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Abstract

This paper presents a novel path-based learning methodology to
achieve timing Regression Simulation. The methodology can be
applied for two purposes: (1) In pre-silicon phase, regression sim-
ulation can be used to produce a fast and approximate timing sim-
ulator to avoid the high cost associated with statistical timing sim-
ulation. (2) In post-silicon phase, regression simulation can be
used as a vehicle to deduce critical paths from the pass/fail behav-
ior observed on the test chips. Our path-based learning method-
ology consists of four major components: a delay test pattern set,
a logic simulator, a set of selected paths as the basis for learn-
ing, and a machine learner. We summarize the key concepts in our
regression simulation approach and present experimental results.

1. Introduction
With the advance to nanometer technologies (<130nm),

circuit timing reflects many important sources of effects
such as process variations, power noise, crosstalk, small de-
fects, thermal effects, etc. [1, 2]. These effects are hard to
predict and model deterministically. For these effects, tradi-
tional discrete-value timing models can be ineffective. Sta-
tistical timing analysis and timing simulation approaches
are among the many that promise to better handle these deep
sub-micron (DSM) timing effects for delay testing [3].

This work was motivated by two fundamental issues in
the development of a simulation methodology for delay test-
ing: (1) In a pre-silicon design environment, timing models
may not be correct and 100% complete. Without an accu-
rate timing model, results from timing analysis and simula-
tion may be misleading. (2) Even with a reasonably accu-
rate timing model, the timing models for DSM effects can
be quite complex, resulting in high timing simulation cost.

Our objective was to provide an alternative methodology
that could complement the existing statistical timing anal-
ysis and simulation approaches proposed so far. The core
idea of this work is to utilize machine learning techniques
[4, 5] to accomplish path-based learning where timing be-
havior and timing information can be learned either from
an accurate but slow statistical timing simulator, or from
the behavior of a collection of test chips.
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Figure 1. Path-based learning and its two applications

In the pre-silicon phase, we assume that a slow and rea-
sonably accurate timing simulator is available. In our work,
we use a statistical timing simulator developed in the past
[7]. Given a set of paths and a set of training patterns, the
goal is to learn from the behavior of the timing simulator to
derive a regression simulator that can produce approximate
results as the timing simulator for the same pattern or other
pattern sets. In the post-silicon phase, we assume that a set
of test chips are available. By testing them with a pattern set
on a given test clock, we can obtain their pass/fail behav-
ior. Then, given a set of potential critical paths, our goal is
to deduce the most important ones that are sufficient to ex-
plain the pass/fail behavior. In this process, machine learn-
ing is treated as an explanation tool. This problem is known
as feature reduction in machine learning literature [6].

2. Path-based learning scheme
In a typical Machine (statistical) Learning problem, we

are given a collection of samples, each of the form (X;y)
where X = [x1,x2, : : :,xn]. ”n” is called the dimension, and
(X;y) is called a sample point (or a training sample). The re-
lationship between X and y is through an unknown function
f such that y = f (X). The job of learning is to learn from
a given m sample points: (X1;y1);(X2;y2); : : : ;(Xm;ym) in
order to statistically deduce an estimation fest for f . This is
also called Supervised Learning [4].

In Classification, f (X) 2G where G is a set of finite ele-
ments. In recent years, Support Vector Machine (SVM) has
been demonstrated as a powerful learning technique (clas-
sifier) for problems whose dimensions are very large [4, 5].
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Figure 2. The path-based learning scheme

Our path-based learning scheme has two phases. In the
Training Phase, a set of m sample points are created based
on a given training set of m patterns. The Yi values cor-
respond to the probabilities of failing a test clock. X j =
[x j1; : : : ;x jn] where each x jk indicates if it is possible for an
UR path k to decide the delay of pattern j. Since we utilize
SVM [9] as a classifier, we treat probabilities falling into
the range [0:l;0:(l+1)] as the same class. Hence, Yi = 3 for
a pattern whose failing probability is 0.34. The UR path set
can be derived from our statistical timing analyzer (SAT) by
given a cut-off clock [8]. Then, in the Evaluation Phase, the
regression simulator relies on three components to approxi-
mate the desired answers: the set of UR paths, the logic sim-
ulator to decide how a pattern sensitizes UR paths, and the
SVM learned model. If the objective is to approximate the
statistical timing simulator, then the evaluation pattern set
can be different. If the objective is to explain the failing be-
havior of the test chips, the pattern set stays the same.

3. Summary of results
Table 1 shows the accuracy results by comparing the re-

gression simulator to the statistical timing simulation in the
evaluation phase. T1 are path delay patterns. T2 are patterns
for transition faults through their longest propagation paths.
TR15 and TR10 are 15-detection and 10-detection transition
fault patterns produced by a commercial ATPG tool. The
”STA” column denotes the average worst-case delays pro-
duced by the statistical timing analysis [8] for constructing
the UR path sets. The ”clock” column shows test clocks to
derive the failing probabilities. In these experiments, we in-
tentionally used, in the timing analysis, a timing model dif-
ferent from the one used in the statistical timing simulator
(up to 15% difference on each pin-to-pin delay). We note
that in the evaluation phase, the regression simulator usu-
ally can run about 1000X faster than the statistical simula-
tor. In other words, it can be a fast and approximate simula-
tor for the statistical timing simulator with high accuracy.

Figure 3 shows results by using path-based learning as a
feature reduction tool [6]. The ”reduced UR path set” con-
tains paths that are critical in SVM learning for deriving its
statistical learned model. In other words, other paths do not
provide useful statistical information. As it can be seen, al-
though statistical timing analysis may give a large path set
(with a smaller clock), the number of useful paths to explain

Circuit Clock Training Evaluation Accuracy STA
C880 19.5ns T1 T1 99.4% 23.28ns

T1 T2 97.92%
C1355 19.9ns T2 T2 96.88% 22.88ns

T2 T R15 96.20%
20.2ns T2 T R15 98.52%

C2670 29.9ns T1 T1 90.14% 35.59ns
T1 T2 98.41%

C7552 31ns T1 T1 97.72% 32.58ns
T1 T2 98.52%

s1488 24ns T1 T1 99.8% 30.09ns
T1 T2 98.4%

s5378 24ns TR10 T R10 99.58% 24.94ns
TR10 T2 98%

s9342 37ns T1 T1 98.42% 41.08ns
T1 T2 96.11%

s38417 41ns T1 T1 96.85% 40.27ns
T1 T2 93.11%

Table 1. The accuracy of regression simulation
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Figure 3. Illustration of feature path selection (C880)

the failing results in our learning scheme does not grow
much. If we allow 4% of errors, the learning process can
identify 137 useful paths. In other words, these are 137 sta-
tistically significant paths sufficient to explain the observe
results to the desired accuracy. Due to space limitation, we
omit showing similar results for other examples.
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