
An Asynchronous Synthesis Toolset using Verilog

Frank Burns, Delong Shang, Albert Koelmans and Alex Yakovlev

School of Electrical, Electronic & Computer Engineering, University of Newcastle Upon Tyne

Newcastle Upon Tyne, NE7 1RU, UK, f.p.burns@ncl.ac.uk

Abstract

We present a new CAD tool set for generating asyn-
chronous circuits from high-level Verilog level-sensitive
specifications. Initially high-level Verilog descriptions are
compiled and converted into a novel intermediate Petri-net
format. The intermediate format is subsequently passed to
optimization tools and mapping tools where it is directly
mapped into asynchronous datapath and control circuits us-
ing David Cells (DCs). Finally logic optimization tools are
applied to generate speed independent (SI) circuits. The
speed independent circuits generated perform well com-
pared to circuits generated by existing asynchronous tools.

1. Introduction

Compared to synchronous CAD tools which are very
mature and accepted by industry, there is still a shortage
of mature CAD tools to support asynchronous circuit de-
signs. There are only a few tools available which generate
complete datapath and control asynchronous solutions from
high-level descriptions, e.g. Balsa [1] is completely asyn-
chronous and uses its own specification languages based on
handshaking. The Verilog language is used in [2] to specify
micropipelined designs out of which controllers are gener-
ated. This technique, however, suffers from the state ex-
plosion problem when designs become larger because they
refine to signal transition graphs and subsequently use logic
sythesis.

Our aim is to avoid the state explosion problem by using
a Petri-net synthesis approach like [3] but which combines
the advantages of using a direct mapping method and using
Verilog as a specification language. We wish to be able to
generate guaranteed speed independent asynchronous cir-
cuits for designs which compete with those generated from
mature asynchronous tools such as Balsa.

Fig. 1 gives a block diagram which shows the synthesis
flow exhibited by our technique.

Our synthesis approach inputs a high-level Verilog spec-
ification, optimizes and schedules it, and translates it into
an intermediate multi-Petri-net representation. This is sub-
sequently synthesized into datapath circuits and control cir-

Optimization

Main Controller Local Controller Datapath

DC circuits Datapath

no

Verilog SPEC

Scheduling

(DCs) (Simple Gates) (REGs/FUs/...)
Library

Converter

Connections

Multi−nets

Coloured PNs

no

RTL Verilog

Outfile

Synthesis

Labelled PNs

SI circuits

Outfile

Local control netsGlobal DC nets Manually

C
om

pi
le

r
D

ir
ec

t M
ap

pi
ngre
de

si
gn

yes yes

Figure 1. Diagram of synthesis flow

cuits using direct mapping techniques. After mapping opti-
mized speed independent circuits are generated.

2. Synthesizing Petri nets from Verilog

We use the ICARUS compiler for compiling the Verilog
specifications. The scheduler schedules sequential assign-
ments in their natural order allowed by their dependencies
and consecutive independent assignments in parallel. The
scheduler handles basic Verilog constructs including: se-
quential assignments, conditional statements, i.e. if, case,
and fork and join statements, cyclic behaviour, e.g. always,
repetitive behaviour, i.e. while, repeat and for loops, and
higher level constructs such as functions and tasks.

The Petri-net synthesizer uses the control output from
the scheduler to generate the intermediate Petri-net descrip-
tion. The intermediate Petri-net format is a multi-net for-
mat comprised of datapath nets based on Coloured Petri
Nets (CPNs) and control nets based on Labelled Petri nets
(LPNs). The control nets are split into two types for map-
ping: (i) global control nets which are used for direct map-
ping to David Cells (DCs) [5] and (ii) local control nets for
mapping to simple control gates (see Fig. 1).

The datapath net Coloured PN (CPN) is constructed us-

1530-1591/04 $20.00 (c) 2004 IEEE

ing transitions to represent functional units (FUs) and pairs
of similarly named transitions to represent multiplexing.

The control nets are constructed in two parts: the global
DC control nets which are based on the number of control
steps required by the scheduler and the local control nets
which translate the DC control net output signals into the
firing signals required for the datapath net transitions.

