node at a time, a
pattern of n nodes, of which m are removable in this way,
can be transformed into m patterns of n− 1 nodes. By re-
cursively repeating this on each of the simpler patterns, the
complex pattern can eventually be reduced to primitive op-
erations. If all outer nodes of a pattern at all stages of the
recursion are removable then the set of primitive operations
includes all operation types that occur in the pattern. The
primitive operations finally all converge to a move opera-
tion.

AND

x1

AND

SHR

x2 = 0

x1 =
0xFFFFFFFF

SHR

x1

MOV

x1 = 0

x1 =
0xFFFFFFFF

AND

SHR

SUB

x3 = 0

x2 = 0

x1 =
0xFFFFFFFF SHR

SUB

AND

SUB

x2 = 0

x1 = 0

SUB

x1

x2 = 0

x1 =
0xFFFFFFFF

x1 = 0

x0

x0

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x2

x2

x2

x2

x3

Level 3 Level 2 Level 1 Level 0

Figure 1. ID Graph of a Pattern

If all patterns generated in this way are entered into the
pattern library then the sequence of applying the identity

1530-1591/04 $20.00 (c) 2004 IEEE

operands can be used to sort the patterns in the library. We
represent this sorting as a graph in which the graph nodes
are the patterns and the directed graph edges represent the
application of an identity operand to one particular opera-
tion node in the pattern. The edges are directed from the
more complex pattern to the derived smaller one. We call
this type of graph an identity graph (ID graph). Figure 1
shows the ID graph of an example pattern.

Merging the ID graphs of all patterns results in a library
ID graph. This graph in turn reveals which simpler patterns
can be covered by a complex instruction during code gen-
eration, again by applying the appropriate identity operands
to its inputs. Thus, these simpler patterns need not be im-
plemented as individual instructions if the complex pat-
tern is chosen for implementation—provided that the pos-
sibly slower execution and the cost of applying the identity
operands can be afforded. This cost may, for instance, be ad-
ditional move instructions. If the cost is lower than the ben-
efit, the ID graph reveals opportunities to substitute patterns
by more complex ones during instruction-set synthesis and
code generation, leading to fewer special instructions that
provide the same benefit. In a similar fashion, an ID graph
could be employed in logic synthesis to find opportunities
for data-path sharing.

3 Searching an ordered library

The access to the pattern library can be accelerated sig-
nificantly by exploiting the order of the patterns. When
searching for a particular pattern in the library, we start with
one of the primitive operation nodes it comprises, namely,
the root node. We then add operation nodes in the pattern in
reverse topological order by following the edges in the li-
brary ID graph against their direction. In this way, we arrive
at the complete pattern, provided it exists in the library.

Figure 2 shows the ID-based search graph for the pattern
in Figure 1 with only the reverse edges that are required for
the search algorithm. In order to search this graph for, e.g.,
the pattern on the right, which consists of a right shift (SHR)
followed by a subtraction (SUB), the search algorithm starts
with the pattern root—in this case the subtraction. In the
library it follows the pointer to the subtraction operation on
level 1. Then the right operand of the pattern root—labeled
x2—is examined, which is NULL because it is an external
pattern input. Therefore, it is skipped and the left operand is
checked, which is not NULL because it is connected to the
output of the shift operation.

Consequently, the search function is called recursively
and follows the pointer in the library that attaches a right
shift to the left operand of the subtraction. This time, both
the left and the right operand of the pattern node are NULL.
Therefore, there are no further pattern nodes to be discov-
ered, and the library entry sought has been found.

AND

x1

AND

SHR
SHR

x1

MOV

AND

SHR

SUB

SHR

SUB

AND

SUB

SUB

x1

x0

x0

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x2

x2

x2

x2

x3

Level 3 Level 2 Level 1 Level 0

SHR

SUB

x0 x1

x2

?

Figure 2. ID-Based Search Graph

The search function is called at most once for each node
in the pattern sought. The pointers to the next library nodes
are stored in an array with linear access time. Therefore,
this search is O(p), with p the number of operation nodes in
the pattern sought. If this pattern has more operation nodes
than the largest pattern in the library, the search stops even
earlier. Hence, the worst-case computational complexity of
a search is O(d), with d the size of the pattern sought up
to the maximum number of operation nodes in any pattern
in the library—which is equal to the maximum depth of the
library search-graph. It follows that d ≤ p.

4 Results

ID graphs reveal opportunities to substitute patterns by
others. This can be exploited for instruction-set generation,
resulting in a leaner instruction set with the same speedup.
Moreover, ID graphs can be used during code generation to
increase the number of opportunities for the use of special-
ized instructions, resulting in faster code. Another applica-
tion could be data-path sharing in logic synthesis.

Our experiments with DSP benchmarks show that a
search-graph library can be constructed in roughly the
same time as a simple linked-list library. The resulting li-
brary comprises eight times as many patterns. However, the
search of a pattern in this large library is on average more
than eight times as fast. For more details on the properties
and use of ID graphs, the reader is referred to [1].

References

[1] Gero Dittmann. Organizing pattern libraries for ASIP
design. Technical Report RZ3488, IBM Research,
www.zurich.ibm.com/˜ged/, April 2003.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