Optimizations are applied to minimize the number of DC
cells in the DC-net and to reduce nodes in the local net prior
to merging the nets together and logic mapping.

3. Generation of SI circuits

Once the datapath nets and control nets have been con-
structed a syntax-based approach is used to map them di-
rectly into circuits. The data Petri-net fragments are trans-
lated into dual-rail datapath net-lists. The DC control nets
are translated into DC net-lists. The local control nets are
translated into local control flow circuits which are merged
with the datapath net-lists and DC net-lists to give the lo-
cal control circuit connections. Subsequently an optimized
SI circuit is generated. An example output circuit from a
Verilog sequential example is shown in Fig. 2.

& &

M
U

X

M
U

X

&

DC DC DC DC

in1

savein

in2

in3

x
plus1

xd

y

yd

z

zd out

plus2

out

done

Sa

Da

Db

Sb

D

Done

Q

Done

Q
Done

D

Da

Db

Sb

Sa

Q

Q

Done
Latch

A
dder

Latch

Latch

start

Req

Req

Req Done

QD

A

B

O

Done

plus2 outzdplus1zdydxdsavein zd

M
SL

Figure 2. Example of generated logic circuit.

Mapping is achieved using a library of specialized dual-
rail components (AMS 0.35um cell library) which include
datapath elements, C-elements and various kinds of DCs,
for example, the DCs at the top of Fig. 2 ’AND’ different
numbers of input signals together from the datapath below.

In our method, DCs are used instead of a global clock
signal to activate the control steps [4]. This divides all the
operations into several stages based on the sequence of op-
erations. One cell is equivalent to one global DC place and
transition at the top of Fig. 2.

DCs can be joined to make more elaborate Verilog con-
trol constructs such as fork, join, conditions and loops.

4. Results
Our synthesis toolset has been successfully applied to a

range of Verilog examples. The example set covers most of
the basic Verilog level-sensitive constructs so far that are ac-
cepted by commercial synthesis tools. In addition we have
tried to test our toolset against examples entered into the
asynchronous Balsa tool. As a comparison we have chosen
the GCD (Greatest Common Divisor) benchmark.

Table 1. GCD Comparison

start to data out Verilog Balsa

x = y 14.3ns 20.8ns
x = 12, y = 16 108.9ns 187.6ns

Table 1 shows an improvement in time for our synthe-
sized results over those generated by Balsa using the same
technology (AMS 0.35um cell library). The speed up is due
mainly to our more efficient Petri-net based implementation
methodology which we have used to synthesize our circuits.
This methodology exploits a semantical, execution-flow,
link from Verilog to circuits. Balsa uses syntax-directed
techniques, based on handshakes, and uses excessive mem-
ory elements.

5. Conclusions
A new synthesis approach has been described for synthe-

sizing asynchronous datapaths and controllers from Verilog
using a direct mapping approach in order to generate speed
independent implementations. A combination of Petri nets
has been found to be beneficial in direct mapping of the be-
haviour into asynchronous datapath and control circuits.

We can generate asynchronous circuits quickly and, in
addition, the 1-hot approach guarantees better safety than
other asynchronous approaches. Comparisons with other
asynchronous tool sets (Balsa) show our synthesized cir-
cuits to be competetive from a performance view.

References

[1] A. Bardsley and D. Edwards, Compiling the language Balsa
to delay-insensitive hardware, Hardware Description Lan-
guages and their Applications (CHDL), pages 89-91, 1997.

[2] I. Blunno and L. Lavagno. Automated synthesis of micro-
pipelines from behavioral Verilog HDL, Proc. of IEEE Symp.
on Adv. Res. in Async. Cir. and Syst. (ASYNC’2000), pp.
84-92.

[3] P. Eles, K. Kuchcinski and Z. Peng, System Synthesis with
VHDL, Kluwer Academic Publishers, P.O. Box 17,3300 AA
Dordrecht, The Netherlands, 1998.

[4] D. Shang, F. Xia and A. Yakovlev. "Asynchronous Circuit
Synthesis via Direct Translation", ISCAS 2002, IEEE Inter-
national Symposium on Circuits and Systems, May 2002.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

